
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Breeding
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1425700
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Understanding the mechanisms underlying plant responses to abiotic stress is crucial for improving crop resilience. This study characterizes the role of TaPIP1A, a member of the plasma membrane intrinsic proteins (PIPs) in wheat, highlighting its critical function in mediating stress responses. We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions.We also discovered that TaPIP1A interacts with TaPIP2-3 and is regulated by the transcription factor TaWRKY71, which binds to its promoter to activate gene expression. These findings contribute to our understanding of the molecular mechanisms by which PIPs facilitate plant adaptation to environmental stresses, offering new avenues for the development of stress-resistant crop varieties. Our research provides insights into the genetic manipulation of intrinsic membrane proteins to enhance plant stress tolerance, a step forward in agricultural biotechnology.
Keywords: wheat, TaPIP1A, abiotic stress, Transcriptional regulation, protein-protein interactions, TaWRKY71, Crop resilience, plant stress responses
Received: 30 Apr 2024; Accepted: 19 Jun 2024.
Copyright: © 2024 Han, Zhang, Zhi, Chen, Zhao, Ji, Wang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jie Han, Hebei University of Science and Technology, Shijiazhuang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.