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The E3 enzyme in the UPS pathway is a crucial factor for inhibiting substrate

specificity. In Solanaceae, the U-box E3 ubiquitin ligase has a complex

relationship with plant growth and development, and plays a pivotal role in

responding to various biotic and abiotic stresses. The analysis of the U-box

gene family in Solanaceae and its expression profile under different stresses

holds significant implications. A total of 116 tobacco NtU-boxs and 56

eggplant SmU-boxs were identified based on their respective genome

sequences. Phylogenetic analysis of U-box genes in tobacco, eggplant,

tomato, Arabidopsis, pepper, and potato revealed five distinct subgroups (I-

V). Gene structure and protein motifs analysis found a high degree of

conservation in both exon/intron organization and protein motifs among

tobacco and eggplant U-box genes especially the members within the same

subfamily. A total of 15 pairs of segmental duplication and 1 gene pair of

tandem duplication were identified in tobacco based on the analysis of gene

duplication events, while 10 pairs of segmental duplication in eggplant. It is

speculated that segmental duplication events are the primary driver for the

expansion of the U-box gene family in both tobacco and eggplant. The

promoters of NtU-box and SmU-box genes contained cis-regulatory

elements associated with cel lular development, phytohormones,

environment stress, and photoresponsive elements. Transcriptomic data
Abbreviations: Ras, Ralstonia solanacearum L.; MW, Molecular weight; pI, Isoelectric points; ML, maximum

likelihood; NtU-box, U-box genes of Nicotiana tabacum; SmU-box, U-box genes of Solanum melongena;

FPKM, Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced; qRT-PCR,

Quantitative real-time PCR.
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analysis shows that the expression levels of the tobacco and eggplant U-box

genes in different tissues and various abiotic stress conditions. Using cultivar

Hongda of tobacco and cultivar Yanzhi of eggplant as materials, qRT-PCR

analysis has revealed that 15 selected NtU-box genes and 8 SmU-boxmay play

important roles in response to pathogen Ras invasion both in tobacco

and eggplant.
KEYWORDS

U-box, biotic stress, expression analysis, phylogenetic analysis, Nicotiana tabacum L.,
Solanum melongena L.
Introduction

The Ubiquitin-Proteasome System (UPS) is considered to be a

major pathway of protein-specific degradation and plays an

important role in the signal pathway of regulating environmental

stresses in the post-translation stage of protein (Serrano et al., 2018;

Stone, 2019; Sharma and Taganna, 2020). The system involves the

coordinated catalytic activities of three types of enzymes, namely a

large number of ubiquitin ligases (E3), together with a few ubiquitin

activating enzymes (E1) and ubiquitin-conjugating enzymes (E2)

(Yan et al., 2003; March and Farrona, 2018). In the process of

ubiquitination, when ATP supplies energy, E1 activates the

ubiquitin molecules and transmits them to E2, and E3 connects

the ubiquitin binding E2 to the target protein, and finally achieves

ubiquitination of the target protein (Finley and Chau, 1991; Pickart,

2001; Trenner et al., 2022). Ubiquitin ligases are crucial in the

ubiquitin pathway as they specifically recognize the target proteins

for ubiquitination, and it is also the most abundant enzyme in terms

of quantity. Studies have shown that the ubiquitin ligases are

classified into different families according to their structure,

function, and substrate specificity (Kim et al., 2021a), but

functional domains of four families (HECT, RING, U-box, and

cullin) are common. U-box protein contains a 70-amino acid U-box

domain, a single protein widely distributed in yeast, plants, and

animals (Shu and Yang, 2017). The first plant elucidated U-box

protein (PUB) family was in Arabidopsis, which contains 64

members (Azevedo et al., 2001; Trujillo, 2018). Subsequent

studies have successively identified 82 members in wild emmer

wheat (Yang et al., 2021a), 70 in Salvia miltiorrhiza (Pan et al.,

2022), 77 in rice (Kim et al., 2021b), 121 in Phyllostachys edulis

(Zhou et al., 2021), 67 in barley (Ryu et al., 2019) and 62 in tomato

(Sharma and Taganna, 2020).

Numerous studies have shown that U-box proteins are involved

in the regulation of plant hormone signal transduction, abiotic and

biotic stress responses (Zeng et al., 2008). For example, AtU-box18

and AtU-box19 were found to coordinately function as regulatory

components in development and stress response in Arabidopsis

(Bergler and Hoth, 2011). Furthermore, NtACRE276 was confirmed

to have the E3 ligase activity and involved in cell death and defense
02
signaling, and its ortholog in Arabidopsis (AtU-box17) and canola

(BnARC1) showed similar biological function (Yang et al., 2006). In

wheat, TaPUB1 plays a key role in regulating the antioxidant

capacity of diploid wheat under drought stress (Zhang et al.,

2017), enhancing its resistance to powdery mildew fungi by

controlling U-box proteins of CMPG1-V (Zhu et al., 2015).

Similarly, in tomato, SIU-box13 and SIU-box40 were found to

confer resistance against tomato yellow leaf curl virus

(Sharma and Taganna, 2020).

Tobacco and eggplant are important crops. Extensive studies

have demonstrated that U-box genes play vital roles in regulating

diverse developmental processes and stress signaling in plants

(Azevedo et al., 2001). Current research on members of the U-box

gene family in tobacco and eggplant is limited, and their exact

function is still unknown. Therefore, it is of great significance to

systematically analyze the U-box gene family in tobacco and

eggplant. The purpose of this study was to comprehensively

analyze the U-box gene family by integrating transcriptome data

of tobacco and eggplant and study the expression patterns of U-box

gene family members under pathogen Ralstonia solanacearum L.

(Ras) infection conditions. The results of this study lay an important

foundation for further analysis of the function and trait

improvement of the U-box gene family in tobacco and eggplant.
Materials and methods

Genome identification of U-box gene
family members in two Solanaceae species

The genome sequence and annotation data of Solanaceae

species, including tomato (ITAG2.4), eggplant (SME-HQ) and

tobacco (Nitab-v4.5) were downloaded from the Sol Genomics

Network (https://solgenomics.net/) (Fernandez-Pozo et al., 2015;

Edwards et al., 2017). The local protein database of tobacco and

eggplant was constructed by command ‘makeblastdb’ of the local

BLAST tool (BLAST+ 2.13.0) and a total of 62 known tomato U-box

protein sequences were used as seed sequences to align with the

tobacco and eggplant protein sequences by BLASTP program
frontiersin.org
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(Sharma and Taganna, 2020) U-box domain (PF04564) was

obtained from the Pfam database (version 37.0) (http://

pfam.xfam.org/) (Mistry et al., 2021).Sequences with the similarity

≥30% and E≤ 1e−10 were considered as the candidate proteins.

Subsequently, the candidate protein sequences were further

analyzed for the presence of a U-box structure domain (PF04564)

using the CDD program of NCBI (https://www.ncbi.nlm.nih.gov/

cdd/) and SMART tool (http://smart.embl-heidelberg.de/). The

candidate protein containing the U-box conserved domain was

confirmed as the final U-box protein. These U-box genes of tobacco

and eggplant were renamed as NtU-boxs and SmU-boxs,

respectively. The physicochemical properties of the tobacco and

eggplant U-box proteins were predicted and analyzed using the

ExPASy software (https://www.expasy.org) (Wilkins et al., 1999)

and the subcellular location of each U-box protein analysis was

based on the Cell PLoc 2.0 (Chou and Shen, 2008). The gene

structure, conserved motif, phylogenetic tree, chromosomal

localization, and synteny were analyzed, and corresponding flow

chart was provided in Supplementary Figure S1.
Gene structure and conserved
motif analysis

The GFF format file of gene structure for tobacco and eggplant

was obtained from the Solanaceae genome database (https://

solgenomics.net/) (Fernandez-Pozo et al., 2015; Edwards et al.,

2017).The intron-exon gene structures of NtU-box and SmU-box

genes were displayed using TBtools (version 2.097) (Chen et al.,

2020) based on the gff3 files of the tobacco and eggplant genome.

The conserved motifs of NtU-box and SmU-box proteins were

analyzed using the online programMEME (https://meme-suite.org/

meme/tools/meme) (Ma et al., 2014; Bailey et al., 2015) and the

parameters were as follows: the number of motifs was set to 20, and

the width range of motifs was set to be 5-200 amino acids

respectively. Motif annotation was identified using the Pfam

online tool (http://pfam-legacy.xfam.org/). U-box genes were

submitted to the PlantCARE online program (Lescot et al., 2002)

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) for

cis-acting elements prediction.
Multiple sequence alignment and
phylogenetic analysis

To explore the evolutionary relationship of the U-box gene

family in plants, the full protein sequences of U-box from tobacco,

eggplant, pepper, potato, tomato, and Arabidopsis were analyzed.

The Clustal X software (Thompson et al., 1997) was used to perform

multiple sequence alignment. The phylogenetic tree was

constructed by the MEGA-11 (Tamura et al., 2021) tool using the

maximum likelihood method (ML) with a bootstrap of 1000

replications. The ML is a significant statistical method for
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parameter estimation. The ITOL (version 6.0) tool (https://

itol.embl.de/) was used to edit the phylogenetic tree of NtU-box

proteins and SmU-box proteins.
Chromosomal localization and
synteny analysis

Based on the annotation information and the full genome

protein sequences of tobacco (Nitab-v4.5), eggplant (SME-HQ),

tomato (ITAG2.4) and Arabidopsis (TAIR10), the MCScanX

software (Wang et al., 2012) with default parameters was

employed to analyze the possible segmental duplication, tandem

duplication events, intra-genomic syntenic and inter-genomic

collinearity blocks (Edwards et al., 2017) and the TBtools

software (version 2.097) (Chen et al. , 2020) was used

for visualization.
Expression analysis of NtU-box and SmU-
box genes

To investigate the expression patterns U-box genes across

different tissues and under various abiotic stresses, we analyzed

the FPKM (Fragments Per Kilobase of transcript per Million

mapped reads) values of NtU-box genes in different tissues

(GSE233199) (Mo et al., 2023) under drought conditions

(GSE214048) (Hu et al., 2022), as well as SmU-box genes in

different tissues (PRJNA328564) (Barchi et al., 2019) and under

high temperature conditions (Liu et al., 2023), which were

download from NCBI(https://www.ncbi.nlm.nih.gov/geo/). A map

was generated using the heatmap function of the R gplots package

(Walter et al., 2015).

The Hongda variety of tobacco and Yanzhi variety of eggplant

were cultivated using conventional cultivation methods. The

seedlings were managed until the 3-5 leaf stage. A total of 100

tobacco seedlings and 100 eggplant seedlings were selected and

inoculated with a highly efficient strain of Ralstonia solanacearum

L. (Ras) that had been isolated and maintained by our laboratory

(Gao et al., 2019). These plants were cultured in a greenhouse with

high-humidity and high-temperature (approximately 80%

humidity, 28~30°C, 14 h light exposure; 10 h dark environment).

The seedlings of tobacco and eggplant were collected at 0 h, 12 h,

24 h, 48 h and 96 h after inoculation, with each biological sample

consisting of 5 plants and a total of 3 replicates. For sampling,

seedlings were uprooted and their roots were quickly washed with

sterile water to remove any attached soil and pathogens. The cDNA

synthesis was carried out using the SMART Kit (Takara). To

evaluate the expression levels of the NtU-box and SmU-box genes,

real-time quantitative PCR (qRT-PCR) was conducted using SYBR

Green qPCR Premix (Universal), and the relative expression levels

were calculated using the 2−DDt method (Livak and Schmittgen,

2001). Three technical replicates were performed for each sample.
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The actin genes of both tobacco and eggplant were used as the

internal reference gene, and the primers of NtU-box and SmU-box

genes (Supplementary Table S1) were designed using primer3

software (https://bioinfo.ut.ee/primer3-0.4.0/).
Results

Characterization and distribution of U-box
genes in tobacco and eggplant genomes

In this study, a total of 116 U-box genes were identified in

tobacco, while 56 U-box genes were in eggplant. These genes were

renamed from NtU-box1 to NtU-box116 and SmU-box1 to SmU-

box56, respectively. To characterize these NtU-box and SmU-box

genes, gene ID and protein molecular weight (MW), theoretical

isoelectric point (pI), subcellular localization, number of exon, and

CDS sequences were analyzed (Supplementary Table S2). In

tobacco, NtU-box genes contained 1 to 19 exons, and the relative

molecular weight of their corresponding proteins varied greatly

from 20890.72 Da (NtU-box112) to 194534.46 Da (NtU-box31), and

the theoretical isoelectric point ranged from 5.12 (NtU-box47) to

9.47 (NtU-box110). In eggplant, SmU-box genes contained 1 to 18

exons. The predicted molecular weight ranged from 31784.29 Da

(SmU-box53) to 166473.85 Da (SmU-box43), while the theoretical

isoelectric point varied from 4.92 (SmU-box51) to 9.23 (SmU-box9).

Subcellular localization analysis of NtU-box and SmU-box proteins

showed that these proteins were mainly present in the nucleus.

Among the 116 NtU-box proteins, 5 were located on the cytoplasm,

4 on the cell membrane, and 1 on the chloroplast, while other NtU-

box proteins were located on the nucleus. Among the 56 SmU-box

proteins, 3 were located in the cytoplasm, 1 was located in the

chloroplast, and the other SmU-box proteins were located in the

nucleus (Supplementary Table S2).
Frontiers in Plant Science 04
Chromosome localization and collinearity
analysis of NtU-box and SmU-box genes

The analysis of chromosomal localization showed that some

NtU-box genes could not acquire the precise location information

due to the incomplete sequencing of the tobacco genome. Among

the 116NtU-box genes, a total of 64 genes were unevenly distributed

on 24 chromosomes of tobacco, while the remaining 52 NtU-box

genes were mapped to unassigned scaffolds (Figure 1A). Notably,

chromosome 19 contained the largest number of NtU-boxs (8

genes), followed by chromosome 04 with 7 NtU-box genes, and

chromosomes 13 and 14 with 6 NtU-box genes each. In contrast,

chromosomes 03, 05, 11, 20, 21, and 24 each contained only one

NtU-box gene, while chromosomes 01, 02, 08 and 23 had no NtU-

box genes detected (Figure 1A). In addition, 1 pair of tandem

duplication genes on chromosome 19 (NtU-box14/10) and 15 pairs

of segmental duplication genes were identified in the tobacco NtU-

box gene family (Figure 1A, Supplementary Table S3). The result of

chromosomal location analysis revealed that 55 out of 56 SmU-box

genes were unevenly distributed among the 12 chromosomes of

eggplant, with only 1 SmU-box gene located on an unattributed

scaffold. Chromosome 01 contained the largest number of SmU-

boxs (12 genes), followed by chromosomes 03 and 11 with 7 SmU-

box genes, and 5 SmU-box genes for chromosomes 04, 05, 09 and

12. However, chromosomes 02, 06, 07, and 10 contained 4, 3, 1, and

1 SmU-box genes, respectively, while none of the SmU-box genes

were detected on chromosome 08 (Figure 1B). In the eggplant SmU-

box gene family, 10 pairs of fragment duplication genes were

identified, but no tandem repeats were identified (Figure 1B;

Supplementary Table S3).

A total of 22 orthologous genes were identified between tobacco

and Arabidopsis based on the interspecies syntenic analysis, while

there were 65 syntenic counterparts between tobacco and tomato

(Figures 2A, B). A total of 68 orthologous genes were identified
BA

FIGURE 1

Gene distribution and duplication (A) NtU-box genes on the 24 chromosomes in tobacco (B) SmU-box genes on the 12 chromosomes in eggplant.
Tandem-duplicated gene pairs of Nt19 are marked with red box, and segmental duplication genes are connected by red line.
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between eggplant and Arabidopsis based on the interspecies

syntenic analysis, while there are 41 syntenic counterparts

between eggplant and tomato (Figures 2A, B). The genomic

regions around NtU-box41/61/62/74, SmU-box9/15/29/39/40

showed strong syntenic relationships with their counterparts in

both Arabidopsis and tomato (Supplementary Table S4). Notably,

good collinearity was detected among the U-box genes of four

distinct species, even after undergoing speciation and long-term

evolution, and the result suggested that these genes might have

originated before Solanaceae species diversification and retained

conserved functional roles.
Phylogenetic and gene structure analysis
of NtU-box and SmU-box genes

To investigate the evolutionary relationship between NtU-box and

SmU-box genes, a phylogenetic tree was constructed (Figures 3A, 4A).

In tobacco, NtU-box genes were divided into 5 subgroups (I ~ V), with

the largest members (41 members) in subgroup I. The subgroup

represented more than 35.3% of the total NtU-box members. In

contrast, subgroups II, IV, and V had only 6, 9 and 21 members,

respectively. In eggplant, the largest members of eggplant (18

members) found in the subgroup I and this subgroup represented

more than 32.1% of the total SmU-box members. In contrast,

subgroups II, III, and V had only contained 3, 5 and 10 members,
Frontiers in Plant Science 05
respectively. Gene structure of NtU-boxs were found that the number

of exons varied from 1 (NtU-box1) to 19 (NtU-box105) (Figure 3B).

The number of exons SmU-box gene ranging from 1 to 18. Among

116 U-box genes in tobacco, NtU-box105 and NtU-box106 contained

the greatest number of exons (19), while 40 NtU-box genes (34.5%)

only contained one exon (Figure 3B). Among 56 U-box genes in

eggplant, 21 SmU-box genes (37.5%) contained one exon (Figure 4B).

In addition, theU-box genes with similar gene structures were clustered

into the same sub-clade. For example, most tobaccomembers of Group

II only housed five exons. This result indicated that the members of the

same groups exhibited similar gene structures.
Domain and motif analysis of the NtU-box
and SmU-box proteins

A total of 20 conserved motifs have been identified in the 116

NtU-box and 56 SmU-box genes. The lengths and conserved

sequences of each motif are listed in Supplementary Table S5.

Among them, Motif 7 and Motif 1 were prevalent across most

genes in all five groups of tobacco NtU-box proteins (Figure 5).

Similarly, in eggplant SmU-box proteins Motif 1, Motif 4, Motif 6,

and Motif 5 were found in most genes of the five groups, indicating

their high conservation in U-box proteins (Figure 6). The protein

sequences of the 20 motifs were uploaded to the CDD program for

further domain analysis. Motif 1, Motif 2, and Motif 7 were
B

A

FIGURE 2

Collinearity analyses of U-box genes among tobacco, eggplant tomato and Arabidopsis. (A) Collinearity analyses among Arabidopsis thaliana,
Nicotiana tabacum and Solanum melongena. (B) Collinearity analyses among Solanum Lycopersicon, Nicotiana tabacum and Solanum melongena.
The gray line represents the co-collinearity of all genes among the three species, and the purple and blue line represents the collinearity among
members of the U-box gene family.
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annotated as components of the conserved U-box domain

sequences, essential for maintaining the structural integrity of the

U-box and facilitating ubiquitin linkage activity. Additionally, Motif

3 was annotated as part of the ARM conserved domain, which was

the most common type in the U-box family. Moreover, genes in the

same group on the phylogenetic tree exhibited similar conserved

motifs. For example, all NtU-box genes in Group II had the same 7

motifs (Motifs 1, 2, 7, 9, 11, 15, and 20), suggesting potential

functional similarities.
Phylogenetic analysis and functional
prediction of the U-box gene family in
Solananceae species

To explore the evolution of the U-box gene family in plant, 428

U-box gene members from 6 species were selected to construct a
Frontiers in Plant Science 06
phylogenetic tree (Figure 7), including tobacco (116), eggplant (56),

potato (66), tomato (62), Arabidopsis thaliana (64), and pepper (64)

(Supplementary Table S6). Based on previous study, 428 U-box

genes were divided into 5 different subfamilies (Wang et al., 2021).

Based on the phylogenetic tree, a total of 138 sister pairs of

homologous proteins were identified, including 71 pairs of

orthologous genes and 67 pairs of paralogous genes

(Supplementary Table S7). Specifically, there were 41 paralogous

pairs from tobacco, 17 pairs from Arabidopsis thaliana, 6 pairs from

pepper, 2 pairs from potato, and 1 pair from eggplant.

Similarity in gene expression patterns implies similar functions,

especially for homologous genes (Yang et al., 2021b). Based on

published transcriptomic data, the expression patterns of U-box

genes in major tissues were compared in tobacco (116), eggplant

(56), and Arabidopsis thaliana (64). These NtU-box and SmU-box

genes were classified into 7 categories according to their normalized

expression levels (Supplementary Figure S2A). Among them, the U-
BA

FIGURE 3

Gene structure and evolution of U-box family in tobacco (A) Phylogenetic relationships of NtU-boxs. Different subgroups were marked with different
colors. (B) Intron-exon structure of NtU-boxs. UTR and CDS are represented by different colors. The scale bar of bottom demonstrates the length of
exons and introns.
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box genes of group I specifically expressed in leaf with a high level;

the U-box genes of group II expressed specifically high in all tissue;

U-box genes in Cluster III mostly expressed in stem; U-box in group

IV and V highly expressed in roots. Based on the tissue expression

clustering characteristics, phylogenetic relationship of multispecies

U-box genes were predicted (Supplementary Table S8).

In general, the functions of some NtU-box and SmU-box genes

were mainly divided into the following four categories: 1. Play a role

in formation of organs and regulator offlowering time. 2. Play a role

in regulating root development, pollen tapetum development and

ROS induced chloroplast degradation. 3. Play combinatory roles in

response to drought stress. 4. Encodes a U-box domain-containing

E3 ubiquitin ligase with central Ser/Thr protein kinase domain, and

its expression is responsive to both phosphate (Pi) and phosphite

(Phi) in both roots and shoots (Supplementary Table S8). Only

those NtU-box and SmU-box genes that were homologous to the

reported AtU-box genes, had highly similar expression patterns, and

shared similar functions. Fox example, AtPUB18 and AtPUB19

function as regulators in the drought stress response (Liu et al.,

2011) and their homologous genes NtU-box65/66/67 genes and

SmU-box27 genes, which had similar expression patterns, were

predicted to have similar functions (Supplementary Figure S2B).

Transcriptome data showed that NtU-box65/66/67 genes and SmU-
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box27 genes showed a positive regulatory expression pattern under

heat stress (Supplementary Table S9). AtPUB14 plays a role in

organ formation and flowering time regulation (Feke et al., 2020),

and its homologous gene SmU-box28/29/31 has a similar expression

pattern in eggplant (Supplementary Figure S2C). Transcriptome

data showed that SmU-box28/29/31 has a high expression level in

eggplant flowers, which is expected to have similar functions

with AtPUB14.
Cis-regulatory elements analysis and tissue
expression patterns of U-box genes

To investigate the potential function of U-box genes during

plant development and upon exposure to various stresses, the cis-

elements within the promoter regions of U-box genes were

analyzed. A total of 36 cis-regulatory genes were identified in the

promoter region of NtU-box genes, while 34 cis-regulatory genes

were identified in the promoter region of SmU-box genes (Figure 8,

Supplementary Table S10). These cis-regulatory genes can be

divided into four categories, specifically cell development, plant

hormones, environmental stress, and photoresponse elements

(Supplementary Table S10). The 5 cis-acting elements related to
BA

FIGURE 4

Gene structure and evolution of U-box family in eggplant. (A) Phylogenetic relationships of SmU-boxs. Different subgroups were marked with
different colors. (B) Intron-exon structure of SmU-boxs. UTR and CDS are represented by different colors. The scale bar of bottom demonstrates the
length of exons and introns.
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FIGURE 5

Conserved motifs for U-box proteins in tobacco. Different motifs are showed with different colored boxes and numbers (1-20).
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cell development include CAT-box, MSA-like, CCAAT-box, MBSI,

and HD-Zip 1. For phytohormone-responsive elements, the cis-

acting elements include TGACG-motif, ABRE, P-box, TGA-

element, TCA-element, AuxRR-core, TATC-box, GARE-motif,

AuxRE, A-box, and O2-site. Additionally, ten light responsive

elements were identified, including GT1-motif, G-Box, Box4,

MRE, ATC-motif, Sp1, ATCT-motif, ACE, 3-AF1 binding site,

and AAAC-motif. The expression of these genes might be

regulated by phytohormones, various light-responsiveness cis-

elements, defense signaling transduction, and abiotic stresses

during the growth of tobacco and eggplant.
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Transcriptome analysis revealed diverse expression patterns of

NtU-box and SmU-box genes in different tissues, which were

clustered into three groups (Figure 9) (Yang et al., 2022). In

tobacco (Figure 9A), group I comprised 41 NtU-box genes, with

the majority showing high levels of expression in vegetative tissue,

particularly in root. Conversely, NtU-box genes in groups II and III

exhibited low levels of expression. A total of 5 SmU-box genes

(SmU-box 54/42/53/34/41) in group II showed high levels of

expression in all investigated tissues, including stem, leaf, radicle,

cotyledons, root, and flower (Figure 9B), and 31SmU-box genes in

group I exhibited moderate levels of expression. Conversely, SmU-
FIGURE 6

Conserved motifs for U-box proteins in eggplant. Different motifs are showed with different colored boxes and numbers (1-20).
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box genes in group III showed nearly negligible expression,

exhibited lower expression levels.
The expression profiles of tobacco and
eggplant U-box genes under various
abiotic and biotic stresses

To determine the expression profiles of U-box family genes

under abiotic stress, the FPKM data of tobacco NtU-box genes

under drought stress (Hu et al., 2022) and eggplant SmU-box genes

under high temperature (Liu et al., 2023) were downloaded. The

expression profiles of 62NtU-box genes and 26 SmU-box genes were

analyzed (Supplementary Table S9). The results revealed distinct

expression patterns among the NtU-box and SmU-box gene

members under various stress conditions (Figure 10). Specifically,

the 62 NtU-box genes and 56 SmU-box genes were each classified

into three groups (I ~ III). In tobacco, a total of 15 NtU-box genes

were included in group I, and the high expression levels of these

genes in the five drought stress stages mean that these genes can

play an important role in the drought stress process, while the 32
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NtU-box genes clustered in group II showed low or no expression in

the whole drought stress process. In eggplant, a total of 14 SmU-box

genes were included in group III, and the expression profiles of

these genes exhibited a pattern of initial decrease followed by an

increase across the three high-temperature stress stages, indicating

their potential significance in responding to high-temperature

stress. Conversely, the 6 SmU-box genes in group I showed either

minimal or no expression throughout the high-temperature stress

process. It is worth noting that the expression levels of NtU-box59

and NtU-box46 genes gradually decreased with the increase of

drought time. In terms of high-temperature stress (Figure 10B),

the expression level of the SmU-box27 gene in group II gradually

increased with the increase of high-temperature time, while the

majority of SmU-box genes (SmU-box54/32/22/38/39) reached the

peak expression level at the 12 h of high-temperature stress. These

results indicated the functional diversity of U-box members among

different species.

No significant changes were observed in the seedlings of both

tobacco and eggplant at the initial stage after being infected by

Ralstonia solanacearum L. (Ras). In tobacco, the primary symptoms

induced by Ras infection manifested in the seedling at 96 h
FIGURE 7

Phylogenetic relationship of 116 NtU-box and 56 SmU-box proteins, along with another 256 published U-box proteins. The phylogenetic
relationships were generated by using MEGA-11 using the Maximum Likelihood (ML) method (1000 bootstrap replicates), and visualized with ITOL
software. U-box proteins were classified into five distinct groups, as indicated by the different colors.
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FIGURE 8

(A) Predicted cis-elements in NtU-box promoters. (B) Predicted cis-elements in SmU-box promoters. Different shapes and colors represent the
different types of cis-elements. Annotations of cis-elements were listed in Supplementary Table S10.
BA

FIGURE 9

The expression patterns of tobacco and eggplant U-box genes in different tissues. (A) The expression patterns of NtU-box genes (B) The expression
patterns of SmU-box genes. FPKM values for U-box genes were transformed by log2 (n+1).
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(Figure 11A). During this stage, the seedling exhibiting leaf wilting

and stem necrosis, with the roots turning yellow and exhibiting

necrosis. In contrast, symptoms in the eggplant appeared later than

those in tobacco, with notable symptoms appeared at 120 h

(Figure 11B). The leaves appeared withered, and the basal part of

the stem showed severe necrosis and turned black. It was reported

that SIU-box13 and SIU-box40 in tomato, play a crucial role in the

regulation of pathogen invasion (Sharma and Taganna, 2020). To

further explore the potential functions of the U-box genes in

tobacco and eggplant, a total of 15 NtU-box and 8 SmU-box genes

that clustered with SIU-box13 and SIU-box40 in II subgroups of the

phylogenetic tree (Figure 7) were selected for qRT-PCR analysis

under Ras infection. The qRT-PCR analysis found that the majority

of the selected genes showed significant response to Ras infection.

In tobacco (Figure 12A), the expression levels of 7 NtU-box genes

(NtU-box1/3/79/81/82/83/91) exhibited a trend of initial increased

followed by decreased with the extension of time after inoculation.

Among these genes, the expression levels of 5 genes (NtU-box3/79/

81/82/83) were significantly up-regulated at 12 h after inoculation,

while 2 genes (NtU-box2/4) displayed significant down-regulated

and 6 genes (NtU-box5/34/35/80/92/107) showed a pattern of

decrease followed by a slight increase. In eggplant (Figure 12B),

all the 8 selected genes displayed up-regulated expression in

response to the infection compared to the initial stage (0 h), and

2 genes (SmU-box1/2) exhibited significant up-regulation exceeding

a 4-fold increase at 24 h post-inoculation.
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Discussion

U-box gene family members are present in almost all

eukaryotes. The advent of genome sequencing has facilitated

comprehensive analyses of the U-box gene family in numerous

species, such as Arabidopsis thaliana (64), rice (77), soybeans (125),

and tomato (62) (Wiborg et al., 2008; Zeng et al., 2008; Wang et al.,

2016; Sharma and Taganna, 2020). In this study, a total of 116 U-

box genes were identified in tobacco, which were larger than those

in Arabidopsis thaliana and rice, but less than in soybean. As an

allotetraploid, the genome size of Nicotiana tabacum is 4.5Gb, while

that of Arabidopsis, rice and soybean is 125Mb, 430Mb and

1.025Gb, respectively (Kaul S et al., 2000; Burr, 2002; Schnable

et al., 2009; Schmutz et al., 2010). In this case, it seems that there is

no direct correlation between the number of U-box genes and

genome size in these plants. The number of exons observed between

NtU-box genes varies significantly, of which 64 genes contain two or

more exons, 13 genes have more than 10 exons, and 39 genes

possess only one exon. Similarly, for SmU-box genes, differences are

notable: 32 genes contain two or more exons and 4 genes have more

than 10 exons, and however, 20 genes possess only one exon. This

suggested that distinct RNA splicing processes that could modulate

the proportion of isoforms (active and non-active), crucial for stress

regulation (Tang et al., 2021). Many SmU-box genes are either

intron-less or have two introns, consistent with reports in tomato

(Sharma and Taganna, 2020). U-box genes with multiple introns
BA

FIGURE 10

The expression profiles of tobacco and eggplant U-box genes under abiotic stresses. (A) The expression patterns of NtU-box genes under drought
stress. (B) The expression patterns of SmU-box genes under high temperature. FPKM values for U-box genes were transformed by log2 (n+1).
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may act as a mutational buffer, protecting coding sequences from

deleterious mutations. The presence of the intron-less genes

underscores structural integrity within the U-box gene family,

suggesting irregular distribution of U-box protein in different

species (Zeng et al., 2008). The phylogenetic analysis of the U-box

gene family showed a great similarity among all the five classes due

to the presence of the core U-box domain in all the members

(Figure 7), suggesting a shared ancestor predating the divergence of

these species. Moreover, a single tandem duplication gene pair and

15 segmental duplication gene pairs were detected in tobacco

(Figure 1A), while 10 segmental duplication gene pairs were

identified in eggplant (Figure 1B), highlighting segmental

duplication events as the primary driver for the expansion of the

U-box gene family in both tobacco and eggplant. In addition, a good

collinearity was detected among the U-box genes of four distinct

species, even after undergoing speciation and long-term evolution.

Syntenic analysis revealed a higher number of orthologous gene

pairs between tobacco and tomato compared to those between

tobacco and Arabidopsis (Figures 2A, B). Conversely, the count of

orthologous gene pairs between eggplant and Arabidopsis exceeded

those between eggplant and tomato (Figures 2A, B). The results

suggested that species with close evolutionary relationships tend to

exhibit greater similarity, higher homology, and increased

conservation of the U-box genes.

In general, the evolution of gene family is predominantly

determined by the organization of gene structures, whereas within

a gene family, members of the same subfamily typically exhibit high

conservation in both structure and function, reflecting their

evolutionary relatedness. In this study, a total of 20 conserved

motifs were identified in the U-box gene families of both tobacco
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and eggplant. Interestingly, despite belonging to the same or

different subfamilies, U-box members exhibited variations in

motif types and quantities. However, the differences in the same

subfamily were notably smaller, indicating a higher level of

conservation in motif composition within closely related

members. These observations highlight the complexity of the

tobacco and eggplant genomes and the differentiation and

diversity of the function within the U-box gene family.

U-box genes play important roles in plant responses to both

abiotic and biotic stresses (Adler et al., 2017; Sharma and Taganna,

2020; Tang et al., 2021). Functional analysis has revealed the

molecular mechanisms involving U-box proteins involving U-box

proteins in theses stress response (Cho et al., 2017). However, the

role of the U-box gene family in tobacco and eggplant remains

unclear. Stress refers to the phenomenon that plants are exposed to

adverse conditions in their environment, causing their physiological

processes to be negatively affected. Stress is usually divided into two

categories: abiotic stress and biotic stress. Abiotic stress mainly

refers to the unfavorable conditions caused by environmental

factors, such as temperature, light, humidity, drought, salt and

alkali. Biotic stresses include a range of biological factors that are

harmful to plant survival and development, often stemming from

infections and competition, including diseases, pests, and weeds

(Atkinson and Urwin, 2012). These stress factors significantly affect

crop growth and production. Therefore, mining excellent resistance

genes in plants has become one of the main strategies to cope with

various stress challenges. In this study, 116NtU-boxs were identified

in tobacco and 56 SmU-boxs were identified in eggplant, and their

expressions under abiotic and biotic stresses were further analyzed.

Transcriptomic data analysis revealed the different responses of
FIGURE 11

Disease symptoms of tobacco and eggplant seedlings. (A) Tobacco seedlings at 0 h and 96 h post-inoculation with Ras. (B) Eggplant seedlings at
0 h and 120 h post inoculation with Ras. The basal parts of stems were magnified and shown in the circles.
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plant U-box gene family members to abiotic stress, indicating

functional differences within the family. In addition, SIU-box13

and SIU-box40 of tomato have been shown to play a key role in

regulating pathogen invasion (Sharma and Taganna, 2020).

Therefore, it can be inferred that the NtU-box and SmU-box

genes clustered in the same subfamily with SIU-box13 and SIU-

box40 may have similar functions. In this study, the expression

patterns of 15 selected NtU-box genes and 8 SmU-box genes under

Ras infection highlighting their important role in Ras resistance.

Among the 15 NtU-box genes, the expression of 7 NtU-box genes

(NtU-box1/3/79/81/82/83/91) was significantly up-regulated, and

the NtU-box81 gene showed a strong response to Ras invasion,

which increased more than 8 times at 12 h post-inoculation, while

the remaining 8 NtU-box genes showed down-regulated expression

patterns under Ras infection (Figure 12A). It is worth noting that

certainNtU-box genes exhibit contrasting responses to bacterial and

drought stresses. For instance, three genes, NtU-box3, NtU-box82

and NtU-box91 were up-regulated in response to Ras infection;

whereas they showed down-regulated under drought conditions
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(Figures 10A, 12A; Supplementary Table S9). In eggplant, a similar

phenomenon was observed. For example, all 8 selected SmU-box

genes (SmU-box1/2/3/23/46/47/48/52) exhibited up-regulated in

response to Ras infection (Figure 12B), while no significant

changes were detected under high temperature stress condition

(Figures 10B, 12B; Supplementary Table S9). This result suggested a

functional differentiation in the tobacco NtU-box gene family in

their responses to different stresses. Further study of these genes

would greatly enhance the understanding of their functions in both

tobacco and eggplant.
Conclusions

In this study, a total of 116 NtU-box genes and 56 SmU-box

genes were identified in the genome of tobacco and eggplant, which

were categorized into 5 subfamilies, respectively. These NtU-box

genes and SmU-box genes were randomly distributed on the 24

chromosomes of tobacco and the 12 chromosomes of eggplant.
B

A

FIGURE 12

Expression profiles of U-box genes in response to Ras infection. (A) Relative expression level of 15 NtU-boxs in response to Ras infection. (B) Relative
expression level of 8 SmU-boxs in response to Ras infection. Error bars are standard deviations of three biological replicates. Diverse letters on top
of the bars indicate significant differences at P<0.05.
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Phylogenetic analysis suggested a shared ancestor predating the

divergence of six species (tobacco, eggplant, potato, tomato,

Arabidopsis thaliana, and pepper), and segmental duplication

event was the primary driver for the expansion of the U-box gene

family in both tobacco and eggplant. The promoters ofNtU-box and

SmU-box genes contained cis-regulatory elements associated with

cell development, plant hormone response, photoresponsive

elements, and stress response. The expression levels of the

tobacco and eggplant U-box genes varied under various abiotic

stress conditions. qRT-PCR analysis revealed that 15 selected NtU-

box and 8 SmU-box genes play important roles in response to

pathogen Ras invasion in tobacco and eggplant. Our results

provided valuable information for further functional study of U-

box genes in both tobacco and eggplant.
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