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The high-throughput and full-time acquisition of images of crop growth

processes, and the analysis of the morphological parameters of their features,

is the foundation for achieving fast breeding technology, thereby accelerating

the exploration of germplasm resources and variety selection by crop breeders.

The evolution of embryonic soybean radicle characteristics during germination is

an important indicator of soybean seed vitality, which directly affects the

subsequent growth process and yield of soybeans. In order to address the

time-consuming and labor-intensive manual measurement of embryonic

radicle characteristics, as well as the issue of large errors, this paper utilizes

continuous time-series crop growth vitality monitoring system to collect full-

time sequence images of soybean germination. By introducing the attention

mechanism SegNext_Attention, improving the Segment module, and adding the

CAL module, a YOLOv8-segANDcal model for the segmentation and extraction

of soybean embryonic radicle features and radicle length calculation was

constructed. Compared to the YOLOv8-seg model, the model respectively

improved the detection and segmentation of embryonic radicles by 2% and 1%

in mAP50-95, and calculated the contour features and radicle length of the

embryonic radicles, obtaining the morphological evolution of the embryonic

radicle contour features over germination time. This model provides a rapid and

accurate method for crop breeders and agronomists to select crop varieties.
KEYWORDS

YOLOv8, soybean germination, image segmentation, feature extraction, radicle
length calculation
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1 Introduction

Soybean (Glycine max (L.) Merr.) is an important annual

leguminous plant (Fehr and Hadley, 1980). Soybean is a

significant oilseed crop. From 2003 to 2022, the cumulative

import volume of soybeans in China accounted for as high as

94.4% of the total oilseed imports (Zhang and Li, 2023). In order to

ensure the security of oilseed and grain supplies and improve

agricultural planting structures (Abbate et al., 2004), China has

expanded soybean cultivation. Rapid breeding of soybeans in

different geographical environments is crucial for increasing

soybean yields (Turner et al., 2001). Assessing the vitality of

soybean seeds through the evolution of embryonic radicle

characteristics during germination is an important method for

soybean selection and breeding (Kanjoo et al., 2012). Traditional

research on embryonic radicle characteristics has been

implemented by planting personnel through planting experience,

manual calculations, and weighing, which is time-consuming,

labor-intensive, subjectively judged, and lacks accuracy (Grinblat

et al., 2016; Ahmed et al., 2019). Therefore, there is an urgent need

to propose a rapid, accurate, and automated method for the

segmentation, extraction, and calculation of soybean seed

embryonic radicle characteristics.

As an important application of deep learning, the high accuracy

and high throughput of machine vision recognition play a

significant role in the agricultural field (Davies, 2009). The

developed target detection model can determine the type and

location of the target, especially the YOLO (you only look once)

algorithm (Redmon et al., 2016), which stands out among a series of

visual models due to its speed, accuracy, convenience, excellent

detection, tracking, and segmentation functions, serving as a central

target detection model in robotics, unmanned driving, and video

surveillance (Terven et al., 2023). In the agricultural field, scholars

worldwide have specifically optimized the YOLO model to address

complex problems in agricultural production processes. For

example, Thakuria and Erkinbaev (2023) achieved automated

real-time grading of rapeseed health by improving the network

architecture of the YOLO model, and Li et al. (2023) built a tomato

ripeness grading and counting model named MHSA-YOLOv8,

obtaining grading accuracy of 86.4% and counting accuracy of

91.6%. Chen et al. (2024) based on the YOLOv8-seg model,

constructed the YOLOv8-CML model for the segmentation

recognition of melon ripening in smart agriculture. Sampurno

et al. (2024) deployed the YOLOv8n-seg model on a robot

weeding machine by calling the instance segmentation function of

YOLOv8, achieving 76.70% segmentation accuracy for weeding.

Wang et al. (2023a) applied the YOLOv8-seg model in a lychee

picking robot system to extract the regions of interest (ROI) of

lychee fruits and branches, facilitating the smooth completion of

lychee fruit picking tasks by the machine. Yue et al. (2023) used

SimConv to replace the traditional convolution in the YOLOv8-seg

network and segmented healthy and diseased tomato plants in the

growth stage, achieving higher accuracy with the improved model.

The goal of object detection technology is to identify the

position and category of specific objects in images or videos,

usually outputting the bounding boxes and category labels of the
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objects. Image segmentation, as an extension of object detection,

not only identifies the position and category of objects, but also

provides detailed pixel-level object instances. This refined

information is of great significance in many application areas,

especially in agricultural production (Bai et al., 2023). However,

the scope of these studies has been limited to improving the

accuracy of model detection and segmentation of target objects,

as well as increasing the lightweight nature of the model. YOLOv8

model, is an open-source YOLO model developed by Ultralytics

based on YOLOv5, which features object detection, classification,

pose recognition, and image segmentation (Terven et al., 2023).

YOLOv8 is a cutting-edge, state-of-the-art model. It introduces

multi-scale prediction techniques and utilizes more advanced

feature extraction networks, enabling better detection of objects of

varying sizes and extracting richer, more distinctive features from

images. In contrast to other YOLO models such as YOLOv1,

YOLOv2, and YOLOv3, which do not have image segmentation

capabilities, they were not considered in the model selection

process. The YOLOv5 model, with 6.9G FLOPS size, sacrifices

segmentation recognition accuracy for lightweight deployment,

resulting in poor segmentation accuracy for soybean root analysis

and inadequate recognition accuracy for subsequent analysis. While

YOLOv7 achieves high segmentation accuracy, its complex network

structure with 141.9G FLOPS size makes it unsuitable for

deployment on low-computing power agricultural production

inspection devices. Considering the lightweight nature of the

model and segmentation accuracy, we have chosen the YOLOv8

model, which combines the advantages of lightweight deployment

and high segmentation recognition accuracy. The YOLO model

architecture implements instance segmentation by utilizing the

largest feature map size as the input for the Mask branch.

Through convolutional layers, mask features are extracted. In

comparison to other instance segmentation model frameworks

such as Mask R-CNN and DeepLab, the YOLO model framework

integrates object detection and instance segmentation

functionalities into a unified framework, simplifying the processes

of target recognition and pixel segmentation. Additionally, the

YOLO series algorithms are designed to be simpler and more

lightweight, facilitating deployment on edge devices. The open

network structure and abundant open-source resources of the

YOLO model enable researchers to easily improve and upgrade

the model based on the YOLO network structure.

Previous studies have typically used the YOLO model to detect,

recognize, and segment the desired targets. However, for the study

of soybean embryonic characteristics, merely completing the

detection and segmentation tasks is insufficient to determine the

viability of soybean seeds. Furthermore, the embryonic

characteristics of soybean seeds are complex, with issues such as

internal bending and intertwining of radicle and shoot during seed

embryonic growth (Scheres et al., 1995), making it more difficult to

extract soybean embryonic characteristics and increasing the

difficulty of seed identification for the model. Additionally, the

YOLOmodel has poor accuracy in identifying small feature objects,

so improving the model and increasing its accuracy is essential.

Furthermore, if only the detection and segmentation of soybean

radicles are conducted, it is only possible to determine the
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germination rate of soybeans, and the embryonic characteristics are

still difficult to determine. Therefore, it is necessary to improve the

output results of the YOLO model segmentation and to add a

module for post-processing of the output images in the model. In

response to these issues, this paper proposes a model called

YOLOv8-segANDCal, specifically for the extraction of soybean

seed germination embryonic characteristics and radicle length

calculation. The following work will be conducted:
Fron
(1) Add a new convolutional attention framework,

SegNext_Attention, to the YOLOv8-seg model to improve

the accuracy of model detection and segmentation,

specifically targeting the intricate and complex

characteristics of soybean radicles.

(2) Modify the function for calling the prediction and

segmentation function of YOLOv8-seg to output a binary

mask image along with the segmented image, facilitating

the subsequent extraction and calculation of soybean

embryonic characteristics using the binary mask image.

(3) Add a calculation (Cal) module to the YOLOv8 network to

compute the contour length of soybean radicles, which is

used to accurately assess the growth status of soybean

seed radicles.

(4) Provide a method for converting the contour length

calculated by the Cal module into the actual length of

soybean radicles.

(5) Utilize the model and a high-throughput, all-time

monitoring system to obtain the morphological evolution

of embryonic contour characteristics during germination.
The following chapters will begin by introducing the experimental

equipment and methods, including the continuous time-series crop

growth vitality monitoring system used and the data collection and

preprocessing techniques. Subsequently, a detailed description of the

soybean radicle segmentation design based on YOLOv8-seg will be

provided. The paper will then presentmodel evaluation metrics. In the

Results and Discussion section, the paper will showcase model

training results, comparative experimental results with other models,

as well as ablation experiments and the performance of soybean

radicle length conversion calculations. Finally, the paper will

summarize the research findings, discuss limitations, and outline

future research directions.
2 Materials and methods

2.1 Experiment equipment

The continuous time-series crop growth vitality monitoring

system we built (located in the Comprehensive Training Center of

Mechanical Engineering at Nanjing Agricultural University,

Nanjing) consists of an environmental control module for

cultivation chambers and a rail image acquisition module, as

depicted in Figure 1, with detailed system parameters outlined in

Table 1. The germination chamber comprises a cultivation box
tiers in Plant Science 03
measuring 1055mm in length, 740mm in width, and 1740mm in

height (manufacturer: Henan Greentech Electric Technology Co.,

Ltd.). Positioned on the top side is a touchscreen, on the upper right

side integrates power and LED switches, temperature adjustment

buttons, and the interior of the box is divided into two layers by

perforated partitions. The upper layer accommodates six acrylic

cultivation trays and the rail image acquisition module, while the

lower layer holds deionized water for experimental use. The box’s

side features an embedded PTC hot air circulation system and a Tp-

100 thermocouple to monitor the chamber’s temperature. The hot

air circulation system operates to raise the temperature when it falls

below the preset level and stops when it exceeds the upper limit to

maintain temperature stability. Additionally, LED light sources are

installed on the side of the box to supplement lighting. The HIV

VISION RGB industrial camera, model MV-CS200–10GC, is

equipped with a CMOS sensor, and a 30mm focal length

telecentric lens (model LD-23–0.18X145, Supplier: Suzhou Youxin

Zeda Co.). The camera is mounted on a stepper motor guide rail,

allowing free movement within the upper plane of the box to

capture images at six designated positions. Two LED light strips

are installed below the camera to provide illumination during image

capture, with an illuminance of 183.9K lux and brightness of 46.341

K cd/m2. The camera automatically triggers during the capture

process and connects via a Gigabit Ethernet interface to transfer

image data to a computer through the RJ-45 Ethernet interface at

the back of the box, facilitating image editing, dataset construction,

and object detection model training. This process ultimately enables

the segmentation and extraction of soybean radicle characteristics

and root length calculation. The specific steps are illustrated

in Figure 1.
2.2 Data acquisition and pre-processing

2.2.1 Data acquisition
The experiment involved germinating soybean seeds, as

depicted in Figure 2A. After soaking, the soybean seeds were

arranged in a 6×6 layout on an acrylic frame for image

acquisition. Throughout the experiment, deionized water was

regularly sprayed. The germination characteristics of the soybean

seed radicles are illustrated in Figure 2B, with noticeable differences

in root development observed in images captured every 12 hours.

Relevant experimental data is presented in Table 2.

2.2.2 Data pre-processing
In image segmentation tasks, data augmentation can help the

model better recognize and segment target objects in images. It can

improve the model’s generalization ability, reduce overfitting,

enhance the model’s robustness, and improve the performance of

classification, detection, and segmentation. When constructing the

soybean radicle germination dataset, labeling the radicle data is time-

consuming and costly. By using data augmentation, we can expand

the dataset without increasing data collection costs. Since the radicle

images are captured in our germination chamber, the lighting

conditions are controlled by LEDs, with a constant illumination of
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183.9 K lux and brightness of 46,341K cd/m2. To adapt the trained

model to changes in environmental lighting during actual agricultural

breeding processes, we applied brightness reduction and brightness

enhancement data augmentation strategies to the soybean

germination dataset. This was done to improve the model’s ability

to extract features from soybean radicle images with different

brightness levels. Furthermore, in the process of image collection in

agricultural production, it is difficult to avoid overexposure when
Frontiers in Plant Science 04
capturing images with cameras. By using the sharpening data

augmentation strategy to simulate overexposed images, the model

can better handle these seedling images with locally overexposed

areas. During the soybean seed germination process, the seedling

roots may twist and rotate, appearing at different angles. By

employing the image rotation data augmentation strategy, the

model can learn the features of the roots in different directions,

enhancing the model’s ability to recognize and segment posture
A B

C D

E

F

G

H

I

FIGURE 1

(A) Continuous time-series crop growth vitality monitoring system. (B) automatic control interface, which can configure the system. (C) seeds
arranged in acrylic plates for upcoming photography, organized in a 3x2 layout (D) HIV VISION, camera for photography. (E) complimentary
software. (F) image of the soybean germination. (G) model training, images processing and length calculation. (H) contour extraction. (I)
experimental flow chart.
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changes. If the model is trained only on non-rotated images, it may

become overly sensitive to specific root features in certain directions.

Rotation augmentation can reduce errors in classification caused by

directional biases in the model. These data augmentation strategies

expanded the training set to 600 images, with no data augmentation

applied to the test and validation sets. Figure 3 illustrates the images

after data augmentation.

We manually performed semantic segmentation labeling of the

positions of soybean seed radicles using the annotation software

LabelMe (version 3.16.7, manufacturer: MIT Computer Science and

Artificial Intelligence Laboratory (CSAIL).) to create a complete

training dataset. Figure 4 illustrates the pixel-level labeling process

for soybean seed radicles. As shown in Figure 4, the process

involved importing the dataset folder into the LabelMe software,
TABLE 1 Parameter settings for the system and its
accompanying software.

Parameters setup

Contant temperature 25°C

Distance from the camera to seeds 42.1cm

image saving format .jpg

image saving resolution 2592×2048

image cropping format .jpg

image cropping resolution 1500×1500

Shooting interval 20 minutes

Shooting duration 4 days
A

B

FIGURE 2

(A) demonstrates the experimental steps. (B) schematic of soybean seed growth process.
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using polygon annotations to mark the radicle area, and saving the

annotations as a.json file. Finally, a program script was used to

convert the.json file to a.txt file for model training.
2.3 YOLOv8-segANDcal soybean radicle
segmentation design base on YOLOV8-seg

The structure of the YOLOv8-seg model is consisted of two

modules: the Backbone and the Head. The “conv” convolution is

used to progressively extract image features (Jocher et al., 2020).

The C2f module is designed with reference to the C3 module and

the concept of ELAN, enabling YOLOv8 to obtain richer gradient

flow information while ensuring lightweight characteristics (Wang

et al., 2023b). The SPPF (Spatial Pyramid Pooling-Fast) module is

adapted to handle objects of different sizes, allowing the model to

extract features across multiple dimensions and increasing its

adaptability to detect object sizes (Jiang et al., 2023).

In order to improve the accuracy of soybean seed radicle

detection, enhance the practicality of segmented image outputs

during the prediction phase, and equip the model with the ability

to compute soybean seed radicle phenotypes, the following

improvements were made:1)added the SegNext_Attention attention

framework structure after the SPPF module located in the Backbone

position. This helps the model better utilize global contextual

information, enabling the model to more accurately focus on the

regions of interest while ignoring background areas, thus improving

the model’s detection accuracy.2)modified the Segmentmodule of the

YOLOv8-seg at the prediction stage. When the model predicts and

generates images containing image segmentation information, it

directly draws the corresponding binary mask images by reading

the ‘masks’ values of the models generated “results”, enhancing the

practicality of the model’s output images.3)added a calculation (Cal)

module at the end of the two-stage Backbone and head modules of

YOLOv8. This module utilizes the Canny algorithm composed of

Gaussian filtering, non-maximum suppression, gradient calculation,

and double threshold detection to calculate the edge length of the

mask binary image, thereby determining the root length of

the soybean seed obtained through calculation, and assessing the

soybean seed radicle characteristics. The Cal module equips

the YOLOv8-segANDcal model with more comprehensive
Frontiers in Plant Science 06
functionality for computing soybean radicle features. Figure 5

illustrates the structure of the YOLOv8-segANDcal model. The

following sections will sequentially introduce the design and

implementation of the SegNext_Attention module, the improved

Segment module, and the Cal module.

2.3.1 SegNext_Attention
SegNext_Attention is a simple convolutional network

architecture designed for semantic segmentation, consisting of an

encoder, attention mechanism, decoder, and loss function. It uses a

strong backbone network as the encoder, which enables multi-scale

information interaction and effectively addresses the problem of

large-scale differences in semantic segmentation targets (Guo et al.,

2022). The encoder (MSCAN) structure of this module is shown in

Figure 6A. The novel multi-scale convolutional attention (MSCA)

module within it comprises three parts: deep convolution for

aggregating local information, multi-branch deep stripe

convolution for capturing multi-scale context, and 1×1 convolution

for modeling relationships between different channels. The structure

of the MSCA module is illustrated in Figure 6B.

The input of MSCA is the output of a 1×1 convolution. The

MSCA module can be expressed in the following mathematical

form (1, 2), where F represents the input feature, and Scalei,

i∈{0,1,2,3}, represents the branches in Figure 2B. Branch 0

denotes a skip connection, while the other branches use depth-

wise separable convolutions to approximate large convolutional

kernels (approximating 7x7, 11x11, and 21x21, respectively).

Att=Conv1�1 o3
i=0Scalei(DW−Conv(F))

� �
(1)

Out=Att ⊗F (2)

MSCAN consists of 4 stages with reduced spatial resolutions, each

stage containing a downsampling block and a stack of MSCA. The

downsampling block is implemented by a 3×3 convolution with a

stride of 2, followed by batch normalization (Ioffe and Szegedy, 2015).

Batch normalization improves segmentation performance. Integrating

SegNext_Attention into the SPPF module located in the Backbone

position increases the computational overhead of the system. However,

it enhances the image segmentation accuracy of soybean radicle.

2.3.2 Improved segment
For the extraction of soybean radicle features, we have

improved the Segment module. During the prediction phase,

when the entire model’s segmentation prediction function is

called, the Segment detection head will output images with

segmentation examples, as shown in Figure 7A. Due to the

superimposition of pixel-level annotations on the original images

and the relatively small size of the soybean radicle compared to the

entire seed, the displayed results are not sufficiently clear. In order

to facilitate the subsequent processing of the images and ensure the

feasibility of extracting radicle contours, we have made

improvements to the Segment module. The improved Segment

module is shown in Figure 7B.

Before the improvement, the ‘‘Segment’’module directly output

the segmented image through two convolutions and a 2D
TABLE 2 Experiment-related data.

data setup

Seed varieties Zhong huang 13

Number of seeds 216

Acrylic frame specifications 25cm×25cm

Number of selected images 600

image cropping resolution 1500×1500

Actual size of the image 25cm×25cm

The ratio of training, prediction
and validation

6:2:2
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convolution (conv2d). However, the resulting ‘‘result’’ object

contains a large amount of unused information. According to the

ultralytics official documentation, the available attribute objects are

shown in Table 3.

This includes an attribute Masks, which is a Masks object

containing the detection masks after segmentation. To fully utilize

this object, we first used the Read module to read the mask data. At the

same time, the Create module creates an empty mask of the same size
Frontiers in Plant Science 07
as the original image, which is mainly used to store the results of

merging multiple masks. Since a single image contains multiple

germinated seeds, and therefore multiple masks after radicle

segmentation, a results object contains multiple masks attributes. To

address this, the Combinemodule iterates through eachmask, converts

it to type uint8, adjusts its size to match the original image, and then

adds the masks together to obtain a new merged mask containing all

the mask information. Finally, the merged mask is subjected to
FIGURE 3

Augmenting the dataset through sharpening, rotation, and adjusting brightness.
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threshold processing to ensure that the values are within the range of

[0, 255], and themergedmask image is output and saved in the form of

a file named “in.png” with a resolution of 1500×1500. The improved

Segment module enables the model to directly output binary images

during the prediction phase, with the images containing only 0 and 1

data, greatly facilitating subsequent image processing.

2.3.3 CAL
As mentioned above, the improved Segment module outputs a

binary image containing merged mask information, obtaining the

radicle feature map of germinated soybean seeds. To further obtain

the specific radicle length of soybeans, we added the Cal module for

calculation and measurement. Its structure is shown in Figure 8A,

where the Canny edge detection algorithm (Ding and Goshtasby,

2001)is used to calculate the number of edge contour pixels in the

binary image. It is composed of Gaussian filtering, gradient
Frontiers in Plant Science 08
calculation, non-maximum suppression (NMS), and double

threshold detection. After gradient calculation, the edge positions

and directions in the image can be accurately determined (Sozer et al.,

2014). Applying non-maximum suppression to the gradient image

(Bodla et al., 2017) can yield finer edges. Using double thresholding

(Fan et al., 2015), the gradient image can be divided into strong and

weak edges, and the final edges are determined based on their

connectivity. Figure 8B shows the results of the example image

after processing with these algorithms. By cumulatively adding the

number of edge contour pixels processed by the Canny algorithm, we

ultimately obtain the length of the edges (in terms of pixel count). The

contours are outlined, and the length (in terms of pixel count) is

displayed next to each contour, as shown in Figure 8C.

In the entire YOLOv8-segANDcal model, the Cal module

operates after the prediction phase, thus being independent of the

original Backbone and head modules. The Cal module was not
FIGURE 4

Dataset processing workflow.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425100
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1425100
utilized during the training process of the model. Therefore, the

addition of the Cal module has minimal impact on the overall

lightweight nature of the model.
2.4 Evaluation metrics

2.4.1 Evaluation metrics of soybean radicle
The radicle characteristics of soybean seeds directly reflect the

germination and growth status of soybean seeds (Gregory, 2006). As

mentioned earlier, through the Cal module, we have obtained the

pixel count of the radicle feature boundary, and the size of the

cropped image is 1500×1500 pixels, corresponding to an actual

length of 25 cm×25 cm. Therefore, using Formulas (3) and (4) to

convert and calculate the length of the soybean radicle, the length is

half of the irregular polygon shape formed by the radicle after

segmentation calculation (Wang et al., 2023c).

R=actual_length=image_unilateral_pixel (3)

Radicle_length=sum_pixels=2�R (4)
Frontiers in Plant Science 09
The formula contains the constant actual_length, which is

25cm, and the fixed constant image _unilateral _pixel, which is

1500, representing the pixel value of one side of the image. R is the

proportion calculated,sum_pixels is the number of border pixels

obtained after the Cal module calculation. By substituting these

parameters into Formula (4), the actual radicle length can be

obtained. Figure 9A illustrates the process of this radicle length

conversion calculation. Figure 9B shows an example of actual

radicle length after calculation.

2.4.2 Model evaluation metrics
The average precision (mAP0.5 and mAP0.5-0.95) is used to

evaluate the model’s detection and segmentation accuracy for

soybeans. They can be represented using Formulas (5) and (6).

mAP0:5=
1
nc

Z 1

0
P(R)dR (5)

mAP0:5−0:95=avg(mAPi),i=0:5:0:05:0:95 (6)

The higher the average precision, the better the model’s actual

performance in detecting and segmenting soybean radicles.
FIGURE 5

Visualization of YOLOv8-segANDcal structure.
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A B

FIGURE 6

Illustration of the proposed MSCA and MSCAN. (A) the stage of MSCAN. (B) the structure of MSCA.
A

B

FIGURE 7

(A) Segment module before improvement. (B) Segment module after improvement.
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Additionally, the model’s lightweight nature and complexity are

evaluated using params and FLOPS,which are given by Formulas

(7) and (8). K2 represents the size of the convolutional kernel, and

H×W represents the height of the input feature map multiplied by

the width of the input feature map. Cout represents the number of

output channels, and Cin represents the number of input channels.

FLOPS=2�H�W(CinK
2+1)Cout  (7)

Params=Cin �K2�Cout  (8)
3 Results and discussion

3.1 Training environment and
hyperparameter settings

The model training was conducted on a Windows 10 platform

with hardware configuration including NVIDIA GeForce RTX3050

Laptop GPU and 11th Gen Intel(R) Core(TM) i5–11400H @

2.70Ghz. The deep learning framework used was PyTorch 1.9.0
A B C

FIGURE 8

(A) Structure of the Cal module. (B) Various results of the image after being processed by the algorithm. (C) The output images of the "cal" module.
TABLE 3 The types of attributes that can be used in the result and
their descriptions.

Attribute Type Description

orig_img numpy.ndarray The original image as a numpy array.

orig_shape tuple The original image shape in (height,
width) format

boxes Boxes,
optional

A Boxes object containing the detection
bounding boxes

Masks Masks,
optional

A Masks object containing the
detection masks

Probs Probs,
optional

A Probs object containing probabilities of
each class for classification task

Keypoints Keypoints,
optional

A Keypoints object containing detected
keypoints for each object

Speed dict A dictionary of preprocess,inference,and
postprocess speeds in milliseconds per image

names dict A dictionary of class names

path str The path to the image file
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(manufacturer: Facebook Artificial Intelligence Research (FAIR).)

with Python 3.8.18(manufacturer: Python Software Foundation

(PSF).), and the CUDA version was 11.1(manufacturer:

NVIDIA). Table 4 shows the hyperparameter settings used before

training various models for comparative experiments.
3.2 Comparison experiments

Figure 10 shows the training plot of our model after training. To

demonstrate the superior performance of our model in detecting and

segmenting soybean radicle among similar models, we conducted

comparative experiments with YOLOv5-seg, YOLOv7-seg, and
Frontiers in Plant Science 12
YOLOv8-seg. Table 5 presents the results obtained under the same

configuration environment and hyperparameter settings. Despite our

model having a larger number of FLOPS and parameters, it achieved

the highest detection average precision and segmentation mask

average precision. The detection mAP50 reached 97.7%, and

mAP50-95 reached 72.2%. Furthermore, the segmentation mask

mAP50 reached 84.6%, and mAP50-95 reached 36.8%, surpassing all

other models. In comparison to the unimproved YOLOv8-seg, our

model achieved a 2% improvement in detection mAP50-95 and a 1%

improvement in segmentation mask mAP50-95. While YOLOv5 is the

most lightweight model, it exhibited poor accuracy in segmenting

soybean roots, with segmentation mAP50 and mAP50-95 reaching

only 61.1% and 15.1%, respectively. Additionally, YOLOv8-
A

B

FIGURE 9

(A) The process of radicle length transformation calculation. (B) Example of actual radicle length after calculation.
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segANDcal had only 1/5 of the GFLOPS of YOLOv7, yet it achieved a

0.3% higher detection mAP50 and a 9.7% higher segmentation mask

mAP50-95.

The data from comparative experiments indicates that our

model, while having a larger model size compared to the selected

models, exhibits the best accuracy in detecting and segmenting

soybean radicle features. Particularly, the average precision of the

segmentation mask directly influences the accuracy of radicle length

calculation. In order to facilitate the determination and calculation

of soybean radicle length for subsequent selection analysis, ensuring

a higher segmentation mask average precision is deemed acceptable,

even if it results in additional computational overhead during the

model training process.
3.3 Ablation experiments

To validate the effectiveness of the data augmentation strategies

we employed, we conducted ablation experiments on the YOLOv8-

segANDcal model. The specific results are presented in Table 6. It is

evident that with the gradual addition of various data augmentation

strategies, the model’s detection accuracy shows an overall

increasing trend. After incorporating four data augmentation

strategies, the model achieved a maximum mAPbox50-95 of 72.2%
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and a maximum mAPmask50-95 of 36.8%. The data augmentation

strategies expanded the dataset and improved the accuracy of the

model for detection and segmentation.

In order to specifically evaluate the effects of the improved

Segment module and the added Cal module, we input four images

of soybean seeds at different germination stages into the model.

Figures 11A-D show soybean seeds with distinct radicle differences.

It can be observed that the original YOLOv8 model output images

with pixel-level masks, while the improved Segment module helped

the model output corresponding binary images. With the addition

of the Cal module, the model successfully provided the pixel length

of the corresponding radicle contour boundaries, yielding

comprehensive results.
3.4 Performance of soybean radicle length
conversion calculation

To evaluate the effectiveness and accuracy of the radicle length

conversion calculation, a subset of samples was selected, excluding

seeds with segmentation errors from the model. Upon the

calculation of the mask images by the ‘Cal’ module, the actual

lengths of the radicles for each soybean seed were computed using

the radicle length conversion method and superimposed onto the

original images, showing in Figure 12.

We then conducted a regression analysis to compare the lengths

obtained through the radicle length conversionmethod with the average

radicle lengths obtained from manual measurements. The research

results indicate that, for a selected quantity of samples, the lengths of

germinated soybean radicles obtained through manual measurements

ranged from 0.51 cm to 5.20 cm, with an average length of 2.66 cm and

a median length of 2.47 cm. In contrast, the range of soybean radicle

lengths obtained through machine vision and radicle length conversion

calculation was 0.59 cm to 5.10 cm, with an average length of 2.71 cm

and amedian length of 2.50 cm.We employed linear regression analysis

to compute the correlation coefficient between manual and machine

vision measurements, with the corresponding results shown in

Figure 13A. Additionally, the distribution of the calculated soybean

radicle lengths is presented in Figure 13B, where it can be observed that
FIGURE 10

Model training plot of YOLOv8-segANDcal.
TABLE 4 Settings of hyperparameters.

Parameters setup

Epoch 100

Batch size 1

NMS IoU 0.65

Image Size 640×640

Initial Learning Rate 1×10-2

Final Learning Rate 1×10-4

Momentum 0.937

Weight-Decay 1×10-4
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the majority of radicle lengths are distributed around 2.5 cm.

Furthermore, Figure 13C shows a beeswarm plot of the radicle

lengths calculated by radicle length conversion and those manually

marked, both exhibiting the highest density around 2.5 cm, with a

relatively uniform distribution at other lengths.

The linear regression function between manual measurement

and radicle length conversion measurement is y=0.9737x-0.0310,

with a regression coefficient of 0.9737. Also, the goodness offit value

R2 is calculated to be 0.9912, which is close to 1, indicating a high

degree offit of the curve to the data. Hence, it can be considered that

there is a high degree of fit and low error between manual

measurement and radicle length conversion measurement

techniques. In terms of measurement time, the manual

measurement method consumes a significant amount of time and

labor, while the YOLOv8-segANDcal model demonstrates faster

speed in calculating soybean radicle lengths. The YOLOv8-

segANDcal model not only efficiently and accurately segments

soybean radicle images but also rapidly and precisely calculates

soybean radicle lengths.
3.5 tracking of the full-time sequence of
soybean radicle features

The continuous time-series crop growth vitality monitoring

system we have built can continuously monitor subtle changes in

soybean seed radicle features over a short period of time. Typical

soybean seeds in the growing state were captured from continuous

images labeled as 1, 2, 3, and 4. The time interval between the

selected images was 1 hour. We utilized our model to segment and

detect the radicles and, combined with the radicle length conversion
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method, calculated the actual radicle lengths during this time period

to analyze the changes in soybean radicles over a 7-hour period.

To explore the patterns of soybean radicle feature changes,

based on the conclusions drawn from the radicle lengths of 1, 2, 3, 4,

we have plotted a 3D bar chart (Figure 14A) illustrating the changes

in radicle length of the soybean seed over time. In order to magnify

the trend of radicle length changes for easier observation and to

reduce the systematic errors generated during machine recognition

of radicle lengths, we subtracted 1 from the average radicle length of

the four soybean seeds during the same time period and then

multiplied the result by a scaling factor of 2 to represent the growth

curve (depicted as the “amplify AVE” line segment in Figure 14B). It

is easy to determine the growth rate of the soybean radicle during

this specific period from the slope of the line in the line chart. From

2d 1hour to 2d 2hours, the radicle growth rate was high. From 2d

2hours to 2d 5hours, the line chart remained stable, indicating no

significant changes in the radicle lengths of the four seeds. However,

from 2d 5hours to 2d 7hours, the slope of the line chart was the

greatest, indicating that the radicle growth rate reached its

maximum during this time period, and it continued to maintain a

relatively fast growth rate thereafter.

We also utilized our system and model to complete the

segmentation monitoring of the radicle characteristics of a

selected soybean seed over a longer experimental period. The

images selected in Figure 15A were taken at 12-hour intervals,

and the segmented calculation yielded the number of pixels in the

radicle frame. From the figure, it is evident that the growth trend of

the soybean seed throughout the germination period can be

analyzed. From 1d 1hours to the 2d 12 hours, the radicle of the

soybean seed exhibited slow growth, with the number of contour

pixels increasing at a relatively steady pace. From the 2d 12 hours to
TABLE 6 Data augmentation ablation experiment.

Data enhancement Number
of dataset

mAPbox
50

(%)
mAPbox

50-

95 (%)
mAPmask

50

(%)
mAPmask

50-

95 (%)

Original dataset 360 95.8 70.7 81.4 33.9

Original dataset+brightness reduce 420 96.3 70.6 82.3 34.1

Original dataset+brightness reduce+brightness enhance 480 96.7 71.3 83.7 34.4

Original dataset+brightness reduce+brightness
enhance+rotate

540 97.9 71.9 83.6 36.1

Original dataset+brightness reduce+brightness enhance
+rotate+sharpen

600 97.7 72.2 84.6 36.8
Bold indicates the best experimental results.
TABLE 5 Experimental results of different models.

Model Params (M) FLOPs (G) mAPbox
50 (%) mAPbox

50-95 (%) mAPmask
50 (%) mAPmask

50-95 (%)

YOLOv5-seg 1.8 6.9 95.7 52.6 61.3 15.1

YOLOv7-seg 37.8 141.9 97.4 62.5 84.7 27.1

YOLOv8-seg 3.2 12 97.6 70.7 85.0 35.9

YOLOv8-segANDcal 6.5 27.7 97.7 72.2 84.6 36.8
Bold indicates the best experimental results.
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the 3d 1 hours, the radicle of the soybean seed developed rapidly,

and the contour noticeably expanded. To better illustrate the

changes in the radicle contour of the soybean throughout the

entire experimental period, we extracted the contours from

(Figure 15A), magnified them proportionally, and superimposed

them onto the coordinate axis (Figure 15B). The unit length of this

coordinate axis is 0.1 cm, and the numbers below the contours

represent the actual length of the radicle. This method can better

assist us in assessing the radicle development of the selected seed

and quantitatively analyzing the changes in radicle characteristics.

The method described above demonstrates that our system

successfully completed the full-time sequence detection of soybean

radicle characteristics, generating profiles that change over time.

This provides data support for further research into the regularity
Frontiers in Plant Science 15
and trends of radicle feature changes during soybean growth. We

anticipate that through this continuous analysis, we will gain a

deeper understanding of the characteristics of soybean radicles at

different growth stages, providing reference and guidance for crop

growth regulation and optimization.

Researchers commonly use YOLO models for crop root

classification and identification. For instance, Li et al. (2022)

utilized YOLOv4 to identify root objects in ground-penetrating

radar images, while Yang et al. (2022) enhanced YOLOv2 for

garlic root recognition and automatic slicing. In comparison to

these studies, our model employs image segmentation for embryo

radicle extraction, enabling high precision and pixel-level embryo

radicle feature extraction. The improved segmentation module

directly outputs binary images with radicle masks, addressing
A

B

C

D

FIGURE 11

The performance of YOLOv8-segANDcal segmentation detection. (A–D) is the radicle length of seeds at different germination stages.
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issues of redundant information in traditional segmentation

modules that generate color-rich and information-dense original

images. This allows the subsequent image processing to focus

more effectively on soybean radicle features. The integrated

computational module in our model enhances its functionality

by calculating the segmented soybean radicle length. In contrast to

the method of quantifying coarse roots using ground-penetrating
Frontiers in Plant Science 16
radar (Guo et al., 2013), our model can detect, segment, and

quantify fine roots, filling a gap in root system analysis methods

for traits with small characteristics. Compared to directly

measuring root length using image analysis (Kimura et al.,

1999), our approach segments the radicle portion in images

before measuring root length, simplifying the calculation

process and reducing the required image sample size.
A B C

FIGURE 12

The performance of radicle length conversion methods. (A) is the mask image calculated after the 'Cal' module. (B) is the actual radicle length
calculated using the radicle length conversion method. (C) the actual radicle length is superimposed on the original image.
A

B

C

FIGURE 13

(A) Comparison between manual and converting radicle of the length of the soybean seed obtained in regression function images.Scatter plots
represent discrete relationships, while lines represent linear relationships. (B) Distribution map of radicles. (C) Beeswarm plot of converting
and manual.
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The continuous time-series tracking of soybean radicle is

achieved through a combination of software and hardware. On

the hardware side, utilizing the apparatus we have constructed

allows for high-definition, long-term, continuous imaging of

soybean radicles. The captured images are then sorted

chronologically and input into our model to generate images with

specific root lengths. By arranging these images in sequence, one

can discern the temporal changes in seed development. Analyzing

the complete temporal characteristics of seeds using traditional

methods entails significant labor costs and is susceptible to

interference from variations in factors such as light and

temperature that affect radicle traits (Gibson and Mullen, 1996).

However, the collaboration between our equipment and model

enables robust, cost-effective, and precise temporal tracking of

soybean radicle features.
Frontiers in Plant Science 17
4 Summary, limitations and
future work

To address the time-consuming, subjective, inefficient, and

inaccurate nature of traditional soybean seed radicle feature

research, and taking into account the detection challenges posed

by the intertwining and overlapping of radicles during soybean

germination, this paper proposes a soybean seed radicle feature

segmentation and length calculation model: YOLOv8-segANDcal.

Firstly, we augmented the original YOLOv8 backbone structure

w i t h a nov e l c onvo l u t i on a l a t t e n t i on f r amework ,

SegNext_Attention, to assist the model in better detecting and

segmenting soybean radicles, thereby enhancing its focus on the

roots of soybeans and improving detection accuracy. Secondly, we

improved the original segmentation head to output both the

segmented mask information image and the corresponding binary

image, enhancing the practicality of the model’s output and

facilitating subsequent image processing. Additionally, we

incorporated the Cal module into YOLOv8-segANDcal, endowing

the model with the capability to calculate the number of border

pixels in the binary image. Finally, we presented a method for

calculating radicle length, obtaining the actual length of soybean

radicles and capturing the changes in radicle contour features over

germination time, thereby contributing to the study of soybean

radicle characteristics.

The experimental results show that YOLOv8-segANDcal

achieved a segmentation mAP50-95 of 36.8% and a detection

mAP50-95 of 72.2%, representing the highest accuracy in soybean

radicle segmentation. Compared to the unimproved YOLOv8-seg,

there was an improvement of 2% and 1% respectively. The

improved Segment module and the added Cal module enabled

the model to output more information and calculate the average

length of the selected soybean radicles as 2.71cm, with a median

length of 2.50cm. The linear correlation of 0.9737 between manual

and machine vision measurements demonstrates the feasibility of

the YOLOv8-segANDcal model in practical soybean radicle length

calculations. The extraction of radicle contour features can aid in

studying the morphological evolution of radicles over germination

time, facilitating the assessment of soybean seed vitality. This is the

first application of the YOLOv8-seg model in the analysis of

soybean seed radicle features, and we have developed a rapid and

accurate method for extracting and calculating soybean seed radicle

features. However, this method still has limitations. For example,

the model size is larger than YOLOv8, increasing deployment

difficulty. Additionally, there is the potential for misidentification

during radicle segmentation, particularly in the early stages of

soybean germination, where short radicles may be mistaken for

background noise, leading to false detections.

In the future, we will continue to develop our model, utilizing

lightweight methods to reduce model size while maintaining

segmentation accuracy. We plan to integrate sensors for pressure,

humidity, and other environmental factors into our experiments,

feeding sensor data into the model to obtain additional soybean

seed radicle characteristics such as radicle fresh weight and dry
A

B

FIGURE 14

(A) is 3D bar chart of the changes in the radicle length of soybean
seeds over time. (B) is the bar chart of the average radicle length
and the line graph of the amplify of the ‘AVE’.
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weight. Our YOLOv8-segANDcal model has achieved significant

results in the feature extraction of soybean radicles, which inspires

us to explore its potential applications in other crops and various

growing conditions. For instance, we could apply this technology to

rice, especially during its seedling stage, to segment and calculate

leaf area and the length of roots to assess their efficiency in

absorbing water and nutrients. Another example is wheat planted

under drought conditions, where our model can help monitor root

system development to evaluate its drought resistance. Moreover,
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our model could be applied to tomatoes grown in greenhouse

environments, analyzing the morphological characteristics of

fruits and leaves to optimize irrigation and fertilization schedules.

For crops like cotton grown in saline-alkali soils, the model can be

used to monitor and assess the crop’s salt tolerance by measuring

changes in leaf morphology and root features.

We believe that with further research and model adjustments,

YOLOv8-segANDcal can become a versatile tool in the field of

smart agriculture, not only for monitoring crop growth but also for
A

B

FIGURE 15

(A) monitoring of radicle characteristics of individual soybean seeds throughout the entire experimental cycle. (B) Overlay each contour onto the
coordinate axis.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425100
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1425100
predicting crop diseases and pest infestations, thereby increasing

crop yield and quality, assisting crop breeders and agronomists in

rapid breeding and variety selection.
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Terven, J., Córdova-Esparza, D. M., and Romero-González, J. A. (2023). A
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