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Accurate wheat ear counting is one of the key indicators for wheat phenotyping.

Convolutional neural network (CNN) algorithms for counting wheat have evolved

into sophisticated tools, however because of the limitations of sensory fields, CNN

is unable to simulate global context information, which has an impact on counting

performance. In this study, we present a hybrid attention network (CTHNet) for

wheat ear counting from RGB images that combines local features and global

context information. On the one hand, to extract multi-scale local features, a

convolutional neural network is built using the Cross Stage Partial framework. On

the other hand, to acquire better global context information, tokenized image

patches from convolutional neural network feature maps are encoded as input

sequences using Pyramid Pooling Transformer. Then, the feature fusion module

merges the local features with the global context information to significantly

enhance the feature representation. The Global Wheat Head Detection Dataset

and Wheat Ear Detection Dataset are used to assess the proposed model. There

were 3.40 and 5.21 average absolute errors, respectively. The performance of the

proposed model was significantly better than previous studies.
KEYWORDS

deep learning, transformer, wheat ear counting, density detection, feature fusion
1 Introduction

For the management and phenotyping of wheat production, an accurate wheat ear

count is essential. Traditional techniques of counting wheat mostly rely on manual

counting, which is prone to human subjectivity, leading to inaccurate identification and

omission of wheat ears and low efficiency (Fernandez-Gallego et al., 2018; Zhou et al., 2018;
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Sadeghi-Tehran et al., 2019). To increase the efficiency and accuracy

of counting wheat, effective automatic counting techniques must be

created (Patrıćio and Rieder, 2018).

Deep learning techniques have been frequently used in wheat

counting tasks because of their strong computational and feature

extraction capabilities. The current methods used for wheat ear

counting mainly include three methods: image segmentation, object

detection, and density estimation. For high-density wheat ear

counting in complex field backgrounds, it mainly relies on object

detection methods and density estimation methods. The former uses

deep learning algorithms to pinpoint and identify specific wheat ears.

In order to automatically count wheat ears, (Cao et al., 2020)

used the deep learning model efficientdt-d3 for target detection

while counting the number of targets based on image processing

and deep learning. (Li et al., 2022) used a two-stage detection

method to explore the use of Faster R-CNN model to detect the

number of ears per unit area of wheat based on RGB images and

applied it to genotype analysis. The model successfully localized the

target genotypes and successfully predicted the quantity of wheat

ears with an average accuracy of 86.7%. An enhanced Yolov4 model

based on the Convolutional Block Attention Module (CBAM)

(Woo et al., 2018) was also proposed by (Yang et al., 2021). The

model can adaptively learn and select significant spatial and channel

information in the feature map, efficiently eliminate background

interference, and improve the network’s ability to extract features by

introducing spatial and channel attention methods. (Sun et al.,

2022) suggested an enhanced wheat ear counting network

(WHCnet) to address the issue that wheat ears are frequently

overlooked. Utilizing both the original information and the

underlying knowledge of the features, adaptive pooling of original

information using Augmented Feature Pyramid Network

(AugFPN) (Guo et al., 2020) enhances the effectiveness of wheat

ear identification. (Wen et al., 2022) introduced a weighted

Bidirectional Feature Pyramid Network (BiFPN) (Tan et al.,

2020) into the feature pyramid network of RetinaNet (Lin et al.,

2017) to fuse multiscale features. Meanwhile, focus loss and

attention modules were added to train a RetinaNet based on

several optimizations, which successfully achieved effective

detection and counting of wheat ears. The wheat counting

algorithm based on object detection mentioned earlier uses

convolutional operations to obtain local features of the image,

and obtains more comprehensive and rich feature maps through

multi-scale and attention mechanisms, without considering the

global contextual information of the image. In addition, in order

to achieve optimal performance, the high performance of object

detection algorithms largely rely on clear images and accurate

labeling. However, it takes a lot of time and effort to classify small

objects using bounding boxes, particularly for high-density

wheat images.

In recent years, scientists have given the density map-based

wheat counting model a lot of attention. For counting and

localization, the method uses point-labeled data, which requires

less effort than box labeling. Convolutional neural networks are
Frontiers in Plant Science 02
used to create high-quality density maps that accurately depict the

distribution of wheat. The density maps may be summed to

calculate the number of wheat ears, and they are ideally suited to

tiny and dense situations. (Pound et al., 2017) built an hourglass

network for multi-task learning based on an encoder/decoder

structure to simultaneously localize ear characteristics and

categorize awn phenotypes in wheat grown in greenhouses.

(Khaki et al., 2022) proposed a new method for wheat ear

counting called WheatNet. Accelerated the detection rate by using

MobileN-etV2 (Sandler et al., 2018) as the primary feature extractor

with less parameters. For wheat ear counts and localization, the

model uses two parallel subnets that complement one another and

boost prediction precision. (Ma et al., 2022) proposed a transfer

learning method of the ground-based fully convolutional network.

Filter pyramid blocks and dilated convolution are combined to

successfully address the issue of counting performance degradation

brought on by a reduction in ground resolution. In order to locate

and count wheat ear points, (Zaji et al., 2022) developed a hybrid

Unet (Ronneberger et al., 2015) structure combining a point-labeled

dataset and a constant density graph generation algorithm,

considerably enhancing the accuracy of wheat counting. (Xiong

et al., 2019) built the tasselnetv2 local regression network for

counting wheat by including a contextual information extraction

module to the local patches. Without expanding the model’s

capacity, the accuracy of the counting was increased. (Lu and

Cao, 2020) implemented a fast version of TasselNetV2,

TasselNetV2+, by splitting TasselNetV2 into an encoder, a

counter, and a normalizer based on a novel framework view of

TasselNetV2. This fast version improves the speed by an order of

magnitude compared to TasselNetV2, while maintaining the same

level of counting accuracy. The wheat ear counting method based

on density estimation performs better in dealing with complex

backgrounds and high-density wheat ears, as it focuses on the

overall distribution of wheat ears rather than the precise position of

individual wheat ears. Compared to object detection methods,

density estimation methods typically have higher computational

efficiency and lower costs. The above research indicates that the use

of object detection methods and density estimation methods in

agriculture can significantly improve the automation level of

agricultural production and produce better results. The current

methods are mainly based on convolutional neural networks

because of their powerful local feature extraction capabilities,

which perform better than the traditional methods (Liu et al.,

2019) based on artificial feature extraction. However, because the

convolutional operation is limited to the convolutional kernel

acceptance domain, it is unable to comprehend an image’s global

information. In most computer vision tasks, this global information

and long-range feature dependence are crucial components.

Because the self-attention mechanism can handle a long range of

feature dependencies and has a significant advantage in extracting

global context information, Transformers based on the self-

attention mechanism have been widely used in vision tasks in

recent years (Carion et al., 2020).
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The aim of this study is to increase the diversity of features by

combining local features and global context information. We

introduce a new network for wheat ear counting with local-global

features fusion based on hybrid architecture. The main

contributions of this paper can be summarized as follows: (1) We

design a new model that combines a Cross Stage Partial (CSP)

(Wang et al., 2020) for extracting local features with a Pyramid

Pooling Transformer (P2T) (Wu et al., 2023) for capturing global

context information to acquire features at multiple scales. Our

method has stronger feature extraction capability and significantly

improves the wheat counting performance. (2) We propose a

feature fusion module for fusing image local features and global

context information. The module can effectively integrate local

features and global context information. (3) We design a new

hybrid loss function that combines the wheat counting loss and

the attention loss to train the hybrid network and improve the

counting performance of the model. (4) Our proposed CTHNet

method is compared with the counting methods proposed in

previous research. Experimental results on two commonly used

datasets, Global Wheat Head Detection Datasets (GWHD) (David

et al., 2021) and Wheat Ears Detection Dataset (WEDD) (Madec

et al., 2019), show that our method achieves better performance in

the wheat counting task.

The structure of the paper is as follows: the second part

describes the selection of the two public wheat datasets, the data

preprocessing process, and a general introduction to the proposed

model. The third part includes the evaluation metrics, experimental

setup, performance comparison, and a discussion of the method of

this paper and other comparative methods. Finally, the fourth part

summarizes the main findings of the study and looks at possible

future research directions.
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2 Materials and methods

2.1 Data set and processing

2.1.1 Data set
In this work, we utilized two publicly available wheat ear

datasets: (1) GWHD, (2) WEDD. Example images from two

datasets were shown in Figure 1. In addition, the details of each

dataset are as shown in Table 1.

The GWHD is a large-scale image dataset specially used to

detect wheat ears. The data set aims to promote the research and

development of computer vision and machine learning in the field

of agriculture. As shown in Figure 1, this dataset contains a large

number of high-resolution wheat field images from all over the

world. The images cover different geographical areas, different

planting conditions, and different wheat varieties. The shape and

color of wheat ears vary greatly in the dataset, and there is overlap

between wheat ears. Accurate localization and counting of wheat

ears is challenging due to the influence of many factors. Each image

is professionally marked with the exact position of the wheat ears,

which is represented by a bounding box, providing the accurate

position and size information of the wheat ears. The images contain

a total of 147,722 wheat ears samples, with an average of 43 wheat

ears in each image.

The second dataset is from the public dataset WEDD provided

by (Madec et al., 2019). This dataset was collected on a wheat field

phenotype analysis platform using a Sony ILCE-6000 digital

camera. It contains 236 high-resolution wheat images (6000 ×

4000 pixels) with a total of 31,622 wheat ears. The number of

ears in each image varies from 80 to 240. Table 1 presents the

comprehensive statistics of the training and test data sets.
A B

D E F

C

FIGURE 1

Wheat dataset diversity: (A) diversity in genotype, (B) maturity, (C) head orientation, (D) lighting, (E, F) density.
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The image in the dataset is reshaped to 1024×1024 pixels in size and

include as many wheat ear samples as possible to reduce hardware

pressure and unify labeling requirements.

2.1.2 Ground truth density map
This study uses a method based on density map to calculate the

number of wheat ears, which needs to use point annotation to

generate a real density map. Therefore, we need to use point

annotation instead of box annotation to re label the image of

dataset. We first use the bounding box annotation provided by

dataset to calculate the centroid of each bounding box, so as to

obtain the dataset of point annotation.

Let P = p1, p2,……, pnf g denote the annotation set of N wheat

ears. Each ear can be represented by a delta function d (x − pi).

Therefore, we can represent the ground truth of a wheat ear image

with N annotations as follows:

H(x) =o
N

i=1
d (x − pi)

Where pi is the position of the ith wheat ear and x is the all-zero

matrix of the same size as the labeled image. The function d (x − pi)

purpose is to set the pi position in the matrix x to 1.

A Gaussian functionGs (x) is used to smooth the discrete density

map generated by H(x) and transform it into a continuous function

to generate the ground truth density map F(x):

F(x) =o
N

i=1
d (x − pi) ∗Gs (x)

Where s represents the standard deviation, which is set to a

constant in the density maps we generate. The resulting ground

truth density map has the property that the sum on the density map

is the same as the total number of small wheat ears in the image.

Based on the generated density map, proceed to compute the

attention map using the Gaussian kernel as follows:

Z = F(x) ∗Gs  (x)

∀ x∈Z,A(x) =
0,     x < th

1,     x ≥ th

(

Where th is the threshold set in our experiment, which is set to

0.001 (Zhu et al., 2019).
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2.1.3 Data augmentation
To obtain high-quality datasets, additional data augmentation

methods such as random cropping are added to increase the

variability of the training set. Considering the distribution density

of small wheat ears in wheat images, we chose an image size of 512

pixels for random cropping.

In this study, multiple enhancement techniques were randomly

applied to the images. Since all augmentations are done randomly,

the model cannot see exactly similar input images during training.

This means that the model needs more time to train thoroughly to

improve the generalization performance of the model. The different

data augmentation techniques used in training are shown in

Figure 2. After cropping, the enhancement process includes the

hue change of the image and the flip of the picture, and these

enhancements are all done randomly on the image with a

probability of 0.5. This means that there is a 50% chance of

applying each enhancement method to the original image.
2.2 Hybrid network model

As shown in Figure 2, we constructed a network structure in

which the input images for the training process are obtained by

randomly clipping the original images. Taking the input image size

of 512 × 512 pixels as an example. Firstly, local features are

extracted through convolution network, using four convolutional

kernels with of 2 and channel dimensions of 64, 256, 512and 512 to

obtain multiscale feature maps with sizes of 256 × 256 pixels, 128 ×

128 pixels, 64 × 64 pixels and 32 × 32 pixels respectively. The large-

scale feature map is derived from the shallow network, which has

high resolution and good detail feature representation ability. On

the contrary, the small-scale feature map is extracted from the deep

network and contains more semantic information, but the

resolution is low and the representation ability of spatial details is

weak. Patch embedding is applied to extract 1×1 patch from the

minimum scale feature map extracted by CNN, capturing the global

contextual information of the feature maps while keeping the

resolution constant. This is helps to consider local details and

global information in image processing and improves the

understanding of image content. Then, multi-scale feature fusion

is carried out through the attention mechanism to output the

prediction density map. When generating the density map, the
TABLE 1 The statistics of dataset used in this study.

Data Dataset Number
of Image

Resolution Min Max Avg Total

GWHD Training 3574 1024x1024 4 129 45.67 163,237

Test 1440 1024x1024 4 179 30.79 44,331

WEDD Training 165 6000x4000 82 245 133.85 22,085

Test 71 6000x4000 106 176 134.32 9,537
Min, Max, Avg, and Total denote the minimum, maximum, average, and total number of annotated wheat heads, respectively.
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dilated convolution layers with different expansion rates are

superimposed in parallel to make the predicted density map

contain more spatial information and expand the perception

domain. Taking the RGB image as input, three features are input,

and the features are increased to 512 in the feature extraction stage,

and then the features are reduced to two by the feature fusion, one

for the loss calculation of the density map and one for the loss

calculation of the attention map.

2.2.1 Feature extraction
The hybrid network is mainly composed of two parts, which

realize the task of wheat ear density counting. These two parts are

feature extraction and feature fusion. In the feature extraction, we

combine the self-attention mechanism with CSP module to build a

new network structure. This special design structure can effectively
Frontiers in Plant Science 05
extract local features and global context. Through CNN

convolution and global attention mechanism, the local details and

global context information of the image can be paid attention to

simultaneously in the process of feature extraction. In the process of

feature fusion, we enhance the detection ability of the hybrid

attention network for wheat at different scales by fusing multi-

scale local and global features.

In our proposed backbone network, CSP was used to construct a

CNN network to extract the local features of the image. CSP structure

is a convolutional neural network structure commonly used to

construct the backbone network. By dividing the feature map of

the base layer into two parts, the gradient flow propagates through

different network paths, finally the feature maps of the beginning and

end stages of the network are integrated. It can effectively improve the

learning ability and training speed of convolutional neural network.
FIGURE 2

The overall framework of hybrid network includes feature extraction module, multi-scale feature aggregation module.
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As shown in Figure 3, the core idea of the CSP structure is to

divide the input feature map into two branches. One branch is

responsible for extracting low-level features, while the other branch

is responsible for further processing these features to obtain high-

level semantic information. Feature fusion and recombination are

realized by introducing cross connection and partial connection.

This design can improve the ability of feature representation and

enable the network to better capture feature information at

different scales.

In addition, we also use the P2T structure to capture global

context information. It introduces pyramid pooling in the multi-

head self-attention module of vision Transformer. The benefits are

reduced sequence length, reduced computation, and the ability to

simultaneously learn strong contextual representations for better

semantic features. The calculation process is shown in Figure 4. The

input first passes through a pooling based multi head self-attention

module, and its output adds residuals and performs normalization

layer. Like traditional transformer blocks, a Feedforward Network
Frontiers in Plant Science 06
(FFN) (Vaswani et al., 2017) is used for feature projection. Finally,

apply residual connections and a normalization layer again.

Our backbone network combines CSP structure and P2T

structure to form a hybrid network. Firstly, we use the CSP

module to perform dimensionality reduction and local feature

extraction on the input RGB image. The purpose of this method

is to preserve key information while reducing subsequent

computational complexity. Next, we use the P2T structure to

capture global contextual information. In order to fully capture

the multi-scale information of the target, we designed the feature

extraction network as a pyramid structure. This is conducive to the

generation of multi-scale feature representations and improves the

performance and robustness of tasks.

2.2.2 Feature fusion
Although the backbone network can extract multi-scale local

features and global context information, the high-level features may

lead to the loss and ambiguity of local information after deep
FIGURE 4

Architecture of the Multi-head Pyramid Pooling Transformer.
FIGURE 3

Illustration of CBS, BottleNeck and CSP.
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convolution operation. High-level features focus on capturing more

abstract and richer semantic features in the image. However, it loses

some important details. On the contrary, low-level features are

extracted from the shallow layer of the neural network and focus on

capturing the details and local features of the input data. But it lacks

high-level semantic information, and its feature representation

capability is limited.

In order to fully integrate multi-scale features, we use an

Attention Feature Fusion module (AFF) (Dai et al., 2021). This

module uses two branches with different scales to extract channel

attention for global features and channel attention for local features.

As shown in Figure 5, the key idea is that channel attention can be

achieved at multiple scales by varying the size of spatial pooling.

The purpose of AFF module is to comprehensively use global

and local feature information to enhance the ability of feature

representation. Global attention helps the model focus on the

semantic content of the overall image, while channel attention

helps the model adaptively learn the importance of different

channels, so as to further integrate the information of different

features. In this way, the local features and global context

information in the image can be better fused, so as to improve

the performance and robustness of the model.

2.2.3 Loss function
Most of the existing methods are based on the assumption of

pixel independence and use pixel-wise Euclidean loss to train the

network. It is defined as follows:

Lden =
1
No

N

i=1
P(xi) − Gik k2

Where P(xi) is the predicted density map of the ith input image,

Gi is the true density map of the ith input image, xi represents the i

th input image, and N is the number of input images.

In addition to the pixel-wise loss function, we add a local

correlation loss to the density map to improve the quality of the

predicted density map. The SSIM index is used to measure the local
Frontiers in Plant Science 07
pattern consistency between the estimated density map and the

ground truth. From three local statistics, namely mean, variance

and covariance, the similarity between two images is calculated

(Cao et al., 2018). The local statistics are computed by:

mx =
1
Mo

M

i=1
xi

s 2
x =

1
M − 1o

M

i=1
(xi − mx)

2

s xy =
1

M − 1o
M

i=1
(xi − mx)(yi − my)

Where mx and s 2
x are the local mean and variance estimates of

image x, M represents the number of pixels of image x, and sxy is

the local covariance estimate, so the SSIM index is calculated point

by point as follows:

SSIM(x,y) =
(2mxmy + C1)(2s xy + C2)

(m2
x + m2

y + C1)(s 2
x + s 2

y + C2)

Where C1, C2 are minimal constants, to avoid division by zero

and set as (Wang et al., 2004). The SSIM value ranges from -1 to 1

and takes the value 1 when two images are identical. Therefore, the

local consistency loss is as follows.

LC = 1 − SSIM(x,y)

LC is the local pattern consistency loss, which measures the local

pattern difference between the estimation results and the

ground truth.

In addition to computing the predictive density map loss, we

also introduce an attention map loss function, which is a binary

class entropy defined as follows.

Latt = −
1
No

N

i=1
(AGT

i  log (Pi) + (1 − AGT
i ) log (1 − Pi))
FIGURE 5

Illustration of the Attention Feature Fusion (AFF).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425131
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hong et al. 10.3389/fpls.2024.1425131
Where AGT
i is the attention map groundtruth and Pi is the

probability that each pixel in the predicted attention map is

activated by the sigmoid function.

For high-density wheat ear images in complex backgrounds.

Euclidean loss is used to train counting loss, while SSIM is used to

train density map similarity loss. By combining these two loss

functions, the aim is to improve the counting accuracy of high-

density wheat ear images in complex backgrounds. The entire

network is trained using the following unified loss function:

L = Lden + Lc + aLatt

Where a is a weighted weight, which is set to 0.1 (Zhu et al.,

2019) in the experiments. We exploit this combined loss for end-to-

end training.
3 Experiment and result

This section presents the metrics used for the experimental

evaluation, the training hyperparameters, and the final results. All

experiments were trained on a computer equipped with a 24GB

Geforce RTX 3090 graphics card. The deep learning framework

used in the code is Pytorch 1.12 and the programming language is

python 3.9. Adam (Adaptive Gradient Descent) method is used to

optimize the learning rate during training. The initial learning rate

is set to 0.0001. This configuration allows model training and

evaluation to be performed efficiently.
3.1 Model performance evaluation

The performance of the model in the prediction and counting

accuracy of Macintosh was evaluated using the mean absolute error

(MAE), root mean square error (RMSE) and mean absolute

percentage error (MAPE) as indicators. MAE and RMSE are

commonly used in previous density estimation studies to measure

the error between the predicted value and the actual value. MAPE is

a measure of relative error, using absolute values to avoid bias

between positive and negative errors, and is one of the most

commonly used metrics for evaluating prediction performance.

They can be expressed as:

MAE =
1
N o

N

i=1
Pi − Gij j

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
Pi − Gij j2

s

MAPE =
100%
N o

N

i=1

Pi − Gi

Gi

����
����

WhereN is the number of test images, �P is the average value of the

predicted value, Pi and Gi are the predicted number and the real value

in the i-th image respectively. RMSE is used to measure the average

error between the predicted value and the real value of the model.
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The smaller the RMSE, the closer the prediction of the model to the

real value. MAE is used tomeasure the average absolute error between

the predicted value and the real value of the model. The smaller the

MAE, the more accurate the model prediction and the higher the

counting accuracy of the model. By calculating these indicators, we

can evaluate the accuracy of the model in predicting the number of

wheats ears and compare it with the actual value manually marked to

measure the performance and accuracy of the model.
3.2 Ablation experiments

In this study, we used ablation experiments to explore the effects

of P2T, CSP and SSIM loss on the model. As shown in Table 2, where

V1 represents the model built only with CSP, V2 represents the

integration of P2Tmodule on the basis of V1, similarly, V3 represents

the addition of AFF multi-scale fusion on the basis of V1, and

CTHNet represents the final algorithm proposed in this paper, V4

represents the result obtained by training the model without using

SSIM loss. The test results show that the integrated P2T and CSP are

sufficient to ensure acceptable accuracy (MAE=5.61, RMSE=6.77).

Moreover, the addition of AFF further integrates local features and

global context information and leads to more accurate detection

accuracy (MAE=5.21, RMSE=5.27), compared with using CSP alone.

SSIM loss is used to compare the similarity between real density maps

and predicted density maps. By adding SSIM loss, the model’s

counting performance can be effectively improved. Table 2 shows a

decrease of 0.18 in MAE and 1.48 in RMSE. These findings confirm

that the model effectively improves the counting accuracy of the

model by fusing global context information and local features.

We showed the change in loss curves to provide a more

intelligible representation of the loss change. Figure 6 depicts the

variations in training loss and SSIM loss values for each improved

version. It can be observed from Figure 6 that the loss value

decreases rapidly at the beginning of training, and with the

increase of training epochs, the training loss gradually decreases

and fluctuates near a critical value. From Figure 7, it can be seen that

the density map generated by integrating local and global features is

clearer and more pronounced than the density map generated solely

based on local features, especially in the edge and high-density

areas. Notably, the loss function of the final algorithm proposed in

this paper still continues to decrease over a range of 40 to 100

epochs, suggesting that the model has a good capacity for learning.
TABLE 2 Performance metrics of CTHNet before and after improvement
on the WEDD.

Model CSP P2T AFF SSIM MAE RMSE

V1 √ – – √ 5.67 7.26

V2 √ √ – √ 5.61 6.77

V3 √ – √ √ 5.68 7.95

V4 √ √ √ – 5.39 6.75

CTHNet √ √ √ √ 5.21 5.27
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3.3 Comparison experiments

In recent years, density regression algorithms have progressed

quickly and been used in a variety of counting applications. We

contrast our method with various density counting methods, such

as MCNN (Zhang et al., 2016), SANet (Cao et al., 2018), SCAR (Gao

et al., 2019), PSNet (Cheng et al., 2020), TasseLnetv2+ (Lu and Cao,

2020) and CCTrans (Tian et al., 2021). We evaluated the counting

performance of the proposed model on two public wheat ear

detection datasets GWHD and WEDD (Table 3).
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We perform visual analysis on two datasets to show the

counting performance of the proposed method more intuitively

and scientifically. We use the test images of GWHD and WEDD

datasets to compare the number of true peak annotations of various

counting methods (Figure 8). We also collected and compared the

predicted density maps generated by different counting

models (Figure 9).

Table 3, show that hybrid network counting performs better

than other counting methods based on density estimation. Since the

ear of wheat is a small target, its feature is easily contaminated
A B

FIGURE 7

Comparison of density maps: (A) Density maps generated by combining local and global features (B) Density maps generated based on
local features.
FIGURE 6

Results from the training process: Train loss and SSIM loss.
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during the extraction process by examples like background, which

makes it challenging for the network to capture the discriminative

information required for following tasks (Shi et al., 2023). CNN-

based counting models MCNN, SANet and TasseLnetv2+ learn

high-dimensional features and reduce spatial redundancy through

down-sampling operations, but this leads to the loss of

representation for small objects, making accurate counting
Frontiers in Plant Science 10
difficult. To overcome this problem, CCTrans uses a pyramid

visual transformer backbone to capture global information and

complete the counting task by combining low-level and high-level

features. The experimental results show that CCTrans performs

well in counting effect. In addition, SCAR and PSNet show better

counting performance than MCNN and SANet by adding attention

to enhance the extraction ability of small target features, but they

fall short of our proposed model. This is because the convolution

operation mainly extracts semantic features at high-level, and the

potential features for small targets may be lost or compressed. The

convolutional network also has some challenges in the recognition

of small targets, especially when dealing with scenes with complex

backgrounds. Convolutional operations and self-attention

mechanisms are used to extract multi-scale local features and

global context information. This lessens the detrimental effects of

the convolution constraint by enabling the full utilization of the

global context information. Meanwhile, a feature fusion module

based on local and global attention is used to combine local features

with global context information, improving the capability of

feature representation.

In addition, we use dilated convolution to improve the density

map’s receptive field, keeping the context and small item details of

the wheat image. Compared with other wheat ear number models,

the network model performs well in complex background (Table 3).
A

B

FIGURE 8

Comparison of the number of real ears annotated on the GWHD test dataset (A) and the WEDD test dataset (B) with that estimated by MCNN,
SANet, SCAR, TassLnetv2+, PSNet, CCTrans and CTHNet.
TABLE 3 Compared with other density estimation methods on the
GWHD and WEDD dataset.

Model
GWHD WEDD

MAE RMSE MAPE MAE RMSE MAPE

MCNN 8.49 17.61 27.65 10.69 14.29 7.79

SANet 4.80 11.28 13.72 11.88 13.80 8.78

SCAR 4.48 8.03 15.63 6.38 8.59 4.77

TasseLnet
v2+

6.44 11.97 20.50 7.93 9.97 5.97

CCTrans 5.10 11.07 15.01 6.91 8.45 5.26

PSNet 4.62 8.64 15.64 6.29 7.86 4.77

CTHNet 3.40 5.75 12.47 5.21 5.27 3.95
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425131
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hong et al. 10.3389/fpls.2024.1425131
Compared with SANet, MCNN, PSNet, SCAR, TasseLnetv2+ and

CCtrans. MAE improves the performance on GWHD dataset by

6.67, 5.48, 1.08, 1.17, 2.04, 1.70. On the WEDD dataset, the

performance is improved by 1.40, 5.09, 1.22, 1.08, 2.72, 1.70. By

looking at the density plots of the predictions of different models

(Figure 9). We find that the predictive density maps generated by

the hybrid network can better approximate the ground truth than

the other models.

On the test images of the two datasets, we compared the number

of true peak annotations for various counting methods (Figure 8). It

can be found that the performance of the model on the GWHD

dataset is better than the WEDD dataset. This is mainly because the

wheat density in WEDD dataset is much higher than GWHD, and
Frontiers in Plant Science 11
the occlusion between wheat ears and background noise are more

likely to cause confusion interference, which increases the difficulty of

feature extraction and counting. However, on the high-density

WEDD dataset, the hybrid model continues to outperform the

other models in terms of counting ability, indicating that the

hybrid network design can successfully address the issues of

misdetection and omission brought on by the overlap of wheat ear

counts and the complexity of the background. The proposed method

not only improves the accuracy of the model, but also has wide

applicability and is able to deal with wheat counting tasks in different

scenarios. This is of great significance for improving the efficiency of

agricultural production, reducing resource waste, and for farmland

management and crop production.
FIGURE 9

Comparison of predicted density maps generated by different models on images.
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3.4 Discussion

We create a hybrid network using convolution operation and

self-attention mechanism to fully extract local features and global

context information of wheat ear images. Experimental results on

two public datasets show that the proposed method has good

counting and generalization ability.

Firstly, SCAR and PSNet with the added attention mechanism

outperform the convolution based MCNN, SANet and TasseLnetv2+

in counting performance. This is because the attention mechanism

highlights the key features of the wheat ears and ignores unnecessary

regions by assigning different weights to different parts of the feature

map. However, since the context information in the image is ignored,

SCAR and PSNet with the attention mechanism are not as good as

the hybrid network proposed in this study in counting performance.

CCTrans utilizes the pyramid vision transformer as a backbone,

making it easy to extract global context information. However, the

counting results of CCTrans in GWHD and WEDD are still lower

than the model proposed in this paper. In contrast, by combining the

convolutional operation with the self-attention mechanism and

adding the attention feature fusion to the hybrid model, the global

context information and local details of the image can be effectively

fused. By fusing these two kinds of information, the relationship

between various spatial information can be strengthened, thus

improving the recognition ability of wheat ears on the feature map.

In this study, we realized that there are some differences in

features between wheat images and dense crowd images. The shape

of a wheat ear is usually rectangular, while the shape of a human

head is round. Therefore, the traditional annotation methods and

density map generation methods for dense crowd counting tasks

cannot describe the characteristics of wheat ears well. To solve this

problem, we plan to design a suitable labeling method for wheat ears

to accurately describe the shape and location of wheat ears. For

example, we can use lines to describe the shape of the wheat ear or

make point annotations on the head of the wheat ear to describe the

position of the wheat ear. With this more refined labeling method,

the characteristics of the wheat ear can be better captured, including

the shape characteristics and location characteristics of the

wheat ear.

Additionally, the phenotypic characteristics of a single wheat

ear, including the spike length, spike width, and grain number, are

significant indicators of the quality and growth of the crop. The

traditional way of gathering phenotypic information on wheat ears

includes manual measurement and counting, which is time-

consuming and labor-intensive and significantly slows down

wheat ear research. We will implement the batch extraction of

phenotypic data from single wheat ears using the above-mentioned

study methods and data combined with an example segmentation

algorithm. We will next propose a scheme for extracting phenotypic

information of wheat ears in a complex background in the field.

Through this program, the staff can collect wheat phenotype data in

the field in real time, saving data collection time and improving
Frontiers in Plant Science 12
research efficiency, and provides strong support for agricultural

breeding and phenotyping work.
4 Conclusion

In this study, we propose a hybrid network model that

combines convolutional operations and a self-attention

mechanism. This model is used to generate high-quality wheat

ear density maps for accurately calculating the number of wheat

ears in complex background images. The results demonstrate a

significant improvement in the wheat ear counting task achieved by

the hybrid network. By fusing local features of wheat ears and global

context information, the edge and small target information in the

image can be effectively preserved, and the counting performance

is improved.

The hybrid network has good feature representation ability and

can meet the requirements of wheat ear number under the

conditions of occlusion and overlap. It provides a reliable

estimate of wheat yield and provides strong support for

agricultural production. In the future research, we will focus on

the design of labeling method and density map generation method

for wheat counting task, in order to further improve the accuracy

and performance of hybrid network. We will also develop precision

agriculture applications that utilize unmanned aerial vehicle (UAV)

to collect wheat ear image data at different times, varieties and

planting densities, further validating the performance of the model

and improving its generalization ability. This will provide real-time

and accurate information for agricultural production, help farmers

make scientific decisions, and improve crop management and yield.
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