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The agricultural use of synthetic pesticides, fertilizers, and growth regulators may

represent a serious public health and environmental problem worldwide. All this

has prompted the exploration of alternative chemical compounds, leading to

exploring the potential of chitosan and PGPB in agricultural systems as a potential

biotechnological solution to establish novel agricultural production practices

that not only result in fewer adverse impacts on health and the environment but

also improve the resilience and growth of the plants. In this work, an analysis of

the impact of plant growth-promoting bacteria (PGPB) and chitosan on plant

growth and protection has been conducted, emphasizing the crucial bioactivities

of the resistance of the plants to both biotic and abiotic stressors. These include

inducing phytohormone production, mobilization of insoluble soil nutrients,

biological nitrogen fixation, ethylene level regulation, controlling soil

phytopathogens, etc. Moreover, some relevant aspects of chitin and chitosan

are discussed, including their chemical structures, sources, and how their

physical properties are related to beneficial effects on agricultural applications

and mechanisms of action. The effects of PGPB and chitosan on photosynthesis,

germination, root development, and protection against plant diseases have been

compared, emphasizing the intriguing similarities and synergistic effects

observed in some of these aspects. Although currently there are limited studies

focused on the combined application of PGPB and chitosan, it would be

important to consider the similarities highlighted in this work, and those that

may emerge in future studies or through well-designed investigations, because

these could permit advancing towards a greater knowledge of these systems and

to obtain better formulations by combining these bioproducts, especially for use

in the new contexts of sustainable agriculture. Thus, it seems feasible to augur a

promising near future for these combinations, considering the wide range of

possibilities offered by chitinous biomaterials for the development of innovative

formulations, as well as allowing different application methods. Likewise, the
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studies related to the PGPB effects on plant growth appear to be expanding

due to ongoing research to test on plants the impacts of microorganisms

derived from different environments, whether known or recently discovered,

making it a very exciting field of research.
KEYWORDS

biostimulants, chitosan, induced resistance, plant growth-promoting bacteria,
stress 1
1 Introduction

Bacteria present in the soil can have beneficial, neutral, or

harmful effects on plants. Many rhizosphere bacteria have

additionally demonstrated distinctive abilities to promote plant

growth in environments that generate strong abiotic stresses, such

as arid or seasonally dry regions, whose soils usually experience

drought, salinity, or high temperatures (Khan et al., 2020). Likewise,

some bacteria can promote plant growth in other extreme

conditions, i.e., regions of high altitudes and low temperatures

(Kadıoglu et al., 2018). Plant-associated bacteria that have a

positive influence on the growth and development of plants are

collectively called plant growth-promoting bacteria (Khatoon et al.,

2022; Ajijah et al., 2023). They can promote plant growth directly,

playing an active role in nutrient solubilization (e.g., P, K, Fe, Ca,

and Mg) or atmospheric nitrogen fixation thus facilitating their

acquisition, or producing phytohormones able to stimulate plant

growth and development. In addition, they can act as biocontrol

agents antagonizing other microorganisms that affect plant health

and vigor. Among the responses they can generate are:

Mobilization of insoluble nutrients towards the rhizosphere

through the secretion of compounds such as the so-called

siderophores, which act as chelating agents for metals such as Fe

(e.g.), making them more available for plants (He et al., 2020). They

are produced especially by Gram-negative bacteria and can be

classified according to their iron-binding moieties: carboxylate,

catecholate, hydroxamate, and phenolate moieties). Siderophores

which are specific for Fe(III), by forming stable aqueous complexes

with it, display a similar or higher affinity for Mn(III) and other

transition metals like Zn2+ or Cu2+ (Li et al., 2020b). In contaminated

soils, siderophores can also chelate Cd2+ or other toxic metals like

Al3+, Co2+, Pb2+, etc., reducing their bioavailability for plants and

favoring their growth in these less favorable conditions (Guo et al.,

2020). Strikingly, a similar mode of action has also been observed for

materials with chelating activity such as chitosan (Heidari et al.,

2020), with metal chelation standing out as a proposed mechanism to

explain the protective role of chitosan favoring plant growth

(Chakraborty et al., 2020). Chitosan metal-binding capacity

increases at higher pH levels due to unprotonated amine groups,

facilitating interaction with and absorption of metal ions (Abdellatef

et al., 2022). On the other hand, the effects of chitosan as a chelating
02
agent on plant growth under stress conditions, such as in the case of

plants growing in soil contaminated by metals, are not easy to predict

and depend on many factors. A good example of this situation is

provided by the results obtained during the application of foliar

treatments with chitosan to sunflower plants growing in soils

“contaminated” separately with lead and cadmium (added as

cations in aqueous solution and in equivalent quantities). While

one of the treatments attenuates the effects of both cations on root

length to the same extent (73%), a similar treatment, using a higher

dose of chitosan, produces a lower attenuation of the effect of Pb

(31%) than for Pb (75%) (Cartaya-Rubio et al., 2023).

Nitrogen-fixing bacteria, forming symbiotic relationships with

agricultural plants and able to reduce atmospheric nitrogen (N2) to

ammonium in a reaction catalyzed by nitrogenase, belong to

various genera, including Azotobacter, Azospirillum, Bacillus,

Bradyrhizobium, Pseudomonas, and Rhizobium (Zaidi et al.,

2015). In rhizobia, flavonoid compounds released by legume roots

interact specifically with the transcriptional regulator NodD whose

activation triggers the expression of nodulation genes necessary for

synthesizing lipo-chitooligosaccharides known as Nod factors.

These latter, chitin-derivatives obtained by replacing the N-acetyl

groups with fatty acids at the reducing ends, act as plant-specific

bioactive molecules (Lerouge et al., 1990) signaling the

establishment of the symbiotic association with legumes (Long,

1996). It is also interesting that arbuscular mycorrhizal fungi use

these same types of molecules to initiate their symbiotic relationship

with plants (Limpens et al., 2015).

Induction of the production of phytohormones such as

gibberellins (GAs) and auxins, among which indole-acetic acid

(IAA) stands out. In some cases, such as with Pseudomonas

monteilii, it has been found that induction of IAA synthesis can

be increased when other materials are added, such as chitosan

nanoparticles (Panichikkal et al., 2022). The excessive application of

chitosan in the rhizosphere of Arabidopsis has been also observed to

cause stress in these plants, which is made evident by the arrest in

the root growth due to the accumulation of auxins, mainly IAA

(Lopez-Moya et al., 2019). Therefore, it is extremely important to

control the concentrations of chitosan used in agricultural practices

to inhibit the growth of plant pathogens, while simultaneously

favoring the proliferation of beneficial organisms without

compromising plant growth.
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Modulation of ethylene (C2H4), a gaseous phytohormone

playing a pivotal role in regulating several aspects of plant

development and physiology, such as seed germination, cell

expansion, leaf and petal abscission, fruit ripening and abscission,

organ senescence, and responses to environmental stresses (Iqbal

et al., 2017). Moreover, ethylene influences tissue differentiation,

root and shoot formation, and branching and root elongation

(Glick, 2014). Thus, during the establishment of symbiotic plant-

rhizobium or plant-mycorrhizal fungus relationships, a local

decrease in ethylene concentration may occur facilitating

symbiosis (Gamalero and Glick, 2015). On the other hand,

chitosan has also been shown to have a regulatory effect on the

production of ethylene in plants, in some stages of their agricultural

production (Czékus et al., 2021; Prusky and Romanazzi, 2023).

Thus, its application has a notable influence on the maturation of

some climacteric fruits, both in pre- and post-harvest treatments.

For instance, the ethylene concentration in banana (Musa

acuminata) fruits sharply increases at the onset of their

climacteric period, leading to a rapid ripening process with the

consequent decrease in fruit shelf life. However, the postharvest

application of chitosan as an edible coating on fruits allows them to

extend their shelf life and maintain their sensory quality (Lustriane

et al., 2018; Romanazzi and Moumni, 2022). Likewise, it has

recently been found that a similar treatment with chitosan 1.25%

w/v on banana fruits, with storage for 11 days, led to a distinctive

accumulation of the metabolite 1-aminocyclopropane-1-carboxylic

acid (ACC), the immediate precursor of ethylene, which is

responsible for the ripening process of climacteric fruit (Parijadi

et al., 2022).

Biological control of soil plant pathogens, competing with them

for space and nutrients, either by sequestering essential metals for

their development (Olanrewaju et al., 2017), or by releasing

substances toxic to them, which may include enzymatic proteins

such as chitinases (Velásquez et al., 2019; Liu et al., 2019a), or
Frontiers in Plant Science 03
antimicrobial peptides such as bacteriocins, i.e., turicin (Cesa-Luna

et al., 2020), or other antibiotics (Matilla and Krell, 2017). On the

other hand, one of the control mechanisms of phytopathogenic

microorganisms usually associated with chitosan has been precisely

the chelation of metals necessary for plant pathogens, especially

those associated with molecules present in the cell walls of bacteria

(Chandrasekaran et al., 2020).

Similarly, and as briefly outlined in the previous part, chitosan

and some of its related materials can also produce stimulating

effects on plant growth without compromising environmental

sustainability (Shahrajabian et al., 2021), including in many cases

a significant improvement in plant resilience under stress

conditions (Hidangmayum et al., 2019; Malerba and Cerana, 2020).

Thus, in general terms, it has been stated that both chitosan and

PGPB have adequate potential to enhance agricultural productivity

in many current stressed environments and in future more extreme

scenarios that are predicted due to climate change. In this work, a

review of different studies related to the effects of PGPB and

chitosan (usually applied independently) on plant growth is

carried out. It is intended to organize information that can help

to justify some similarities observed in the bioactivities of PGPB and

chitosan, which had gone unnoticed. Thus, the knowledge derived

from studies of this type can help develop strategies that use these

combined systems, which should be very useful in the new contexts

of sustainable agriculture, especially under stress conditions.
2 Chitosan and its beneficial effects
on plants

Chitosan is the main derivative of chitin, one of the more

abundant natural biopolymers. Chitin is present in a wide diversity

of organisms, including insects, crustaceans, mollusks, fishes, fungi,

algae, etc (Lárez-Velásquez, 2023), and its deacetylation process
FIGURE 1

Chemical structure of chitin and its usual deacetylation reactions to obtain chitosan, which is defined by a deacetylation degree (DD) ≥ 50%.
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yields chitosan (Figure 1). The beneficial effects of chitin and

chitosan on agricultural uses have been known for a long time

(Mitchell and Alexander, 1961; Nichols and Hadwiger, 1979). The

main modes of action of these biopolymers in agricultural

applications have been profusely reviewed (Velásquez et al., 2019;

Riseh et al., 2022; Boamah et al., 2023) and some attempts are being

made to organize the accumulated knowledge on the subject

(Velásquez et al., 2019; Shamshina et al., 2020). Figure 2

schematically shows the main proposed modes of action by which

chitinous materials promote beneficial effects in plants.

In general, there are three types of factors that affect the

bioactivity of chitosan: (a) those related to the chitosan molecules

themselves such as the source and method employed to obtain it,

the molecular weight (MW), the degree of deacetylation (DD), the

acetylation pattern (AP), the polyelectrolyte associated counterion,

the concentration, application method), (b) those associated with

the kind and development stage of the pathogenic organism

subjected to its action (bacteria, virus, fungi, insects) and (c)

those that have to do with the environment where the processes

are carried out (pH, temperature, ionic strength, presence of others

chemical substances or live organisms, etc.). A few examples of

proven agricultural applications, and the underlying mechanisms of

action, are the following:

Phytopathogen control: Chitosan biocidal activity against

phytopathogens has been amply proven and reviewed (Ke et al.,

2021; Riseh et al., 2022), with different mechanisms having been

proposed to explain its effects. Its applications have been studied to

control diseases caused by viruses, bacteria, fungi, insects, etc., and

its biocidal action has been found to depend largely on its cationic

polyelectrolyte properties (acid medium). The main mechanisms

proposed for its bioactivities concerning diseases caused by fungi
Frontiers in Plant Science 04
are the disruption or alteration of the fungal plasma membrane, the

alteration of gene expression, the inhibition of RNA and protein

synthesis, and the blocking of Ca2+ channel (Lárez-Velásquez and

Rojas-Avelizapa, 2020; Karamchandani et al., 2022). Chitosan

control of bacterial phytopathogens has also been profusely

proven (Badawy and Rabea, 2016; Khairy et al., 2022), with

reports indicating higher effectivity for Gram-negative than for

Gram-positive bacteria (Tarakanov et al., 2023).

Soil conditioning and bioremediation: Chitin is a recognized

amendment that, in addition to providing nitrogen, can help in

soil conditioning by freeing it from nematodes, either by

promoting the growth of chitinolytic microorganisms that feed

on their eggs or by killing them with the ammonia, or its

derivatives, released during its decomposition (Sharp, 2013). In

turn, metal chelation stands out as one of the proposed

mechanisms to explain the protective role of chitosan on plant

growth (Chakraborty et al., 2020), including phytoremediation

species (Shirkhani et al., 2021).

Biostimulation and preservation of seeds: chitosan-based

coatings have been applied to seed protection (Moumni et al.,

2023). This type of application is not limited only to taking

advantage of its fungicidal activity (Chookhongkha et al., 2013),

or its bioactivity as a germination elicitor (Khaptsev et al., 2021), but

can additionally serve as a vehicle for the controlled release of other

agrochemicals (Godıńez-Garrido et al., 2021), and, even though it

has been little used for preparation of synthetic seeds (Kulus, 2019),

seems to have the necessary potential for it.

Inducer of resistance to diseases caused by phytopathogens:

chitosan is a recognized elicitor of the acquired resistance system of

plants (Singh et al., 2018) through a phenomenon known as defense

priming. Studies on these topics include the induction of
FIGURE 2

The main modes of action associated with the protection and plant growth provided by chitinous materials.
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suberization during the wound healing process in potato tubers (Liu

et al., 2019b), the production of secondary metabolites, including

phytoalexins (Eilenberg et al., 2010), lignin (Ali et al., 2014),

phenolic compounds (Acemi et al., 2021), among others. These

activities have been reported to be controlled by MW and DD of the

applied chitosan (Hua et al., 2019).

Growth biostimulant: chitosan has been extensively explored in

agriculture as a potent bio-stimulant, with many successful applications

(Shahrajabian et al., 2021). Thus, its effect on the development of the

root system under water deficiency is noticeable (Almeida et al., 2020).

Likewise, chitosan remarkably promotes the production of secondary

metabolites in plants, i.e., the menthol production in mint crops

(Goudarzian et al., 2020). Other successful applications include the

foliar treatment of tomato crops under salt stress, using solutions

prepared with citric or ascorbic acid, which increases the production of

some metabolites and osmolytes, thus helping to reactivate their

developments (Attia et al., 2021).

Postharvest protection: chitosan applications can simultaneously

fulfill diverse functions such as antimicrobial agent, elicitor, physical

isolation (given its ability to form semi-permeable films) (Romanazzi

et al., 2018). Likewise, chitosan mixtures with other natural products

have successfully been studied seeking synergistic effects and reducing

the use of synthetic substances, i.e., chitosan/Aloe vera gels to delay

the post-harvest decay of mango fruits (Shah and Hashmi, 2020) and

chitosan/carnauba wax/oregano oil to protect cucumber (Gutiérrez-

Pacheco et al., 2020).

Finally, to close this brief section on chitinous materials and

their main agricultural uses, it is necessary to mention their

oligomeric derivatives, better known as "chitooligosaccharides"

(COS). These materials have attracted attention in recent years

due to the development of new methods to prepare some of them

with controlled chemical structures (Sreekumar et al., 2022), which

has opened the door, with great expectations, for the understanding

of which structures induce specific bioprocesses in pathogens and
Frontiers in Plant Science 05
plants, as well as in other areas such as medicine, i.e., for the

treatment of cancer (Sun et al., 2024).
3 PGPBs and chitosan to promote
plant growth under stress conditions

Some PGPBs generate more specific responses than those

mentioned in the previous section, i.e., the production of exo-

polysaccharides and/or compatible osmolytes such as sugars

(threose), amino acids (proline), betaines, etc., to preserve cellular

osmotic balance (Selim et al., 2019). Usually, these PGPBs are

known for their capacity to enhance plant tolerance to various types

of common abiotic stresses. Likewise, chitosan has shown positive

effects on the growth of plants under stress conditions, and its

beneficial effects have been reported to alleviate saline stress when

used as part of nanomodified biomaterial systems (Balusamy et al.,

2022). Similarly, osmo-protection effects have been reported during

chitosan foliar treatment of Puccinellia distans, a grass that usually

grows in high salinity conditions. These positive effects were more

noticeable under drastic saline conditions (Oddo et al., 2019). Some

comparisons of the effects of chitosan and PGPB on processes

associated with promoting plant growth are shown in Figure 3.
3.1 Photosynthesis

Under stress conditions, the plant photosynthetic process can be

severely affected by secondary osmotic and oxidative stress, decreasing

transpiration and gas exchanges, and damaging membranes and cell

organelles, altering the electron transport process and further

generating reactive oxygen species (Hasanuzzaman et al., 2021).

Thus, in drought conditions, plants experience a decrease in their

chlorophyll content (Ghotbi-Ravandi et al., 2014), among other factors;
FIGURE 3

Plant growth promotion processes reinforced by (A) PGPBs and (B) chitosan.
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this triggers an upregulation mechanism to synthesize chlorophyll in

greater quantities as a usual strategy of plants to increase their tolerance

to drought while reduces the amount of recent photosynthates

exported to other organs (Fang and Xiong, 2015). This, in turn,

causes changes in the plant organ's metabolic profile, as evidenced in

various studies. In this sense, Tripathi et al. (2016) have identified up to

163 metabolites changing their abundance in the roots of plants

subjected to water stress after removal from a hydroponic system.

From the foregoing, it can be inferred that a diversity of compounds

participates in processes such as the maintenance of photosynthesis

and cell osmolarity, the slowing down of leaf senescence, and the

promotion of root growth, which allow the plants to survive under

stress conditions. Moreover, the different allocation of photosynthates,

along with the need for osmoregulation, leads to a re-modulation of

metabolic pathways. Among the new compounds synthesized and

accumulated, sugars, polyols, amino acids, alkaloids, ions, etc., can be

mentioned, which are usually produced by upregulated processes

(Naylor and Coleman-Derr, 2018). Likewise, an increase in the

synthesis of polymers in the cell walls is also generated, which helps

to strengthen them and maintain cell turgor (Le Gall et al., 2015).

Accordingly, some transcriptomic studies have identified numerous

cell wall modifier genes, including some related to xylotransferases

involved in the biosynthesis of xyloglucans, which appear upregulated

in plants under stress (Tenhaken, 2015). Other biopolymers such as

expansin, pectin, lignin, and suberin have also been reported to be

upregulated under such conditions (Naylor and Coleman-Derr, 2018).

Some authors have reported the beneficial effect of PGPB on

photosynthesis, mainly due to the stimulation of chlorophyll

production and photosynthetic efficiency in plants (Erman et al.,

2022; Katsenios et al., 2022). In addition, PGPBs produce

siderophores that facilitate the capture of metal micronutrients,

such as iron (Fe3+) and phosphorus (P) (Souza et al., 2015),

essentials for the photosynthesis process (Schmidt et al., 2020;

Kayoumu et al., 2023) (Figure 3A).

Regarding the chitosan effects on photosynthesis, it has been

proposed that this biopolymer and its oligosaccharides improve

photosynthesis by increasing the activities of various enzymes

related to carbon and nitrogen metabolism, as well as the light-

dependent and -independent photosynthetic reactions (Ahmed

et al., 2020) (Figure 3B). Likewise, it has been reported that chitin

and chitosan hexamers promote a higher rate of photosynthetic

reactions (Li et al., 2020a). In the case of the Fabaceae known as

fenugreek (Trigonella foenumgraecum), pretreatment of the seeds

with chitosan mitigates the effect of salt stress during plant growth,

as it was determined by assessment of the relative water content and

photosynthetic pigments (Mosapour-Yahyaabadi et al., 2016).

Nevertheless, some contradictory results have also been reported

regarding the effects of chitosan on photosynthesis, which could be

attributed to some factors such as the method and timing of

treatment application (Hidangmayum et al., 2019), which are

critical in agricultural applications of this material. Likewise, it is

also important to consider the characteristics of each applied

chitosan because these can exert a notable influence on the results

obtained. As previously indicated, appreciable differences in

bioactivities may be observed in chitosan of a “similar”

composition (Lárez-Velásquez and Rojas-Avelizapa, 2020).
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Further promising posit ive effects of chitosan on

photosynthesis in plants under abiotic stresses include the

induction of resistance to conditions of water deficit, as

evidenced by the increase in photosynthetic rate and harvest

yield in maize plants foliar sprayed with N-succinyl chitosan

and N,O-dicarboxy-methylated chitosan, or their combination

(Rabêlo et al., 2019). Chitosan has also been used as a carrier for

the controlled release of biostimulants to induce plant resistance

to different stresses. One such application is the formulation

of chitosan-selenium nanoparticles and their application to

mitigate cadmium stress in Balsam of Moldavia (Dracocephalum

moldavica) plants. After treatment, an increase in photosynthetic

pigments, among other parameters studied, was observed (Azimi

et al., 2021). This study showed, additionally, that even when the

application of chitosan alone does not produce beneficial effects, a

synergistic effect occurs when the two components are used

together in the form of nanoparticles. In addition, chitosan

alleviates water stress in plants by inducing the production of

secondary metabolites, such as g-aminobutyric acid (GABA)

(Geng et al., 2020), a key factor for osmotic adjustment and

antioxidant response in plants subjected to abiotic stresses

(Carillo, 2018). GABA synthesis, catalyzed by glutamate

decarboxylase (GAD), consumes protons, buffering acidosis and

regulating cytoplasmic pH under stress conditions. It acts as a

ROS scavenger, playing a crucial role in protecting and stabilizing

macromolecules, proteins, and membranes. Moreover, upon relief

from stress conditions, it exerts an anaplerotic function via the

GABA shunt, being converted into Krebs cycle intermediates, thus

enhancing the production of NADH and ATP (Ciriello

et al., 2024).
3.2 Germination

Seed pretreatment with PGPB can promote germination and

seedling development in seedbeds (Widawati and Suliasih, 2018; Raja

et al., 2019; Rozier et al., 2019). It is known that phytohormones, such

as abscisic acid, IAA, GAs, ethylene, cytokinins, brassinosteroids, etc.,

produced by plants or PGPBs, significantly affect the germination

process either positively or negatively. They interact synergistically thus

exerting their effects, i.e., some plant genes are necessary for the activity

of a phytohormone, while other genes are activated by phytohormones.

Since PGPBs play an important role in the production of

phytohormones (Bákonyi et al., 2013), they can be used as effective

treatments to promote germination and, therefore, crop production

(Miransari and Smith, 2014) (Figure 3A). Similarly, the positive effects

of chitosan on seed germination have been known for decades (Jiang

et al., 1994) and have been extensively documented in recent times

(Divya et al., 2019; Li et al., 2019; Godıńez-Garrido et al., 2022),

including reports with positive results for germination under stress

conditions (Odat et al., 2021). Despite this, contrasting findings have

also emerged in recent studies, depending on the degree of acetylation

and the concentration of chitosan used (Gün Polat et al., 2022).

Likewise, it has been found that chitosan can favor some parameters

related to rate and time of germination (Figure 3B) and has no positive

effects on others (percentage of germination), as observed, for example,
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during the germination of maize seeds under controlled low-

temperature stress conditions (Guan et al., 2009).
3.3 Effects on the roots

Some PGPBs can significantly affect the growth and root

architecture of plants under drought stress, improving the plant's

ability to uptake water and nutrients, as also observed in plants

treated with bio-products such as chitosan (Hidangmayum et al.,

2019) (Figures 3A, B). For PGPB, the improvement of the root system

could be related to the bacterial production of phytohormones, as

reported for some species of bacteria producing IAA in green soybean

or mung bean crops (Chandra et al., 2018). However, it is also

important to consider the possible effect of other naturally occurring

factors, i.e. chitin oligosaccharide present in the soil, able to act as bio-

stimulants and exert a positive effect on root development (Winkler

et al., 2017). Similarly, various studies have reported the positive

effects of PGPBs on enhancing plant growth under conditions of

metal stress that are usually found in contaminated soils, which

usually affect the root system (Figures 3A, B). Some of these studies

are summarized in Table 1.

Although studies on the effect of chitosan on root growth have

yielded contradictory results, some showing a decrease in root growth

in crops of plants with adventitious roots (Baque et al., 2012), and

opposite results in plants inoculated with the nematode Meloidogyne

incognita (Khalil and Badawy, 2012). In other studies, it has been

proposed that the effect of chitosan on root growth is dependent on the

mode of application (dose, frequency, formulation, etc.). Indeed,

chitosan represents a useful experimental tool to manipulate root
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development, among other parameters associated with plant growth

(Lopez-Moya et al., 2017). Results from other investigations

corroborate this proposition. Studies on Prunus davidiana seedlings

evidenced that root growth was proportional to the concentration of

carboxymethyl chitosan added up to a concentration of 2 g/L, whereas

root growth decreased at higher values (Xu et al., 2020). Furthermore,

in studies with corn seedlings exposed to cadmium stress, chitosan

treatment significantly increased the growth rate of the root system and

compensated for its functional impairments (Qu et al., 2019). Table 1

also summarizes several observations from studies on the efficacy of

chitosan in relieving metal stress usually found in contaminated

agricultural soils.
3.4 Protection against diseases

Among the biotic factors that produce the greatest stress in the

plants, fungal diseases pose a significant threat due to the significant

losses that they can cause in the yield of the crops, in addition to the

potentially toxic compounds produced during their infection (Adeyeye,

2016). A recent study with isolates of endophytic bacteria (Bacillus

velezensis and Pseudomonas putida) demonstrated their significant

ability to inhibit the growth of Magnaporthe oryzae (Do, 2022), a

phytopathogenic fungus responsible for the blast infection in rice, an

essential crop for human food security. The positive effects of some

PGPBs, such as Bacillus subtilis, have also been reported on plants

facing biotic stress caused by other plant pathogens such as Fusarium

oxysporum and Rosellinia necatrix (Hashem et al., 2019). Bacillus

subtilis can generate biofilms on plant roots, and chitosan has

excellent filmogenic properties, creating barriers against some plant
TABLE 1 Some studies on plants using chitosan and PGPBs for the relief of stress caused by metals.

Metal Observations

Chitosan PGPBs

Cd Foliar spraying with chitosan has a high potential in reducing the damage of Cd
stress. Chitosan with a molecular weight of 1 kDa exhibited the highest efficacy in
mitigating Cd toxicity in wheat seedlings (Liu et al., 2021).

Compared to the Cd-control, witchgrass plants under Cd stress showed
increased biomass and IAA production with reduced Cd accumulation
when they were inoculated with PGPB (Begum et al., 2019).

Co Amending soil impacted with wastewater using chitosan and foliar melatonin
treatment highly reduced heavy metal distribution in plant parts, including Co,
while improved plant photosynthetic efficiency, growth, yield, and grain
nutritional quality (Dradrach et al., 2022).

An unclassified haloarchaeal species strain NRS-31 (OL912833),
belonging to Haloferax genus*, was isolated, identified for the first time,
and applied to mitigate the Co phytotoxic effects on maize plants (Selim
et al., 2022).

Mn The inoculation of Bacillus cereus and Bacillus thuringiensis increased the
absorption of Mn by Broussonetia papyrifera and the concentration of
Mn in their aerial parts, showing that the two strains could promote its
growth (Huang et al., 2020).

Ni Chitosan can remarkably alleviate the adverse effects of Ni toxicity in Calendula
tripterocarpa by lowering the bioavailability of Ni in soils (Heidari et al., 2020).

The Ni toxicity-ameliorating and growth-promoting abilities of Bacillus
megaterium and Paenibacillus nicotianae isolates were demonstrated
when applied to wheat (Triticum aestivum) plants under Ni stress
conditions (Pishchik et al., 2021).

V Application of radiation-degraded chitosan mitigated damages in seedlings of
wheat, barley, and rice under vanadium stress (Tham et al., 2001).

Endophytes extracted from Eriocephalus africanus roots enabled a high
tolerance of Brassica napus for vanadium (Mia, 2017).

Zn Treatments with irradiated chitosan suppressed Zn transport from root to shoot
and reduced Zn-induced damage in barley (Hordeum vulgare) plants (Nagasawa
et al., 2001).

Co-inoculation with Sinorhizobium meliloti and Agrobacterium
tumefaciens enhances metal phytoextraction increasing Medicago lupulina
growth under Cu and Zn stress (Jian et al., 2019).
*Although this haloarchaea is not a PGPB, it stands as an example of other microorganisms that can be used to promote plant growth by alleviating biotic or abiotic stress.
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pathogens (de Oliveira and de Oliveira Junior, 2020) (Figure 3A).

Additionally, some positive results from PGPB studies have been

reported regarding the control of weeds associated with crops such

as wheat (Abbas et al., 2017; Mustafa et al., 2019).

Similarly, the fungicidal activity of chitosan has been studied for a

long time (Allan and Hadwiger, 1979; Romanazzi et al., 2018). In a

study comparing the effects of separate treatments with PGPBs and

chitosan on the inhibition of the growth of the pathogen responsible for

root rot in tomatoes, under similar growth conditions, high molecular

weight chitosan was more effective (El-Mohamedy et al., 2013).

Unfortunately, combinations of both treatments were not tested in

this study. Furthermore, the antiviral and nematocidal activities of

chitosan have also been widely recognized (Abd El-Aziz and

Khalil, 2020).
3.5 Synergistic effects

At this point, it is important to consider that studies based on

combined treatments of chitosan and PGPB have been scarce.

However, the few studies carried out have found significant

synergistic effects between PGPB and chitosan. These studies have

shown that the combination of both not only improves disease

resistance but also nutrient absorption and plant growth, as well as

resistance to different stress conditions. This combined approach

seems to take advantage of the individual properties of both agents to

offer greater benefits than those achieved when used individually,

offering, in this sense, an effective alternative to the chemicals usually

used in current agriculture. Some systems that have shown synergistic

effects for chitosan and PGPB are discussed below.

3.5.1 Improved disease resistance
A PGPB consortium, formed by Azotobacter vinelandii and

Bacillus megaterium adsorbed on chitosan nanoparticles (PGPB/

npChitosan), alleviates the Fusarium oxysporum infection damage

in Solanum lycopersicum (tomato) and Citrullus lanatus

(watermelon) plants (Pavlicevic et al., 2023), which has been

attributed to the PGPB/npChitosan stimulating increased

expression of stress-related genes and the activity of antioxidative

enzymes in both plants, compared to treatments with PGPB-free or

only npChitosan. Additionally, the observed synergy in this system

could be also promoted by the following contributions: (a) PGPBs

can directly inhibit pathogens through the production of

antimicrobial metabolites and antibiotics (Ngalimat et al., 2021),

i.e., Azotobacter species usually produce antibiotics with a structure

like anisomycin, a well-known fungicidal agent (Sumbul et al.,

2020), as well as other metabolites exhibiting antifungal activity

(Chetverikov and Loginov, 2009); in addition, Bacillus megaterium

is recognized as an antibacterial and antifungal antibiotic producing

PGPB (Xie et al., 2021); (b) chitosan reduces the severity of the

infection caused by Fusarium oxysporum by negatively regulating

the expression of at least 62 genes in this pathogen, many of which

are involved in processes such as plant cell wall degradation,

protein, and DNA biosynthesis, as well as some transport of

proteins, has also been reported (Elagamey et al., 2022); in

addition, it, acting as a bioinoculant carrier, contributes to greater
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long-term survival of PGPB, enhancing their competition. In fact, it

has been documented that chitosan macro beads supported the

bacteria survival for over a year, demonstrating its potential as a

material for the development of supporting biofertilizers (Perez

et al., 2018; Fernández et al., 2022).

Likewise, PGPB-chitosan treatments have also been evaluated

in the clubroot disease, caused by the obligate protist

Plasmodiophora brassicae Woronin (Kang et al., 2024). Although

the bacteria Paenibacillus polymyxa ZF129 is known to be effective

in controlling clubroot disease, it has limited stability in the soil;

interestingly, when P. polymyxa ZF129 cells were immobilized in

chitosan/carrageenan macro-beads (Chit/Carrg, ratio 1/1) a greater

survival rate was observed and the control efficiency of ZF129

against clubroot disease improved markedly, with the disease index

decreasing from ~94 to ~22, corresponding to a control efficacy

around 76. Also, the control index of disease control, which was

significantly higher than treatment with ZF129 culture alone (59.76

± 4.43 %), showed that macro-beads improved the control efficiency

of ZF129 culture on clubroot by 16.57 %. Thus, the primary

contribution of Chit/Carrg is the protection of the bacterial

inoculum from adverse soil conditions and native microflora,

facilitating its successful establishment in the rhizosphere and

ensuring its effectiveness for a longer period.

Similarly, the encapsulation of Bacillus licheniformis in alginate-

chitosan nanoparticles supplemented with rice starch had greater

antifungal activity against the Sclerotium rolfsii infection of

Capsicum annuum (chili) plants (Panichikkal et al., 2022). These

findings demonstrate that the encapsulates of PGPB bacteria with

bioactive polymers such as chitosan are phytopathogen biocontrol

systems with promising opportunities in current agriculture.

3.5.2 Optimized nutrient uptake
The combined impact of PGPB and chitosan on nutrient uptake

by Zea mays L. (corn) has been investigated by Agbodjato et al.

(2016). This study unveiled that the Azospirillum lipoferum-

Pseudomonas fluorescens-Pseudomonas putida-chitosan

combination increases the nitrogen and potassium content in the

aerial biomass of maize plants, compared to the control and

treatment involving only A. lipoferum and P. fluorescens. Notably,

the nitrogen content in the aerial part of the plants increased up to

41.61% compared to the control, after the soil inoculation with the

combination of the three bacteria and chitosan. Furthermore, this

treatment also induced an increase in potassium content of 6.34%

and 27.16% in the aerial and underground parts of the maize plant,

respectively. In summary, this combination of PGPB-chitosan has

shown promising results in enhancing the mineral nutrition of maize

plants, particularly in nitrogen and potassium uptake, which could be

related to the ability of PGPB to fix nitrogen, solubilize phosphate,

and enhance the availability of other mineral nutrients, thereby

making them more accessible and substantially promoting the

plant growth and yield (Hasan et al., 2024). On the other hand,

chitosan can contribute to soil structure improvement. Particularly,

studies using chitosan with lower MW and higher DD demonstrated

to reduce porosity, increase mechanical stability, and enhance the

wettability of soils; these effects, linked to the creation of electrostatic

bonds and/or adhesive bonds between positively charged chitosan
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particles and negatively charged soil components, results in

heightened mechanical stability and water retention, thereby aiding

in the retention and availability of nutrients (Adamczuk and

Jozefaciuk, 2022). Alternatively, chitosan and these bacteria could

facilitate, independent or combined, nutrient uptake by chelating

certain minerals, such as Cu and Mn (Verma and Quraishi, 2021),

essential for nutrition from plants (White and Brown et al., 2010).

3.5.3 Alleviating stress
In plants, salt stress induces a variety of physiological and

metabolic alterations. Some processes, such as germination,

photosynthesis, and growth are significantly affected (Hasanuzzaman

and Fujita, 2022). The synergy between chitosan and PGPR

significantly enhances plant resistance to salt stress. In a study where

chitosan-immobilized Methylobacterium oryzae CBMB20 was

employed as a bioinoculant to improve Solanum lycopersicum plant

growth, under salt stress, an effective increasing in the plant dry weight

was observed. The oxidative stress induced by salinity was also

alleviated by up regulating the activities of antioxidant enzymes.

Additionally, the accumulation of osmolytes such as proline was

observed, along with a reduction in the excess of some Na+ influx

into plant cells under these stress conditions, compared to both the

control group and treatments involving only M. oryzae CBMB20 (in

free form) and only chitosan (Chanratana et al., 2019). These effects

could be explained by some of the mechanisms proposed for the relief

of salt stress in plants by PGPB and chitosan (Kumar et al., 2020;

Alenazi et al., 2024). Thus, chitosan can improve the resistance of

different crops to diverse abiotic stresses by modulation of signaling

pathways, i.e., the application of nano chitosan in certain crops leads to

an increase in antioxidative metabolism, resulting in elevated activities

of the antioxidant enzymes such catalase, superoxide dismutase,

peroxidase and glutathione, reductase (Quitadamo et al., 2021;

Alenazi et al., 2024); in addition, chitosan influences the expression

of several genes, including mitogen-activated protein kinases,

geissoschizine synthase, and octadecanoid-derivative responsive AP2-

domain genes, which play relevant roles in salt stress response and

alkaloid accumulation (Hassan et al., 2021). Furthermore, inhibition of
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pathways such as lipid peroxidation has been proposed as amechanism

by which chitosan alleviates salt stress (Peykani and Sepehr, 2018).

On the other hand, a treatment using Bacillus thuringiensis (seed

treatment) and chitosan (foliar application) on sweet pepper plant

grown under different salinity regimes led to improve some growth

factors such as chlorophyll content, chlorophyll fluorescence

parameter, fruit yield, and to reduce lipid peroxidation and

electrolyte leakage in stressed plants; similarly, the proline

accumulation and enzyme activity was regulated as well as increased

the number of fruit plant, fruit fresh weight plant, and total fruit yield of

sweet pepper grown under saline conditions (ALKahtani et al., 2020).

3.5.4 Stimulation of root growth
The combined application of PGPR and chitosan has been

evaluated in some studies (Mukta et al., 2017; Ortega-Garcıá et al.,

2021). For instance, studies involving plants of Asparagus officinalis

L., bio-fertilized with a combination of the halobacteria-PGPB

Bacillus amyloliquefaciens and chitosan, showed a remarkable

increase in the size and weight of the roby approximately 69% and

25%, respectively, compared to non-treated control and individual

treatments of B. amyloliquefaciens and chitosan This demonstrates

that the synergy between B. amyloliquefaciens and chitosan positively

influenced vegetative development. Part of these outcomes are

attributed to the capability of B. amyloliquefaciens to produce

growth-promoting substances (Ortega-Garcı ́a et al., 2021),

particularly hormones such as gibberellic acid, auxin, and IAA, as

well as volatile organic compounds like 2,3-butanediol and acetoin,

associated whit the modulation of some processes such as cell division

and expansion, as well as promoting lateral root development (Chen

et al., 2007; Luo et al., 2022). In turn, chitosan, also induces an

augmentation in the length of the primary root, along with increases

in fresh weight and dry weight of the root, and, additionally, it has

been reported to regulate the root architecture system by increasing

the diameter of the root tip and root forks (Jiao et al., 2024). These

structural changes imply that chitosan accelerates the development of

the root system, thereby improving the absorption rate and transport

capacity of water and nutrients necessary to sustain normal plant
FIGURE 4

Trends over 10 years for the number of annual papers found in the database “Google Scholar” when “chitosan abiotic stress” and “PGPB PGPR
abiotic stress” were used as search words (updated 22 April 2024).
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growth. It is also important to note that chitosan can induce the

production of some hormones as IAA and GA in the roots.

Moreover, the induced accumulation of IAA may modulate the

expression of other genes involved in tryptophan biosynthesis

(Mukarram et al., 2023), an amino acid known to promote the

development of adventitious roots (Bergonci and Paponov, 2022).

Thus, taking everything together, it seems clear that PGPB and

chitosan act synergistically to promote the development of a more

extensive root system, which is also more efficient in the absorption

of nutrients, thus facilitating plant growth.
4 Trends in the use of PGPBs and
chitosan to increase plant growth and
tolerance to diverse types of stress

There is currently a strong trend toward the study of biostimulants

to promote plant growth, which includes PGPBs and chitosan due to

their potential to enhance plant growth under biotic and abiotic stress

conditions. Figure 4 depicts this pattern for the last ten years, showing

a significant increase in the number of annual papers retrieved from

the Google Scholar database when “chitosan abiotic stress” and “PGPB

PGPR abiotic stress” were used as search words. Due to the potential

of both to improve the resistance of plants growing under stress

conditions, their interactions to improve the response of plants to such

conditions researchers have begun to attract attention (Riseh et al.,

2021). Furthermore, there is interest in designing green systems for the

encapsulation of microbial inoculants using chitosan and other

polysaccharide matrices (Perez et al., 2018; Vassilev et al., 2020).

On the other hand, although there are only a few reported

studies on the combined applications of PGPB and chitosan as plant

growth promoters, their positive results permit to augur a

promising near future for these combinations. In this regard, the

wide range of possibilities that chitinous biomaterials offer for the

development of innovative formulations (in addition to allowing

different application methods) as well as the growing expansion of

studies related to the impacts on plants of microorganisms obtained

from various environments, known, or recently discovered, make

this a very exciting field of research.
5 Concluding remarks

The above considerations allow infer that the combined

treatments of chitosan with PGPBs, and other microorganisms, may

enable new strategies to promote plant growth, especially since there is

a wide range of possibilities for such combinations, encompassing

chitin and chitosan, and including many of its derivatives, as well as

different PGPBs. For the application of chitin and chitosan, variations

of their traditional parameters could be considered, such as their

origin, methods of preparation and chemical modification, molecular

weights, degrees of acetylation or substitution, distribution of the N-

acetyl groups along chain length, acids used for its dissolution,

application methods (powder, solutions, spray, hydrogels,

encapsulation matrix for microorganisms, etc.). Its triple activity as
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an antimicrobial agent, elicitor and film former should also be

considered because it guarantees a good initial level of effectiveness.

Regarding PGPBs, the studies related to its effects on plant

growth seem to be expanding, especially due to ongoing research to

test on plants the impacts of microorganisms derived from different

environments, whether known or recently discovered. Importantly,

some studies have also shown that PGPB populations can also be

significantly reduced in soils under adverse conditions, prompting

new strategies to protect them. Among these strategies, the

encapsulation of PGPBs using biomaterials enabling them to retain

their viability and stability during the production, storage, and

application processes in agricultural settings, has emerged as one of

the most efficient approaches to protect PGPBs after inoculation into

the soil. In this context, the encapsulation of microorganisms useful

in agricultural applications, i.e., by using polysaccharides such as

chitosan and its derivatives (Rojas-Pirela et al., 2021; Meyer-Déru

et al., 2022), emerges as one of the most active areas of research in the

foreseeable future, given the importance of the topic and, especially,

because its role could be crucial for food production in extreme

conditions, a scenario with increasing possibilities shortly according

to the projections associated with climate change.
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