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and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China, 3School of Geography
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Karst ecosystems, especially tropical karst forests, are crucial to the global carbon

cycle. In mountainous and hilly areas, elevation-related changes in environment

and vegetation often lead to shifts in the accumulation and decomposition of soil

organic carbon (SOC). However, the elevational patterns and influencing

variables of SOC and its fractions in tropical karst forest ecosystems remain

largely unexplored. Here, we analyzed the elevational patterns of SOC and its

fractions in the topsoil and subsoil in the tropical seasonal rainforests within

typical peak-cluster depression region of Southwest China. Our results indicated

that the SOC content was highest at 400 m asl, which was significantly higher

than that at 200 m asl (p < 0.05). Overall, SOC content demonstrated

an increasing trend with rising elevation. Additionally, SOC content was

significantly higher in the topsoil compared to the subsoil (p < 0.05). The

majority of SOC fractions exhibited an increase with elevation but decrease

with soil depth. Notably, only water-soluble organic carbon (WSOC) displayed a

decrease with elevation. Meanwhile, recalcitrant organic carbon (ROC, 54.27%),

particulate organic carbon (POC, 30.19%), and easily oxidizable organic carbon

(EOC, 16.95%) were the main SOC fractions. Labile organic carbon (LOC) in the

karst forest soil was predominantly composed of EOC and POC. Correlation

analysis unveiled significant positive correlations between SOC and certain

fractions with elevation, soil total nitrogen, and exchangeable magnesium.

Conversely, significant negative correlations were observed with soil bulk

density (SBD), soil total phosphorus, and litter phosphorus (Litter P).

Redundancy analysis indicated that elevation, SBD, and Litter P were the main

environmental variables influencing shifts in SOC and its fractions. Structural

equation models showed that SOC was primarily directly impacted by soil

properties but indirectly impacted by elevation. ROC was mainly associated

with the direct effects of soil properties and litterfall, although elevation

exerted a substantial impact through indirect pathways. Moreover, LOC was

predominantly influenced by the direct impact of soil properties. Therefore, this
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study demonstrates that SOC and its fractions are strongly influenced by

elevation in karst peak-cluster depression regions and have important

implications for forest management and sustainable ecosystem development

in these regions.
KEYWORDS

karst, soil organic carbon, recalcitrant organic carbon, labile organic carbon fractions,
southwest China
1 Introduction

The global volume of soil organic carbon (SOC) is

approximately 2344 Gt; thus, SOC constitutes the largest

terrestrial pool of carbon (Guo et al., 2016a). SOC is derived

primarily from organic substances, such as plant and animal

residues, root secretions, and microbial metabolites, and plays a

pivotal role in mitigating increases in atmospheric CO2

concentrations and adjusting the global carbon balance (Ramesh

et al., 2019). Factors including forest type, climate, vegetation cover,

and soil management also have important roles in the accumulation

of forest SOC (Mayer et al., 2020; Wiesmeier et al., 2012).

Furthermore, the composition of SOC has different distributions

and degradation characteristics in soils at different depths, resulting

in significant differences in the SOC content and composition in

different types of forests (Guimarães et al., 2013). SOC is divided

into labile, slow-acting, and recalcitrant fractions based on its

sensitivity to external factors, turnover time, and function (Song

et al., 2022). Labile organic carbon (LOC) is a highly reactive form

of organic carbon in soil with fast oxidation, decomposition, and

mineralization rates, and it can be subdivided into particulate

organic carbon (POC), easily oxidizable organic carbon (EOC),

water-soluble organic carbon (WSOC), and microbial biomass

carbon (MBC) fractions (Li et al., 2018). Although LOC is a small

fraction of the SOC, it can reflect minute changes in soil before SOC

changes, and it directly participates in biochemical transformation

processes. Therefore, LOC more accurately reflects variations in the

soil carbon pool than other fractions (Li et al., 2018; Ferraz de

Almeida et al., 2019). Compared with labile and slow-acting organic

carbon, recalcitrant organic carbon (ROC) is less decomposable and

more stable and has a longer turnover time; thus, it is pivotal in

maintaining quality and health of forest soil and is frequently

employed as an indicator of soil response to environmental shifts

(Xu et al., 2010a). To more accurately characterize the dynamics of

SOC, different SOC fractions must be investigated.

Elevation is an important geographical factor that significantly

impacts ecosystems and climatic conditions. Elevation changes can

affect vegetation type, temperature, humidity, soil properties, and

climatic conditions and thus can directly or indirectly impact the

size and composition of the soil carbon pool (Zhang et al., 2021).

Zinn et al. (2018) found that elevation is the dominant variable
02
influencing the SOC content in Brazilian tropical forests. In

addition, although increases in elevation correspond to increases

in the forest SOC of Mt. Kilimanjaro (Zech et al., 2014) and

siliceous Moncayo Massif (Badı ́a et al., 2016), changes in

elevation did not result in significant impacts on the SOC in the

Peruvian Andes (Zimmermann et al., 2010) and Ecuadorian Andes

(Soethe et al., 2007) due to variations in vegetation types and biotic

and abiotic factors. The spatial heterogeneity and temporal changes

in soil contribute to a high level of uncertainty in estimating SOC at

different forest elevations (Mayer et al., 2020). However, few studies

have reported on how forest SOC fractions change with elevation.

Bojko and Kabala (2017) showed that the content of the most labile

carbon fraction decreased with elevation in the Karkonosze

Mountains, while Xiang et al. (2015) revealed that the ROC does

not change with elevation in the Dinghu Mountains. Thus,

analyzing the content and distribution of SOC and its fractions

across varying elevations in mountainous and hill areas holds

significant importance in elucidating the regional dynamics of the

soil carbon cycle.

Karst is a special landform formed by the dissolution and erosion

of rock by solifluction. Karst landscapes encompass roughly 22

million km2 globally, representing approximately 12% of the

Earth’s land area, with a wide and heterogeneous distribution

across the globe (Liu et al., 2020). Karst in southwestern China is

rich in geological and geomorphological patterns, with unique crested

depression landforms created by a combination of conical crests and

rounded or polygonal depressions (Guo et al., 2016b). The area is

approximately 550,000 km2, accounting for nearly 15% of the land

area of China (Song et al., 2014). There is a significant heterogeneous

spatial distribution of SOC in the karst peak-cluster depressions.

Zhang et al. (2008) showed that SOC content is low in depressions

and high in peaks with increased elevation. Guo et al. (2017) similarly

found that SOC in different habitat types exhibits a pattern of

increasing soil carbon content with elevation: peaks > high slopes >

mid-slopes ≈ low slopes > depressions. Collectively, these studies

show that the SOC content in karst regions tends to increase with

elevation; however, the distribution of SOC fractions across varying

elevations in karst regions remains poorly understood.

Karst peak-cluster depressions in southwestern China have led

to the development of unique and diverse tropical and subtropical

karst vegetation ecosystems (Li et al., 2003). Among them, karst
frontiersin.org

https://doi.org/10.3389/fpls.2024.1424891
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1424891
seasonal rainforests developed in tropical climates are the most

unique forest ecosystems globally and are considered the climax

community of soil succession in the cryptic zone (Guo et al., 2016b).

Tropical karst seasonal rainforests result from interactions between

karst landforms and tropical climates, which have rich biodiversity

and important ecological functions. As the mainstay of SOC

sequestration in tropical karst areas, tropical seasonal rainforests

are critical for soil conservation, the carbon and water cycles, and

ecological balance in karst areas. In addition, the region experiences

high annual rainfall, is warm and humid throughout the year, and

exhibits significant seasonal variation (Bai et al., 2019). Although

the soil properties and nutrient cycling (Guo et al., 2017) of tropical

karst seasonal rainforests have been investigated, the elevational

patterns of SOC and its fractions in tropical forests in peak-cluster

depressions remain understudied.

In this study, SOC, ROC, and LOC fractions (including WSOC,

EOC, POC, and MBC) content were analyzed in karst seasonal

rainforests at four elevation gradients (200, 300, 400, and 500 m).

The purposes are to (1) investigate the trends in SOC and its

fractions under the four elevational gradients, (2) identify the

primary environmental variables affecting the accumulation of

SOC and fractions, and (3) determine the pathways through

which elevation, soil properties, and litterfall affect SOC and

fractions. Our study holds immense significance in enhancing the

comprehension of the soil carbon cycle and quantifying the content

of carbon and fractions in karst tropical seasonal rainforests across

varying elevational gradients.
2 Materials and methods

2.1 Study area

The study area was situated in the Nonggang National Nature

Reserve (NNNR, E 106°42′28′′–107°04′54′′, N 22°13′56′′–22°33′
09′′) in Longzhou County, Guangxi, southwestern China (Figure 1).
This reserve maintains a typical tropical karst seasonal rainforest
Frontiers in Plant Science 03
with a large area and an intact ecosystem that has not been

disturbed by humans for over a century. It is one of China’s 14

key terrestrial biodiversity hotspots of international significance

(Guo et al., 2019; Su and Li, 2003); the main protection objectives of

the reserve include the limestone seasonal rainforest ecosystem,

Trachypithecus leucocephalus, Trachypithecus francoisi, Stachyris

nonggangensis, Parashorea chinensis, plants of the Cycas, and

Theaceae sect. Chrysantha Chang. The reserve has typical karst

peaks and depressions that are widely distributed by exposed karst

landforms that constitute peaks, forests, depressions, and funnels,

forming a variety of regional microclimate types that result in high

habitat heterogeneity and compositional complexity in species

communities. The reserve features a low elevation ranging from

150 to 600 m, as well as steep slopes. The primary soil type in the

reserve is calcareous. The reserve experiences a tropical monsoon

climate, primarily influenced by the southeast and southwest

monsoons. The area experiences an average annual temperature

of 22°C, with an absolute maximum of 39°C and an absolute

minimum of –3°C. Annual precipitation ranges from 1150 to

1550 mm, mostly occurring during May to September, with

distinct wet and dry seasons. Common tree species include

Excentrodendron tonkinense , Cephalomappa sinens i s ,

Hydnocarpus hainanensis, and Orophea polycarpa.
2.2 Sample collection

In August 2022, four elevations (200 m [depression], 300 m

[lower slope], 400 m [middle slope], and 500 m [hill peak]) were

selected in karst peak-cluster depressions in the NNNR. At each

elevation, three forest plots measuring 20 m × 20 m were

established, spaced 20 m apart from each other. The basic

information for each site can be found in Table 1. Within each

plot, a 1 m × 1 m subplot was established using the quincunx

method to collect litter for the assessment of litter quantity, as well

as the carbon (Litter C), nitrogen (Litter N), and phosphorus (Litter

P) content. Moreover, soil samples were collected along with litter
FIGURE 1

Geographical location of Nonggang National Nature Reserve (NNNR) and its special karst landscape.
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from two layers (0–20 cm and 20–40 cm). Five soil samples

obtained from the same soil layer within each plot were

subsequently combined and divided into two equal portions. One

was left to dry naturally and then sieved and used to assess SOC,

ROC, WSOC, EOC, POC, and other soil chemical properties, while

the other portion was stored at 4 °C for subsequent analysis of MBC.

In situ soil samples were gathered from each plot using a ring knife

(100 cm3) to determine the water content (SWC) and bulk density

(SBD) (Hossain et al., 2015).
2.3 Sample analysis

The SOC was determined using the potassium dichromate

oxidation-spectrophotometric method (Chen et al., 2021). Soil

ROC was measured by acid hydrolysis (Leavitt et al., 1996). The

extraction of soil WSOC followed the procedure outlined by Hao

et al. (2022). Soil EOC was determined using the KMnO4 oxidation

method (Blair et al., 1995). The determination of soil POC followed

the protocols outlined by Cambardella and Elliott (1992). Soil MBC

was assessed using the chloroform fumigation-extraction method as

described by Hao et al. (2022). All soil samples were treated with

sulfuric acid prior to organic carbon analysis to remove any

potential inorganic carbon, preventing interference from

inorganic carbon.

Soil pH was determined using the potentiometric method, while

calcium exchange (ECa) was assessed using the ammonium acetate

exchange-EDTA complexation titration method, and exchangeable

magnesium (EMg) was determined using ammonium acetate

exchange-atomic absorption spectrophotometry. Soil total

nitrogen (STN) using Kjeldahl nitrogen, soil total phosphorus

(STP) using alkali fusion-molybdenum antimony anti-

spectrophotometry, and soil total potassium (STK) using atomic

absorption spectrophotometry. These soil properties were measured

following the methods of Bao (2008). The quantity of litter was

determined using a drying method (Morffi-Mestre et al., 2020). The

methods of determining C, N, and P contents in litter were the same

as those for SOC, STN, and STP, respectively.
2.4 Data analysis

Two-way analysis of variance (ANOVA) was performed on

SOC and its fractions at different elevations and soil depths using

the LSD method (p < 0.05) for multiple comparisons. Pearson’s

correlation analysis was performed to evaluate the relationships

between SOC (and its fractions) and soil physicochemical

properties. After removing the multicollinearity among the

environmental variables, redundancy analysis (RDA) was

implemented to identify the main variables affecting SOC and its

fractions and calculate the explanatory rate of environmental

variables. The direct and indirect effects of environmental

variables on SOC and its fractions were explored by constructing

a structural equation model, categorized into three variables to

account for two combined variables, including elevation, soil

properties (SWC, SBD, and STP), and litterfall (Litter P, Litter N:
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P, and litter quantity). Two-way ANOVA was conducted in SPSS

24.0, and correlation analysis, RDA analysis, calculation of the

explanatory rate of each environmental variable, and structural

equation modeling (SEM) were conducted using R packages

“psych” (Revelle, 2023), “vegan” (Oksanen et al., 2022),

“rdacca.hp” (Lai et al., 2022), and “PiecewiseSEM” (Lefcheck, 2016).
3 Results

3.1 Elevation patterns of SOC content

The results of the two-way ANOVA (Table 2) indicated that

both elevation and soil depth significantly influenced the SOC

content (p < 0.001). The SOC content in each soil layer was

highest at 400 m asl (Figure 2A), which was significantly higher

than that at 200 m asl. (p < 0.05). Overall, the SOC content showed

an increasing trend with higher elevations. The SOC content within

the soil profile exhibited a consistent trend across elevation levels,

with significantly higher contents detected in the topsoil compared

to the subsoil (p < 0.05).
3.2 Elevation patterns of SOC fractions

As indicated in Table 2, both elevation and soil depth and their

interaction had significant impacts on the ROC content (p < 0.01).

The ROC content in each soil layer was highest at 400 m asl

(Figure 2B), which was significantly higher than that at 200 and 300

m asl (p < 0.05). Overall, the ROC content exhibited an increasing

trend with higher elevations. The ROC content in the topsoil at all

elevation levels was significantly higher than that in the subsoil (p <

0.05). Additionally, the ROC/SOC ranged from 44.15% to 63.02%

(Table 3), and the two-way ANOVA indicated that neither elevation

nor soil depth had a significant impact on the ROC/SOC (p >

0.05; Table 2).

Two-way ANOVA (Table 2) indicated that elevation

significantly influenced the content of WSOC, EOC, POC, and

MBC. With increasing elevation, the EOC and POC contents

tended to increase, WSOC tended to decrease, and MBC

exhibited an initially decreasing and then increasing trend,

reaching a low value at 400 m asl (Figures 2C–F). Additionally,

soil depth significantly influenced EOC, POC, and MBC, and the

contents were significantly higher in the topsoil at all elevation

levels than in the subsoil (p < 0.05). Although the WSOC content

was higher in the topsoil at all elevation levels than in the subsoil,

the difference was not statistically significant (p > 0.05).

Furthermore, both elevation and soil depth significantly impacted

WSOC/SOC, EOC/SOC, POC/SOC, and MBC/SOC. With

increasing elevation, WSOC/SOC, EOC/SOC, and MBC/SOC

tended to decrease overall while POC/SOC tended to increase.

The WSOC/SOC tended to increase with increasing soil depth,

while EOC/SOC, POC/SOC, and MBC/SOC tended to decrease.
Frontiers in Plant Science 05
3.3 Correlation between SOC (and its
fractions) and environmental variables

Changes in elevation were accompanied by changes in basic soil

physicochemical properties and litterfall properties (Supplementary

Tables A1 and A2). Correlation analysis (Figure 3) showed that

elevation was significantly positively correlated with SOC, ROC, and

POC (p < 0.01); SWCwas significantly positively correlated with EOC (p

< 0.05); SBD was significantly negatively correlated with SOC, ROC,

EOC, and POC (p < 0.05 or p < 0.01); and pHwas significantly negatively

correlated with SOC and ROC (p < 0.05 or p < 0.01). STN and EMgwere

significantly positively correlated with SOC, ROC, and ROC (p < 0.05 or

p < 0.01); while STP and Litter P were significantly negatively correlated

with SOC, ROC, and POC (p < 0.05 or p < 0.01); and Litter N:P was

significantly positively correlated with ROC and POC (p < 0.05). The

RDA analysis showed that RDA1 and RDA2 accounted for 65.17% and

21.44% of the variance, respectively, and 10 environmental variables

explained 96.77% of the variance in SOC and its fractions (Table 4;

Figure 4). Among these, elevation, SBD, and Litter P explained 20.08%,

17.48%, and 11.07% of the variance, respectively.
3.4 Environmental variable pathways
influencing SOC and its fractions

Piecewise SEM analysis (Figure 5) showed that elevation soil

properties, and litterfall accounted for most of the variations in SOC

(85%), ROC (93%), and LOC (69%). SOC was primarily influenced

directly by soil properties, with a path coefficient of 0.712 (p < 0.01).

Additionally, elevation had a significant indirect impact, with

standardized effects for SOC reaching 0.752. ROC was mainly

influenced directly by both soil properties and litterfall factors,
TABLE 2 Results of a two-way ANOVA of single and interactions effects
of elevation and soil depth on soil organic carbon and its fractions.

Factors Elevation Soil depth
Elevation ×
Soil depth

SOC 13.90*** 141.25*** 0.96

ROC 31.29*** 209.54*** 6.71**

WSOC 6.09** 3.68 0.31

EOC 3.47* 91.76*** 2.43

POC 21.85*** 147.65*** 6.61**

MBC 4.28* 188.32*** 3.61*

ROC/SOC 5.27* 5.81* 5.35*

WSOC/SOC 10.22** 33.91*** 1.83

EOC/SOC 2.24 1.60 1.83

POC/SOC 18.19*** 68.44*** 2.00

MBC/SOC 24.80*** 10.63** 6.18**
F-values listed above are used to assess the magnitude of the effects between two factors. p-
values are used to test the significance level of hypothesis testing. *, **, and *** signify p < 0.05,
p <0.01, and p < 0.001, respectively. Absence of * indicates p > 0.05.
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with path coefficients of 0.539 (p < 0.01) and 0.591 (p < 0.01),

respectively. Furthermore, elevation had a substantial indirect

impact, with standardized effects for ROC reaching 0.829. LOC

was primarily influenced directly by soil properties, with a path

coefficient of 0.628 (p < 0.05).
4 Discussion

4.1 Elevational patterns of SOC and its
fractions in karst peak-cluster depressions

Changes in elevation are accompanied by variations in slope

position and slope degree. Previous studies have suggested that in
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karst areas, the SOC content in depressions is often lower than that

on slopes (Bai and Zhou, 2020; Li et al., 2022), which has been

corroborated in this study. This distribution pattern is attributed to

the fact that the formation of “rock crevice soil” and “rock bowl soil”

due to karst processes leads to the extensive development of stone

crevices and stone troughs on slopes. These soil layers are thick and

nutrient-rich, and they possess strong water retention capabilities,

thus creating favorable conditions for SOC accumulation. In

contrast, depressions undergo surface runoff during the formation

of standing water despite representing accumulation areas. This

results in the preferential erosion of soil aggregates with higher sand

content in depressions, thereby hindering the accumulation of SOC

in depressions (Zhang et al., 2008). Additionally, a notable

phenomenon in karst regions is that the higher the degree of
FIGURE 2

Contents of (A) soil organic carbon (SOC), (B) recalcitrant organic carbon (ROC), (C) water-soluble organic carbon (WSOC), (D) easily oxidizable
organic carbon (EOC), (E) particulate organic carbon (POC), and (F) microbial biomass carbon (MBC) in soil collected at different elevations.
Lowercase letters indicate statistically significant differences among different soil layers, while uppercase letters denote significant differences among
different elevations at p < 0.05.
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exposed rock, the higher the corresponding SOC content, which

aligns with the findings of this study. This might be because a higher

rate of rock exposure leads to local accumulation of soil in

depressions. In such environments, the accumulation of organic

matter and litter is most abundant in micro-landforms such as

stone basins, stone troughs, and rock fissures, contributing to higher

SOC content (Wang et al., 2020). The SOC content in the topsoil at

various elevation gradients was significantly higher than that in the

subsoil, which is consistent with the results reported by Bojko and

Kabala (2017). The variations in SOC between soil layers may have

been caused by the decomposition of plant litter and accumulation

of humus and litter in surface soil (Chen et al., 2023). Additionally,
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with increasing soil depth, the soil texture becomes more compact,

limiting the downward transport of surface soil organic matter and

resulting in a decrease in accumulated SOC in the subsoil (Chen

et al., 2016; Danardono et al., 2019). Furthermore, recent studies

have indicated that microclimate variables, particularly soil

temperature and light effectiveness, can significantly influence the

SOC cycle in karst ecosystems (Huang et al., 2024; Zhao et al.,

2024). Future studies should investigate how these variables affect

SOC and its fractions in the tropical seasonal rainforests within

karst peak-cluster depression region.

The ROC content in our study tended to increase with elevation

because with increasing elevation in karst peak-cluster depressions,
TABLE 3 Variation in soil organic carbon fractions along varying elevational gradients.

Elevation
(m asl.)

Soil
depth (cm)

ROC/SOC (%)
WSOC/
SOC (%)

EOC/SOC (%) POC/SOC (%) MBC/SOC (%)

200

0–20 44.15 ± 1.45 bB 3.04 ± 1.13 bA 20.49 ± 1.84 aA 30.55 ± 5.05 aB 2.93 ± 0.44 aA

20–40 51.92 ± 3.62 aA 6.42 ± 1.62 aA 17.48 ± 3.21 aAB 12.70 ± 3.09 bB 3.76 ± 0.63 aA

Average 48.03 ± 4.92 B 4.73 ± 2.24 A 18.99 ± 2.86 A 21.63 ± 10.47 B 3.34 ± 0.67 A

300

0–20 58.16 ± 11.93 aA 1.95 ± 0.43 bAB 17.67 ± 2.54 aAB 28.90 ± 4.33 aB 2.41 ± 0.78 aAB

20–40 50.41 ± 12.67 aA 4.67 ± 1.38 aAB 20.30 ± 3.15 aA 14.89 ± 4.81 bB 1.00 ± 0.35 bB

Average 54.28 ± 11.8 AB 3.31 ± 1.75 AB 18.99 ± 2.94 A 21.89 ± 8.70 B 1.71 ± 0.94 B

400

0–20 63.02 ± 2.53 bA 1.64 ± 0.25 bB 19.20 ± 0.64 aA 51.65 ± 4.54 aA 1.48 ± 0.25 aB

20–40 52.76 ± 1.26 aA 3.24 ± 0.57 aB 10.52 ± 1.92 bC 23.23 ± 4.08 bAB 0.39 ± 0.18 bB

Average 57.89 ± 5.90 A 2.44 ± 0.96 B 14.86 ± 4.93 A 37.44 ± 16.04 A 0.93 ± 0.63 B

500

0–20 59.24 ± 5.22 aA 1.40 ± 0.23 aB 15.36 ± 2.49 aB 47.64 ± 4.26 aA 2.15 ± 0.69 aAB

20–40 54.52 ± 8.22 aA 2.54 ± 0.70 aB 14.53 ± 3.20 aBC 31.99 ± 10.97 aA 1.14 ± 0.34 aB

Average 56.88 ± 6.68 AB 1.97 ± 0.78 B 14.94 ± 2.61 A 39.82 ± 11.35 A 1.64 ± 0.74 B

Average 54.27 ± 8.25 3.11 ± 1.80 16.95 ± 3.84 30.19 ± 14.11 1.91 ± 1.14
Lowercase letters indicate statistically significant differences among different soil layers, while uppercase letters denote significant differences among different elevations at p < 0.05.
FIGURE 3

Correlation between soil organic carbon (and its fractions) and soil physical and chemical properties. SOC, soil organic carbon; ROC, recalcitrant organic
carbon; WSOC, water-soluble organic carbon; EOC, easily oxidizable organic carbon; POC, particulate organic carbon; MBC, microbial biomass carbon;
SWC, soil water content; SBD, soil bulk density; STN, soil total nitrogen; STP, soil total phosphorus; STK, soil total potassium; ECa, exchangeable calcium;
EMg, exchangeable magnesium; Litter C, litter organic carbon; Litter N, litter nitrogen; Litter P, litter phosphorus; Litter C:N, litter organic carbon: litter
nitrogen; Litter C:P, litter organic carbon: litter phosphorus; Litter N:P, litter nitrogen: litter phosphorus. *p < 0.05, **p < 0.01.
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the terrain steepened, resulting in stronger soil erosion and

detachment. Soil erosion carries away lighter soil particles, leaving

behind heavier organic matter and higher levels of ROC at higher

elevations (Parker et al., 1990). Additionally, the ROC/SOC ratio in

this study also tended to increase with elevation, further suggesting

that higher elevations improve the stability of SOC to a certain
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extent. This finding aligns with the study by Okello et al. (2023). In

addition, we observed that the ROC content in the topsoil was

higher than that in the subsoil. This finding is attributed to two

factors: first, the topsoil typically receives a greater amount of plant

residues and roots, which contribute to the organic carbon content

in the soil and lead to the formation of ROC in the topsoil; and

second, topsoil generally exhibits higher biological activity, resulting

in increased decomposition and transformation rates of easily

decomposable organic matter. As a consequence, the content of

ROC is more stable in the topsoil but relatively low in the subsoil

due to its limited biological activity (Xiang et al., 2015).

LOC demonstrates rapid responsiveness to soil disturbances

and acts as a sensitive indicator for detecting early alterations in

SOC levels (Wang et al., 2024). In our study, EOC (16.95%) and

POC (30.19%) in the LOC fraction accounted for a significant

proportion of SOC (Table 3). Consequently, the LOC in the karst

forest soil was predominantly composed of EOC and POC. EOC

and POC are more effective indicators of shifts in the soil’s labile

carbon pool. We observed that both EOC and POC tended to

increase with rising elevation, consistent with the observations of

Xu et al. (2010b). EOC can be rapidly utilized by microorganisms

and other organisms, and the warmer wetter environment at lower

elevations promotes increased microbial activity, which accelerates

the breakdown and transformation of EOC (Gross and Harrison,

2019). As for the POC content, it was significantly higher in the hill

peak and middle slope areas in contrast to the lower slope and

depression areas. This is attributed to the pronounced transport and

deposition of particulate matter during waterlogging, which may

have increased the removal of POC by runoff, resulting in a low
TABLE 4 Assessment of the explanatory power of individual
environmental variables in redundancy analysis.

Environment
variables

Volume of
explanation

(%)

Explanation
rate (%)

R2 p-
value

Elevation 20.08 20.77 0.706 0.009

SBD 17.48 18.08 0.689 0.009

Litter P 11.07 11.45 0.557 0.036

SWC 9.87 10.21 0.314 0.184

STP 9.29 9.61 0.547 0.038

STN 8.52 8.81 0.497 0.052

Litter N:P 7.99 8.26 0.522 0.046

EMg 5.18 5.36 0.461 0.067

pH 4.97 5.14 0.346 0.145

Litter quantity 2.29 2.37 0.421 0.102

Total 96.74 100.00 – –
SBD, soil bulk density; Litter P, litter phosphorus; SWC, soil water content; STP, soil total
phosphorus; STN, soil total nitrogen; Litter N:P, litter nitrogen: litter phosphorus; EMg,
exchangeable magnesium.
FIGURE 4

Redundancy analysis of soil organic carbon (and its fractions) with environmental variables. Red lines indicates response variables, and blue lines
indicates explanatory variables. SOC, soil organic carbon; ROC, recalcitrant organic carbon; WSOC, water-soluble organic carbon; EOC, easily
oxidizable organic carbon; POC, particulate organic carbon; MBC, microbial biomass carbon; SBD, soil bulk density; Litter P, litter phosphorus; SWC,
soil water content; STP, soil total phosphorus; STN, soil nitrogen; Litter N:P, litter nitrogen: litter phosphorus; EMg, exchangeable magnesium.
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POC content in lower slope and depression areas (Zhang et al.,

2008). This study also found that the WSOC content tended to

decrease with elevation, which may have been linked to the lower

vegetation cover at high-elevation sites, relatively lower inputs of

plant residues and organic matter, and higher rock exposure,

resulting in relatively lower soil microbial activity and reduced

release and transformation of WSOC (Huang et al., 2013). In this

study, MBC in the subsoil exhibited a trend of initial decline

followed by an increase with increasing elevation. This trend

corresponds to changes in the pH of the subsoil, suggesting a

potential link between elevated pH in the lower soil layer and the

ecological environment and activity of microorganisms (Babur

et al., 2022). In contrast, topsoil may be more influenced by

external factors, such as the input of plant residues and climatic

fluctuations, resulting in no apparent trend in MBC in topsoil
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(Zheng et al., 2022). In the soil profile, we found that the content of

EOC, POC, and MBC in the topsoil was significantly higher than in

the subsoil. Although WSOC was also higher in the topsoil, this

difference was not statistically significant. This trend is closely

related to the sources of organic carbon in the topsoil. Higher

EOC in the topsoil is due to warmer and more humid conditions

that favor microbial activity and organic matter oxidation (Ramesh

et al., 2019). POC and MBC levels are higher in the topsoil due to

the presence of plant litter, which adds organic matter and supports

microbial growth (Prescott and Vesterdal, 2021). The topsoil, being

closer to plant roots, benefits from greater organic matter input and

better aeration (Philippot et al., 2024). The lack of significant

differences in WSOC between soil layers is likely due to its rapid

movement and degradation, leading to minimal variation across

soil layers (Sanderman and Amundson, 2008).
FIGURE 5

Piecewise SEM of the pathways influencing the accumulation of (A) soil organic carbon (SOC), (B) recalcitrant organic carbon (ROC), and (C) labile
organic carbon (LOC) and their standardized effects. LOC was derived from the principal component analysis of four active organic carbon fractions
(WSOC, EOC, POC, and MBC), including the first and second principal components. Triangles represents the observed variables, and hexagons
indicate composite variables (e.g., soil properties and litterfall). The solid and dashed lines indicate regression results that are significant and not
significant, respectively; and red and black lines represent negative and positive pathways, respectively. Numbers next to the arrows represent
regression coefficients. The thickness of the line indicates the size of the path coefficient. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1424891
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1424891
4.2 Impact of environmental variables on
SOC and fractions in karst peak-
cluster depressions

This study revealed a significant positive correlation between

SOC and certain fractions with elevation, STN, and EMg.

Conversely, a significant negative correlation was observed

between SOC and certain fractions with SBD, STP, and Litter P.

On the one hand, higher SOC content is often associated with more

organic matter, which potentially provides microbes with additional

carbon sources, thereby promoting the cycling and supply of

nitrogen and magnesium in the soil (Hu et al., 2020). On the

other hand, high SBD typically indicates a compact soil structure,

which may restrict the decomposition of organic carbon and the

activity of microorganisms, thereby reducing the SOC content

(Wang et al., 2021). The negative correlation between SOC and

STP and Litter P may reflect a competitive relationship between

SOC and phosphorus. Specifically, the increase in organic carbon

may stimulate microbial activity, and microbes that decompose

organic matter may utilize phosphorus in the soil, resulting in a

decrease in phosphorus content (Wang and Sheng, 2023). In

addition, elevation, SBD, and Litter P individually explained

20.77%, 18.08%, and 11.45% of the variation in SOC and its

fractions, respectively, indicating that these were the main

environmental variables responsible for the variability of SOC and

its fractions. In this study, elevation had a significant impact on

SOC and its fractions. First, increases in elevation lead to changes in

topography and climate, thereby influencing vegetation types and

growth conditions (Zhong et al., 2022). Second, soil characteristics

such as SBD, pH, and nutrient content vary with changes in

elevation, thereby directly affecting the stabil i ty and

decomposition rate of SOC (Zhang et al., 2021). Additionally,

elevation may also influence the quality and quantity of

vegetation residues and activity level of soil microorganisms,

thereby further impacting the accumulation and decomposition of

SOC (Babur et al., 2021). Wang et al. (2021) suggested that SBD is

the primary negative factor influencing SOC, which aligns with the

findings of the current study. In addition, in tropical karst regions,

soil phosphorus limitations are commonly observed, which restrict

the growth and metabolism of plants and microorganisms.

Consequently, SOC accumulates because it cannot be fully

utilized (Geekiyanage et al., 2019). Furthermore, the accumulation

of soil organic matter leads to increased fixation and adsorption of

phosphorus in the soil, which reduces the available phosphorus

content in plants and contributes to the negative correlation

between STP and SOC, as well as certain organic carbon fractions

(Leytem and Mikkelsen, 2005). Litter P enters the soil via

decomposition and dissolution and participates in the phosphorus

cycle within the soil (Sohrt et al., 2017). However, due to the

adsorption and fixation effects of phosphorus, a portion of the

phosphorus is unable to migrate effectively into the soil, resulting in

decreased effectiveness. This was further reflected in the limited

nature of phosphorus in the tropical karst soils.

The distribution of SOC along the elevational gradients was

influenced by multiple factors. As elevation increases, climate and

environmental conditions change, which affect vegetation growth
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and soil physicochemical properties. Moreover, variations in plant

growth rates and nutrient uptake capacities at different elevations

can affect the C, N, and P contents of litter (Körner, 2007). In this

study, the content of SOC was primarily influenced by the direct

impact of soil properties, while elevation significantly affected SOC

content through indirect pathways. ROC was mainly influenced by

the direct effects of soil properties and litter factors, with elevation

also exerting a substantial impact through indirect pathways. As for

LOC, its content was predominantly influenced by the direct impact

of soil properties. This suggests that when studying SOC and its

fractions, the direct effects of soil properties and indirect impacts of

factors such as elevation through complex pathways must be

considered. Such factors must be considered to develop a

comprehensive understanding of the mechanisms underlying the

formation and distribution of SOC. Additionally, changes in

elevation can lead to alterations in vegetation structure, such as

species diversity, tree density, basal area, and forest floor cover

(Pöpperl and Seidl, 2021). Future research should emphasize the

inclusion of vegetation metrics to better understand the intricate

relationships between vegetation characteristics and SOC

distribution in karst environments. This approach will lead to a

more comprehensive understanding of the mechanisms driving

SOC formation and distribution across different elevations.
5 Conclusions

To the best of our knowledge, this is the first study to report the

elevational patterns of SOC and its fractions in a tropical seasonal

rainforest in the karst peak-cluster depression region of

southwestern China. We found that the SOC content was highest

at 400 m asl, which was significantly higher than that at 200 m asl.

Overall, SOC content demonstrated an increasing trend with rising

elevation. Additionally, SOC content was significantly higher in the

topsoil compared to the subsoil. The ROC, EOC, and POC content

tended to increase while the WSOC content tended to decrease with

increasing elevation. SOC fractions (excluding WSOC) were

significantly higher in the topsoil than the subsoil. The

proportions of the different SOC fractions responded differently

to changes in elevation and soil depth, with ROC (54.27%), POC

(30.19%), and EOC (16.95%) acting as the main SOC fractions. As

the primary LOC fractions, POC and EOC effectively reflected the

activity of this soil carbon pool. SOC and its fractions were closely

related to various environmental variables at different elevations.

Notably, SOC and certain fractions were significantly positively

correlated with factors such as elevation, STN, and EMg but

significantly negatively correlated with factors such as SBD, STP,

and Litter P. Elevation, SBD, and Litter P contributed to variations

in SOC and its fractions. SOC was primarily influenced by the direct

impact of soil properties and significantly affected through the

indirect effect of elevation. ROC was mainly influenced by the

direct effects of soil properties and litter factors but also

substantially impacted by the indirect effects of elevation. In

addition, LOC was predominantly influenced by the direct impact

of soil properties. This suggests that when studying SOC and its

fractions, it is crucial to consider the direct effects of soil properties
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as well as the indirect impacts of factors such as elevation through

complex pathways.
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