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Introduction: Zanthoxylum bungeanum Maxim is an economically significant

crop in Asia, but large-scale cultivation is often threatened by frequent diseases,

leading to significant yield declines. Deep learning-based methods for crop

disease recognition have emerged as a vital research area in agriculture.

Methods: This paper presents a novel model, LT-DeepLab, for the semantic

segmentation of leaf spot (folium macula), rust, frost damage (gelu damnum),

and diseased leaves and trunks in complex field environments. The proposed

model enhances DeepLabV3+ with an innovative Fission Depth Separable with

CRCC Atrous Spatial Pyramid Pooling module, which reduces the structural

parameters of Atrous Spatial Pyramid Pooling module and improves cross-scale

extraction capability. Incorporating Criss-Cross Attention with the Convolutional

Block Attention Module provides a complementary boost to channel feature

extraction. Additionally, deformable convolution enhances low-dimensional

features, and a Fully Convolutional Network auxiliary header is integrated to

optimize the network and enhance model accuracy without increasing

parameter count.

Results: LT-DeepLab improves the mean Intersection over Union (mIoU) by

3.59%, themean Pixel Accuracy (mPA) by 2.16%, and theOverall Accuracy (OA) by

0.94% compared to the baseline DeepLabV3+. It also reduces computational

demands by 11.11% and decreases the parameter count by 16.82%.
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Discussion: These results indicate that LT-DeepLab demonstrates excellent

disease segmentation capabilities in complex field environments while

maintaining high computational efficiency, offering a promising solution for

improving crop disease management efficiency.
KEYWORDS
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1 Introduction

Zanthoxylum bungeanumMaxim, a woody plant in the Rutaceae

family, is widely distributed across Asia. It serves as a significant

economic resource, offering valuable seasoning, spice, and woody

oilseed derivatives from its branches, leaves, and fruits. These parts

also possess high nutritional and medicinal values (Lu et al., 2022).

Under large-scale cultivation, the plant frequently suffers from

diseases, particularly in its branches and leaves, significantly

impacting yield. Early disease detection is crucial for preventing

substantial economic losses in agriculture (Savary et al., 2019).

Consequently, rapid and accurate monitoring and analysis of leaf

and trunk diseases in Zanthoxylum bungeanumMaxim are essential.

Traditional disease identification methods, which predominantly rely

on subjective manual visual observation, are labor-intensive, slow,

and prone to misclassification (Cruz et al., 2019).

In terms of traditional segmentation techniques, threshold-

based methods are prevalent. Gao and Lin (2019) enhanced and

extracted leaf veins to segment medicinal plant leaves using direct

processing of RGB images and OTSU methods. Barbedo (2016)

developed a semi-automatic algorithm for segmenting plant leaf

disease symptoms by manipulating the histograms of the H-channel

in HSV and the a-channel in Lab color space. Clustering-based

approaches are also utilized; for instance, Shedthi et al. (2023)

designed a plant disease recognition system using hybrid clustering

algorithms to improve upon the local optimization limitations of

the k-means algorithm. Javidan et al. (2023) employed new image

processing algorithms and multi-class support vector machines for

diagnosing and classifying grapevine leaf diseases, achieving up to

98.97% accuracy with PCA and GLCM feature selection.

Additionally, there are region-based methods: Ma et al. (2017)

proposed a segmentation method for vegetable leaf lesions using

color information and region-growing techniques. They composed

a comprehensive color feature using the red index, the H

component in HSV color space, and the b component in Lab

color space. Based on this feature, an interactive region-growing

method was used to segment leaf lesions against a complex

background. Li et al. (2018) developed a single-leaf segmentation

method for indoor ornamental plant leaves using over-

segmentation with small planes and region growing with small

planes in a dense plant point cloud, achieving an average precision
02
and recall rate exceeding 90%. These methods, while less

computationally demanding and straightforward, often lack

robustness in complex backgrounds due to subtle gray-scale

variations and small diseased spot sizes on leaves.

With the continuous advancements in computer vision, high-

performance models have been increasingly utilized for image

classification, detection, and recognition tasks (Attri et al., 2023).

There are currently three principal approaches for analyzing plant

diseases using deep learning: image-based classification, bounding

box-based object detection, and semantic segmentation based on

pixel classification. Nahiduzzaman et al. (2023) developed a

lightweight deep separable CNN model, PDS-CNN, achieving

accuracies of 95.05% in triple classification and 96.06% in binary

classification with a compact model size of 6.3M. Pal and Kumar

(2023) combined traditional INC-VGGN and Kohonen-based

networks for plant disease detection and severity classification.

Thai et al. (2023) introduced FormerLeaf for cassava leaf disease

detection, employing the Least Important Attention Pruning

(LelAP) algorithm to enhance Transformer models by reducing

model size by 28% and improving accuracy by approximately 3%.

Additionally, they utilized the sparse matrix multiplication method

(SPMM) to decrease the model’s complexity, reducing training time

by 10%. Liu et al. (2024) proposed Fusion Transformer YOLO, a

real-time and lightweight detection model that integrates VoVNet

into the backbone to enhance accuracy and incorporates an

improved dual-stream PAN+FPN structure in the neck, achieving

an average model accuracy of 90.67%. Jodas et al. (2021) merged

deep residual blocks with UNet for semantic segmentation,

achieving an IoU of 81.47% by refining the segmentation region

to exclude irrelevant binary areas. Zhang et al. (2023) improved the

sensory field in a grapevine leaf disease segmentation model by

inverting the residual convolution and replacing the downsampling

operation with reversible attention, increasing IoU performance by

4.04% over the baseline model. Compared to traditional methods,

semantic segmentation offers more practical and complex

functionalities, making it highly suitable for precision agriculture

applications (Deng et al., 2023).

Unlike previous studies, our task requires cross-scale

segmentation due to varying sizes of diseased trunks and frost-

damaged parts, which differ from the smaller diseased leaves and

spots. The ASPP structure of Deeplabv3+ is particularly apt for
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cross-scale feature extraction due to its varied receptive fields,

making it an ideal baseline for our study on Zanthoxylum

bungeanum Maxim trunk and leaf disease segmentation. In our

experiments, we identified two main challenges: (1) significant loss

of target edge information in complex backgrounds, leading to poor

segmentation under varied environmental conditions and blurred

target boundaries, and (2) the difficulty in detecting and segmenting

small disease spots on leaves due to their irregular size and presence.

To address the issue of complex backgrounds, Wang et al.

(2021) fused DeepLabV3 and UNet in a two-stage model for

cucumber leaf lesion segmentation, initially segmenting leaves in

complex backgrounds with DeepLabV3 followed by lesion

segmentation with UNet. Mzoughi and Yahiaoui (2023)

segmented diseases based on local disease signature features,

reducing the impact of common backgrounds. To mitigate

computational costs, this paper designs a lightweight dual-

attention mechanism that concurrently extracts features from

both channel and spatial dimensions, focusing the model on

target regions while disregarding background noise.

To tackle the problem of overlooking small leaf spots, Qi and Jia

(2023) enhanced segmentation accuracy for small infrared targets

by modifying the expansion rate of the ASPP module and

introducing a position enhancement module. Deng et al. (2023)

developed a cross-layer attention fusion mechanism to differentiate

tiny spots from healthy areas. This paper enhanced the ASPP

module by altering its data flow, adding deformable convolution,

and incorporating our proposed CRCC module to better detect

small target spots. Additionally, standard convolution is replaced

with depth-separable convolution to reduce parameter count while

improving accuracy. Furthermore, deformable convolution is

applied to shallow extracted features before their integration with

deep features to more effectively transfer shallow information.

In this paper, a cross-scale disease segmentation network is

proposed, LT-DeepLab, for Zanthoxylum bungeanum Maxim
Frontiers in Plant Science 03
trunks and leaves. The contributions of this study are summarized

as follows: (1) A dual-attention module CRCC structure is designed,

combining spatial and channel attention mechanisms to enhance

segmentation in complex backgrounds. (2) An improved ASPP

module (FDCASPP) is proposed, incorporating an enhanced

attention mechanism with variability convolution to boost cross-

scale feature extraction and using lightweight deep separable

convolution to minimize redundant information. (3) The model

employs a deep supervision technique that does not increase

parametric quantities and incorporates an auxiliary loss during

training to enhance accuracy. (4) This paper innovatively applies

semantic segmentation techniques to Zanthoxylum bungeanum

Maxim disease segmentation, producing a scientific dataset of

Zanthoxylum bungeanum Maxim leaf and trunk disease and

facilitating cross-scale segmentation of leaf and trunk diseases,

thereby bridging the research gap in this area.
2 Materials and methods

2.1 Data collection and processing

2.1.1 Data collection
This study examines the segmentation of diseases on the leaves

and trunks of Zanthoxylum bungeanum Maxim trees within

complex environments. The image data were collected from a

Zanthoxylum bungeanum Maxim plantation located in Dongba

Town, Nanbu County, Sichuan Province, China. To accommodate

diverse lighting conditions in natural settings, the dataset was

compiled at various times in July, specifically in the morning

(8:00-10:00), at noon (12:00-14:00), and in the afternoon (15:00-

17:00), with additional images captured post-rainfall. The categories

of images include leaf spot, rust, and frost damage. Representative

examples of these images are presented in Figure 1.
FIGURE 1

Samples of various diseases: (A) leaf spot; (B) rust; (C) postrainy leaf spot; (D) frost damage.
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2.1.2 Data processing
A total of 1,200 raw images were captured with an initial

resolution of 3472x4624. Leaf and disease spots, as well as trunk

and frost damage, were annotated using Labelme software under

expert guidance to create mask maps. The dataset was then split

into a training set of 960 images and a test set of 240 images,

adhering to an 8:2 ratio. The annotated images are depicted as labels

in Figure 1.Since the initial training set comprised only 960 images,

this paper applies data augmentation to boost the model’s

robustness and generalization capabilities. To maintain a

reasonable training speed, the augmentation process involved

randomly scaling the length of the images to a range between

2048 and 512 pixels, then cropping them to a size of 512x512 pixels,

and finally applying random flips. Additionally, transformations in

terms of brightness, contrast, and saturation were used to further

improve the model’s performance. These data augmentation

techniques were applied consistently across all experiments to

ensure uniformity among the different models.
2.2 Improved methods

Based on DeepLabv3+, this paper proposes a segmentation

network named LT-DeepLab designed for cross-dimensional

segmentation of Zanthoxylum bungeanum Maxim trunks, leaves,

and lesions. The network primarily consists of deformable

convolutions, a fission feature pyramid with depth-separable

convolutions, and an improved CRCC dual attention module.

The CRCC module combines the Criss-Cross module with the

Convolutional Block Attention Module, allowing for feature

complementation in both spatial and channel dimensions, and is

used in both the backbone and FDCASPP modules. Furthermore,

the FDCASPP module incorporates deformable convolutions and
Frontiers in Plant Science 04
depth-separable convolutions, reducing the parameter count while

maintaining or even improving model accuracy.

2.2.1 DeepLabv3+ network structure
DeepLabv3+ is a prominent semantic segmentation

architecture distinguished by its Atrous Spatial Pyramid Pooling

(ASPP) module, which employs dilated convolution to capture

contextual information across various scales (Chen et al., 2018).

This is achieved by applying differing dilation rates to feature maps

processed by deep neural networks, which are then combined with

low-level features to produce the prediction map. However, the

original model had a high parameter count and did not perform

well in segmentation for this specific task, prompting us to make

several improvements.

2.2.2 LT-DeepLab structure
In real environments, the segmentation of leaf and trunk

diseases is complicated by various factors such as light, weather,

shading, and complex backgrounds, particularly when imaging leaf

spots and frost-damaged trunk portions. This study addresses both

the larger-sized trunk and frost-damaged parts as well as the smaller

leaves and even smaller diseased spots, with the inherent data

imbalance increasing segmentation difficulty. Although the

traditional DeepLabv3+ network, with its ASPP module capable

of multi-scale feature extraction, achieves satisfactory segmentation

results on leaves and trunks against a single background, it struggles

with more complex backgrounds. The performance deteriorates

further due to the cross-pixel feature extraction of the expansion

convolution within the ASPP module, often failing to adequately

capture features of leaves and smaller spots, which is critical for

segmentation tasks involving small targets (Zhu et al., 2023). To

address these challenges, this study introduces an enhanced version

of DeepLabv3+, LT-DeepLab, as depicted in Figure 2. This model
FIGURE 2

LT-DeepLab network structure.
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integrates an improved Criss-Cross attention mechanism to boost

the feature extraction capability of the backbone. In the decoder,

features from the backbone are fused with outputs from the ASPP

module, incorporating deformable convolution to better preserve

features of small targets like leaves and disease spots. Furthermore,

this paper proposes a new encoder, the Separation Fission Depth

Separable with CRCC Atrous Spatial Pyramid Pooling, called

FDCASPP module. This encoder replaces standard convolution

with depth-separable convolution, retaining the multi-scale feature

extraction of ASPP while integrating an enhanced CRCC module

and deformable convolution, thus addressing the insufficient

feature extraction capability for small targets.

2.2.3 CRCC module structure
In real-world scenarios, the segmentation of Zanthoxylum

bungeanum Maxim leaves and trunks is challenged by frequent

occlusions and the phenotypic similarity between healthy and

diseased leaves. To improve the model’s focus on relevant features

and enhance information filtration from complex backgrounds, this

paper introduces and refines the Criss-Cross attention module

(Huang et al., 2019). The enhanced CCNet efficiently captures

contextual information from the surrounding pixels via cross-

path operations. This mechanism enables each pixel to ascertain

the remote dependencies of all other pixels through a cyclic

operation, thereby improving segmentation accuracy. The original

Criss-Cross module is computed as, given a local feature map H ∈
RC�W�H , the feature maps K ,  Q, and V are first generated for the

leaf and trunk lesion feature maps after three 1 × 1 convolutions,

where {Q,K} ∈ RC0�W�H , and C0 is the number of channels less

than C. After that, this paper generates the feature maps Q and K by

Affinity operation to generate the attention map A ∈
R(H+W−1)�W�H , and for the position u of the feature map Q in

the spatial dimension, which can obtain Qu ∈ RC0
, and for the same

row or column of the same position u in K , it can obtain Wu ∈
R(H+W−1)�C

0
. Wi,u ∈ RC0

is the ith element of Wu. Define the

Affinity operation as follows:

di,u = QuWi,u (1)
Frontiers in Plant Science 05
Where di,u ∈ D is the degree of correlation between feature Qu

and Wi,u, i = ½1,…, Wuj j�, D ∈ R(H+W−1)�W�H . Then, a softmax

layer on D over the channel dimension is applied to calculate the

attention map A.

Correspondingly, for the previously generated feature map V ∈
RC�W�H and each position u in the spatial dimension, Vu ∈ RC

and a set Fu ∈ R(H+W−1)�C are obtained, where the set Fu is the set

of feature vectors in V that are in the same row or column as

position u. Aggregation is defined as:

H
0
u = o

i∈ Fuj j
Ai,uFi,u +Hu (2)

where  H
0
u is the output feature maps H0 ∈ RC�W�H at position

u. Ai,u is the scalar value at a for channel i and position u.

However, while the Criss-Cross Attention module effectively

contextualizes features spatially, it does not adequately connect

spatial information (Huang et al., 2019). To address this limitation,

this paper integrated it with the Convolutional Block Attention

Module (CBAM) (Woo et al., 2018), creating a dual attention

mechanism named CRCC, as illustrated in Figure 3. In this

mechanism, the feature maps K ,  Q, and V from H are fused

before being processed by the CBAM module, which then weights

these features to ensure a cohesive channel connection. The

integration process is detailed as follows:

Hc = CBAM(concat(K ,Q,V)) (3)

Finally, the output of the CRCC module is combined with that

of the Criss-Cross module. To capture the global connections in a

cyclic manner, a two-dimensional convolution is applied to

integrate the features and compress their dimensionality.

This process preserves the original spatial context provided by the

Criss-Cross module while incorporating the spatial and channel-

weighted features from the CBAM. The final output of the CRCC

module after one iteration is described below:

Hout = Conv2d(Hc +H
0
u) (4)

Additionally, this paper has integrated the CRCC module into

the enhanced Fission Depth Separable with CRCC Atrous Spatial
FIGURE 3

CRCC module structure.
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Pyramid Pooling (FDCASPP) structure to further optimize our

segmentation network.
2.2.4 Deformable convolution structures
Conventional convolution operates with a fixed kernel shape,

which may not adequately address the irregular shapes of leaf and

trunk lesions. To overcome this limitation, this paper introduces

deformable convolution, which modifies the convolution process

to adapt to these irregularities before feature fusion. In standard

2D convolution, feature maps for leaf and trunk lesions are

initially sampled using a regular grid network R. The sampled

values are then multiplied by their corresponding weights w, and

subsequently summed. The output at each position P0 on the

feature maps y, can be described by the following equation (Dai

et al., 2017):

y(P0) = o
Pn∈R

W(Pn) � X(P0 + Pn) (5)

where Pn represents each position on the convolution kernel. As

illustrated in Figure 4, deformable convolution modifies standard

convolution by introducing an offset to the receptive field.

Consequently, Equation 5 transforms into Equation 6. This offset

is learnable, allowing it to adapt closely to the actual contours of the

object. Through ablation studies, deformable convolution has

demonstrated enhanced segmentation capabilities, significantly

improving the model’s performance.

y(P0) = o
Pn∈R

W(Pn) � X(P0 + Pn + DPn) (6)
2.2.5 FDCASPP module structure
The traditional Atrous Spatial Pyramid Pooling module utilizes

specific expansion rates to obtain different receptive fields for multi-

scale feature extraction. However, due to the integration of pooling

and convolution with strides, there is significant loss of boundary

information in the segmented targets. Additionally, the extensive
Frontiers in Plant Science 06
use of expansive convolutions through a deep convolutional neural

network with a high number of channels results in a large parameter

count. To address these issues, this paper proposes a Fission Depth

Separable with CRCC Atrous Spatial Pyramid Pooling (FDCASPP).

This module divides the feature maps into two data streams: one

stream undergoes global average pooling followed by a 1x1

convolution for global feature statistics, while the other stream

reduces the feature map resolution to balance accuracy with

computation. As demonstrated by Xu et al. (2015), LeakyReLU

outperforms ReLU in scenarios involving small datasets. To

enhance model expressiveness, the reduced feature map is

activated using LeakyReLU, then processed through the CRCC

dual attention mechanism, and subsequently enhanced for

activation. It is then integrated into the multidimensional joint

feature extraction section, which replaces the standard convolution

in the original ASPP module with depth-separable convolution

(Sifre and Mallat, 2014) to minimize redundant parameters. This

section sets expansion rates at 12, 24, and 36 to accommodate

various target sizes. Additionally, deformable convolution is

employed to refine the segmentation of targets. Finally, the

feature maps from both data streams in the FDCASPP are fused

to enhance feature integration.

2.2.6 Auxiliary head loss
To optimize the training process, Zhao et al. (2017)

demonstrated in their study on PSPNet that employing auxiliary

loss can significantly enhance training effectiveness. They

established that setting the weight a of the auxiliary loss to 0.4 is

optimal. Notably, the auxiliary head, which processes the feature

maps from the backbone network to generate segmentation masks

and calculate the auxiliary loss using the cross-entropy loss

function, is active only during the training phase. Consequently,

it does not add to the computational load or the parameter count

during model inference. This paper adopts a similar approach by

introducing auxiliary loss generated by the FCN auxiliary head,

applying a cross-entropy function, with the weight also set to a=0.4.
FIGURE 4

Comparison of conventional and deformable convolution receptive fields: Panel (A) displays a schematic diagram of the receptive field for a standard
3x3 convolution, while Panel (B) illustrates the receptive field of deformable convolution.
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2.3 Model training

The hardware configurations for training and testing in this study

include an 18 vCPU AMD EPYC 9754 128-Core Processor with 60GB

of RAM and an NVIDIA RTX 3090 GPUwith 24GB of videomemory.

The software environment consists of CUDA version 11.1, PyTorch

version 1.8.1, and Python version 3.8.10. To mitigate the influence of

hyper-parameters on experimental outcomes, this paper standardizes

settings across all tests. Specifically, the Stochastic Gradient Descent

optimizer was employed with an initial learning rate of 0.01. A

polynomial decay strategy, PolyLR, was used to adjust the learning

rate during the experiments. The experiments were conducted over

10,000 iterations with a batch size of 4.
2.4 Evaluation metrics

In this study, the effectiveness of disease segmentation on

Zanthoxylum bungeum Maxim leaves and trunks is quantitatively

assessed using three principal evaluation metrics: mean Intersection

over Union (mIoU), mean Pixel Accuracy (mPA), and Overall

Accuracy (OA). These metrics are chosen to provide a

comprehensive evaluation of the segmentation performance

across all tested networks. mIoU, mPA, and OA were formulae

are calculated as follows, respectively:

mIoU = 1
k+1o

k

i=0

Pii

ok
j=0Pij +ok

j=0Pji − Pii
(7)

mPA = 1
k+1o

k

i=0

Pii

ok
j=0Pij

(8)

OA = ok
i=0

Pii

ok
i=0ok

j=0
Pij

(9)

where k denotes the number of classes, excluding background

Pij denotes the number of pixels that refer to the prediction of

category i   as category jFor the number of parameters of the model

and the amount of computation, it is calculated as:

Parameters = Cin � Cout � K � K (10)

FLOPs   = Cout � (Cin  �K2)�W � H (11)

Where Cin denotes the number of input channels, Cout

represents the number of output channels, K refers to the size of

the convolutional kernel, and W and H indicate the width and

height of the feature map, respectively.

Equation (10) describes how the number of parameters is

calculated in each convolutional layer, the smaller the number of

parameters is calculated, the lighter the model is and the easier it is

to deploy. Equation (11) describes how the amount of computation

in each convolutional layer is calculated, the smaller the amount of

computation in the model, the smaller the computational burden of

the model and the faster the inference. The bias terms in the

convolutional layers are not considered in either of the

above calculations.
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2.5 Normalization of the confusion matrix

In this study, we utilized confusion matrices to evaluate the

performance of the baseline model and our proposed model on the

test set. To provide a more intuitive understanding of each

category’s performance, we applied row normalization to the

original confusion matrix. This process converts the absolute

counts into proportions, indicating the percentage of samples

within each category that are predicted to belong to respective

categories. Specifically, each element in the normalized confusion

matrix, denoted as CMnorm, can be expressed as:

CMnorm½i, j� = CM½i,j�
oN

k=1
CM½i,k� (12)

Where CM½i, j� represents the element in the ith row and jth

column of the original confusion matrix, indicating the number of

samples from the actual category i that are predicted as category j,

and o
N

k=1

CM½i, k�   is the sum of all elements in the ith row,

representing the total number of samples in the actual category i.
2.6 Statistical testing method

In this study, we employed a t-test to compare the performance

differences between the improved LT-DeepLab model and the baseline

model. To facilitate a statistical comparison, we recorded the results of

five experiments conducted on the same dataset for both models. We

utilized an independent samples t-test to assess whether the mean

difference between these two models is statistically significant.

Specifically, we calculated the means, variances, and t-statistics for

the two samples, and determined the p-value by consulting the t-

distribution table. The p-value represents the probability of observing

the current t-statistic, or a more extreme value, under the null

hypothesis that there is no significant difference between the means

of the two groups. If the calculated p-value is less than the

predetermined significance level (e.g., 0.05), we reject the null

hypothesis, indicating that the mean difference between the two

datasets is statistically significant. The calculation method is as follows:

�X = 1
no

n

i=1
Xi (13)

S2 = 1
n−1o

n

i=1
(Xi − �X)2 (14)

t =
X1−X2j jffiffiffiffiffiffiffiffi

S2
1
n1
+
S2
2

n2

q (15)

df =
(
S2
1
n1
+
S2
2
n2
)2

(
S2
1
n1

)2

n1−1
+
(
S2
2
n2

)2

n2−1

(16)

In this context, �X  represents the sample mean, with X1 and X2

denoting the means of the two groups. S2 denotes the sample variance,

with S21 and S22 representing the variances of the two groups. n stands
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for the sample size, with n1 and n2 indicating the sample sizes of the

two groups. The t-statistic t measures the difference between sample

means relative to the variability within the samples, offering a

standardized metric of the mean difference. The degrees of freedom

df are used to consult the t-distribution table to determine the p-value.
3 Experiments and analysis of results

3.1 Comparison experiments

To establish the superior segmentation capabilities of LT-

DeepLab, this paper performes comparative experiments using an

identical dataset across various state-of-the-art semantic

segmentation networks. Each competing CNN-based model

utilized a ResNet50V1c backbone, was subjected to the same data

augmentation techniques, and employed a transfer learning

approach. All networks were initialized with pre-trained weights

from the Cityscapes dataset. The comparative analysis included

models such as FCN, CCNet, DANet, PSPNet, Non_Local, UNet,

and Segformer. The outcomes of these experiments are detailed in

Table 1. As illustrated in Table 1, among the nine networks

compared, our network, LT-DeepLab, consistently achieves the

best results across all metrics, underscoring its distinct

effectiveness for this task. Specifically, LT-DeepLab shows

improvements over the baseline network by 3.59% in mIoU,

2.49% in mPA, and 0.63% in OA. Segformer, incorporating the

advanced Transformer architecture, ranks second but still trails by

2.73%, 2.16%, and 0.94% in mIoU, mPA, and OA, respectively.

Further comparisons reveal that our network surpasses CCNet,

which utilizes the original Criss-Cross module. Our enhanced

Criss-Cross attention module improves performance in mIoU,

mPA, and OA by substantial margins of 3.23%, 1.54%, and

0.78%, respectively. Additionally, the inclusion of an auxiliary

FCN head in our architecture enables it to outperform the native

FCN network by 3.43% in mIoU, 2.62% in mPA, and 0.69% in OA.

Against the classical PSPNet and DANet, LT-DeepLab also shows

superior performance, leading by 3.28%, 2.79%, 0.50% and 2.90%,

2.01%, 0.52% in mIoU, mPA, and OA, respectively.
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Figure 5 visualizes the performance trends and stability across

models. Figure 5A depicts the mIoU trends per 50 iterations,

highlighting that LT-DeepLab reaches higher mIoU levels faster

and maintains greater stability compared to others, surpassing other

models’ mIoU at 2500 iterations versus their 10000 iterations.

Figure 5B shows the mPA change curves, with our model

achieving significantly higher mPA after 3750 iterations.

Figure 5C compares the OA curves, demonstrating that our

model’s curve is markedly more stable. Lastly, Figure 5D presents

the loss variation curves; despite using the same cross-entropy loss

function as other models, our network employs auxiliary loss,

aiding in quicker convergence and resulting in a slightly higher

initial loss value. These data further affirm the superior performance

of our model.

To demonstrate the distinct performance of various networks

more effectively, this paper compares their prediction results as

depicted in Figure 6. This comparison highlights the challenges

posed by real-environment field conditions and varying scales. The

baseline network utilizes the original ASPP module for feature

extraction, which fails to adequately detail the leaf edges and poorly

integrates areas where trunks meet leaves, indicating limited

segmentation capability.

The UNet network, despite its success in healthcare applications,

underperforms on our dataset. This is likely due to its smaller number

of parameters and the U-shaped with skip connections, optimized for

simpler semantic tasks. In contrast, the complexity of leaf and stem

disease segmentation in Zanthoxylum bungeanumMaxim proves too

challenging, resulting in suboptimal outcomes. Non_Local excels in

capturing long-distance dependencies and uniquely succeeds in

correctly segmenting distant diseased spots as seen in Figure 6E.

However, it still struggles with accurate feature extraction at the edges

of leaves, diseased spots, and trunk regions. FCN, a classic semantic

segmentation network, retains spatial feature information effectively

using a fully convolutional structure. It performs well in identifying

larger targets within images but is unable to adequately segment

smaller, less significant ones, often ignoring them completely.

PSPNet, which incorporates a pyramid pooling module, manages

boundary information more effectively than many networks by

capturing contextual details at various scales. Yet, like FCN, it often

overlook minor targets, needing further improvements in overall

segmentation. CCNet, designed to reduce the computational intensity

inherent in Non_Local through its Criss-Cross Attention mechanism,

slightly outperforms Non_Local in segmenting target edges according

to the comparative prediction images. DANet, which integrates both

spatial and channel attention mechanisms, achieves the highest

accuracy among the traditional CNN networks. Nonetheless, it still

neglects elements in the distance. Our proposed LT-DeepLab

network outshines all compared networks by delivering superior

segmentation of target boundary information—such as leaf-to-lesion,

leaf-to-background, trunk-to-leaf, and trunk-to-background

transitions. It markedly surpasses other models, especially in

segmenting very small leaf lesions, underscoring its superiority over

common semantic segmentation networks.

In addition to the classical networks mentioned above, this

paper also compares several recently proposed models, as shown in

Figure 7. Mask2Former (Cheng et al., 2022) integrates the masking
TABLE 1 Comparison of common semantic segmentation networks.

Model mIoU mPA OA

DeepLabV3+(baseline) 72.99 83.53 95.36

FCN 73.15 83.40 95.30

CCNet 73.35 84.48 95.21

DANet 73.68 84.01 95.47

PSPNet 73.30 83.23 95.49

Non_Local 73.11 83.93 95.02

Segformer 73.85 83.86 95.05

UNet 70.42 81.70 93.02

LT-DeepLab 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
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technique and self-attention mechanism into a fully convolutional

network, achieving performance second only to our proposed LT-

DeepLab, with an mIoU of 76.19%. SegNeXt (Guo et al., 2022)

updates the design of the traditional convolutional block and

utilizes multi-scale convolutional features to evoke spatial

attention through simple elemental multiplication, achieving an

mIoU of 71.31%. SAN (Xu et al., 2023) and PID (Xu et al., 2023),

which focus more on lightweight design, perform poorly on our

dataset, with mIoU values of 62.48% and 65.24%, respectively.

To demonstrate the effectiveness of the attention mechanism

proposed in this paper, we replaced the CRCC attention mechanism

in the LT-DeepLab model with various other attention mechanisms

while keeping all other conditions constant. The results are

presented in the Table 2. Using the Criss-Cross Attention (CCA)

alone results in lower accuracy due to insufficient contextual

connections of channel features. The CBAM alone achieves better

results by focusing on both channel and spatial features. The CRCC

module proposed in this paper, which enhances channel features

using CBAM while retaining the spatial contextual linking

capability of Criss-Cross Attention module, achieves the best

results across all metrics. The ELA module (Xu and Wan, 2024)

extracts feature vectors in the horizontal and vertical directions

using band-pooling in the spatial dimension, resulting in mIoU,

mPA, and OA values of 76.13%, 85.86%, and 95.74%, respectively.

The CA module (Hou et al., 2021) employs global average pooling

of feature maps in both the width and height directions, then merges

the two parallel phases, achieving mIoU, mPA, and OA values of
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76.22%, 85.33%, and 95.89%, respectively. The EMA module

(Ouyang et al., 2023) reshapes some channels to obtain the batch

dimension and groups them into multiple sub-features to preserve

channel information, resulting in mIoU, mPA, and OA values of

76.01%, 85.41%, and 95.86%, respectively. The ECA module (Wang

et al., 2020) captures inter-channel dependencies using one-

dimensional convolution, avoiding the complex upscaling and

downscaling process, with mIoU, mPA, and OA values of 76.04%,

85.41%, and 95.86%, respectively. These data further confirm the

effectiveness and superiority of the attention mechanism proposed

in this paper.
3.2 Heat map visualization

To visually demonstrate the enhancements in our network, this

paper employes gradient-weighted class activation mapping (Grad-

CAM) (Selvaraju et al., 2017) to illustrate how effectively the model

discriminates between different classes. Grad-CAM is a technique

that visualizes neural network decisions by analyzing gradients in

the final convolutional layer to determine the significance of each

feature map relative to a specific class. This method generates heat

maps that highlight areas of the image most relevant to the model’s

predictions. In Figure 8, this paper compares the heat maps from

both the baseline and the improved versions of our model to

showcase the differences pre- and post-enhancement. Each class

is visualized separately to assess how effectively the network
FIGURE 5

Evaluation Metrics and Loss Curve Analysis: This figure illustrates the progression of evaluation metrics and loss curves throughout the training
process. Each Round consists of 50 iterations, with a total of 10,000 iterations completed.
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activates in response to that class. In the images, darker and more

focused colors within the designated segmentation regions indicate

stronger network activations, signifying better model performance

and learning capability.

Upon comparison, it is evident that our model demonstrates

superior category-specific activation compared to the baseline

model. For instance, as shown in Figure 8A, our model is able to
Frontiers in Plant Science 10
detect multiple diseased leaves against a complex background

simultaneously, whereas the baseline model tends to recognize

only few leaves. Similarly, in Figure 8D, while the baseline

network struggles to accurately identify normal trunk sections,

often misactivating diseased parts and some background areas,

our model distinctly and correctly activates the normal trunk

category. Overall, these observations confirm that our model
FIGURE 6

Overlay of Predicted Results from Common Networks: (A) leaf spot, (B) rust, (C) frost damage, (D) simultaneous rust and leaf spot, and (E)
concurrent leaf spot and frost damage, respectively.
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achieves more precise class activation than the baseline model,

validating the effectiveness of our enhanced attention mechanism.
3.3 Confusion matrix

Figures 9A, B present the confusion matrices for the baseline

model and our proposed model on the test set, respectively. By

applying row normalization to the confusion matrices, the diagonal

values in each matrix reflect the pixel accuracy of each category. A

comparison of these values clearly demonstrates that our model

achieves superior segmentation performance across all categories.

For instance, an analysis of the first row shows that our model more

effectively distinguishes between each category and the background,

exhibiting significantly better performance in real-world

environment segmentation compared to the baseline model.
3.4 Ablation experiments

To evaluate the effectiveness of our improved modules, this paper

initially examines the impact of employing multiple auxiliary heads, as

detailed in Table 3. Additionally, sixteen sets of ablation experiments

are conducted to validate each of the four modules discussed in this
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paper, focusing on various metrics including model size and

computational efficiency. These experiments are summarized in

Table 4, which reports on metrics such as mIoU, mPA, OA, the

floating-point operations (FLOPs), and the number of parameters

(Params).The baseline configuration, native DeepLabv3+, utilizes a

multilayer convolutional structure within the original ASPP, leading

to a high computational demand of 0.27 TFLOPs and a parameter

count of 65.74M, achieving an mIoU of 72.99%. As demonstrated in

Table 4 (2), the implementation of auxiliary loss results in a 0.15%

improvement in mIoU. Importantly, since auxiliary loss only influences

the training phase, it does not increase the number of parameters or

computational load during the inference process. In experiment 3(3),

integrating deformable convolution with low-dimensional feature maps

resulted in a 1.47% increase in mIoU. Table 4 (5) highlights the

enhancements to the ASPP module through lightweight and

attention-fused deformable convolutions, which not only elevate

mIoU by 2.54% but also reduce the computational demand by 0.05

TFLOPs and decrease the parameter count by 13.37M. Further, as

shown in Table 4 (9), the inclusion of our improved CRCC module

based on CCNet slightly raised the mIoU by 0.01%. A comprehensive

comparison from Tables 4 (8) and 3(16) demonstrates that the

collective application of all improvements, with and without the

CRCC module, boosts the mIoU by 0.46%, mPA by 0.01%, and OA

by 0.28%, confirming the overall efficacy of our enhancements.

In pursuit of an optimal auxiliary head to further optimize

training, this paper evaluates four different designs that generate

auxiliary loss during training only. The results are summarized in

Table 3, which led us to select the FCNHead as our auxiliary head

due to its superior performance in mIoU and OA.

Figure 10 is a scatter Plot of mIoU versus Number of

Parameters. This scatter plot illustrates the trade-off between

model complexity and segmentation accuracy across the entire set

of ablation experiments. It visualizes the relationship between the

accuracy of each experimental group and their corresponding

number of parameters. Notably, our model attains the highest

mIoU while maintaining a relatively low parameter count,

demonstrating its efficiency and effectiveness in segmentation tasks.

To validate the robustness of the LT-DeepLab network proposed

in this paper, various backbone networks were employed for feature

extraction. As depicted in Table 5, the experiments were divided into

five groups. Each group compared the original DeepLabV3+ model

with the corresponding backbone to the proposed LT-DeepLab

model using the same backbone. Notably, in each group, the LT-

DeepLab architecture consistently achieved the best segmentation

performance across all metrics. The most significant improvement

was observed in the first group, with an increase of 17.84% in mIoU,

18.14% in mPA, and 3.58% in OA. These enhancements can be

attributed to the superior contextualization and feature integration

capabilities of the LT-DeepLab network. The results clearly illustrate

that the LT-DeepLab architecture is robust and versatile, making it a

suitable choice for various feature extraction backbone networks.

Table 6 presents the IoU values for each category in our

proposed model, indicating that the IoU for leaf spot disease is

the lowest. One probable reason for this is the small size and

irregular boundaries of these spots. As depicted in Figure 11, these

spots have a range of faded green areas around the brown spots, and
FIGURE 7

Frontier Model Comparison Line Chart.
TABLE 2 Comparison of different attention mechanisms in LT-DeepLab.

Attention mIoU mPA OA

CCA 75.81 86.02 95.77

CBAM 76.29 85.65 95.91

ELA 76.13 85.86 95.74

CA 76.22 85.33 95.89

EMA 76.01 85.86 95.80

ECA 76.04 85.41 95.86

CRCC (our) 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
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in the early stages of the disease, only faded green spots are present

without any brown spots. To ensure that the model can detect this

type of disease even in its early stages, this paper includes the faded

green areas in our labeling. However, the faintness of these

boundaries results in less accurate information extraction, leading

to lower segmentation accuracy for this category. Although this may

reduce accuracy, it is crucial for identifying early-stage disease and

enabling timely intervention to prevent further damage.
3.5 Module efficiency

To evaluate the computational efficiency of the primary

modules proposed by LT-DeepLab, this study examines the

number of parameters and computation time of the CRCC
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attention module and the FDCASPP structure. The results are

presented in Table 7. The CRCC module is utilized in both the

backbone feature extraction network and the FDCASPP structure,

with the only difference being the number of intermediate channels.

In the backbone, the CRCC module has 256 intermediate channels,

whereas in the FDCASPP, it has 2048 intermediate channels. This

design choice balances computational speed and segmentation

accuracy. The average frame rate of the LT-DeepLab model

during inference is 12.56 fps.
3.6 Significance test results

The results of the independent samples t-test indicate that the

mean performance of the improved LT-DeepLab model is
FIGURE 8

Category Weight Activation Maps: Panels A through E display the category weight activation maps for different conditions: (A) diseased leaves,
(B) rust, (C) leaf spot, (D) diseased trunks, and (E) frost-damaged areas.
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significantly higher than that of the baseline model. Specifically, the

five experimental outcomes for LT-DeepLab were 76.48, 76.49,

76.49, 76.58, and 76.46, while the five outcomes for the baseline

model were 72. 85, 72.88, 72.85, 72.99, and 72.82. The p-value

obtained from the t-test was substantially lower than the commonly

accepted significance level of 0.05, allowing us to reject the null

hypothesis, thereby confirming that the mean difference between

the two models is statistically significant. This finding demonstrates

that LT-DeepLab significantly outperforms the baseline model in

enhancing performance.
4 Discussion

In this study, we propose a novel CRCC attention mechanism

integrated with DeepLabV3+, which simultaneously considers both

spatial and channel-wise features. This mechanism skillfully

combines the Criss-Cross attention with the CBAM mechanism,

addressing the Criss-Cross attention’s limitation in capturing

channel-wise features and enhancing overall performance.

Additionally, we introduce a new cross-scale solution header,

FCDASPP, which, compared to the original ASPP module, reduces

the number of parameters by employing depthwise separable
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convolutions. This approach, when combined with the CRCC

attention mechanism, significantly improves segmentation

capabilities. Furthermore, the inclusion of an FCN auxiliary head

enhances segmentation performance during training by participating

solely in the loss computation, thereby avoiding any additional

overhead during inference. The incorporation of deformable

convolutions allows the convolutional kernels to learn offsets,

facilitating the effective handling of shallow features and enabling

more efficient extraction and fusion of shallow and deep features.

In the field of research on segmentation of leaf or trunk diseases

in Zanthoxylum bungeanum Maxim, Yang et al. (2021) introduced

a fifth ASPP branch into DeepLabv2 to segment rust disease in a

controlled laboratory environment, achieving an mIoU of 84.99%.

Zhang et al. (2024) proposed a lightweight U-shaped perceptual
FIGURE 9

Confusion Matrix Comparison: Panel (A) displays the confusion matrix for the baseline model on the test set, and Panel (B) shows the confusion
matrix for the LT-DeepLab model on the test set.
TABLE 3 Comparison of auxiliary head performance.

Name mIoU mPA OA

DWFCNHead 76.28 86.07 95.95

DAHead 76.13 86.33 95.84

PSPHead 76.29 85.91 95.91

FCNHead 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
FIGURE 10

Scatter Plot of Evaluation Indicators versus Number of Parameters:
Points A through P on the plot correspond to data entries 1 through
16 in Table 4, respectively.
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transformer for grape leaf disease segmentation, which strikes a

balance between performance and efficiency. However, this method

may not be suitable for field conditions and is limited to a small

number of diseases, indicating that its practical applicability needs

improvement. Wang et al. (2021) employed a two-stage

segmentation approach for cucumber leaf disease in complex

environments, using two networks sequentially to segment

different targets, thereby achieving higher segmentation accuracy.
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However, this method incurs significant computational overhead,

making it less practical for real-world production applications. The

model proposed in this paper maintains accuracy while reducing

the size compared to the benchmark network, enabling robust

segmentation of multiple diseases simultaneously. Similar to the

study by (Zhou et al., 2024), we also chose to improve the

DeepLabV3+ model. The difference lies in their introduction of a

gated pyramid feature fusion structure, which connects features of

different scales using a specialized gating mechanism while

capturing different receptive fields. The FDCASPP structure

proposed in this paper is fundamentally designed to fuse multi-

scale features and enhance the connections between them through

the CRCC attention mechanism. Furthermore, Wang et al. (2024)

demonstrated that integrating the CBAM attention mechanism

with residuals into the UNet network enhances its feature

extraction capability and ability to capture fine-grained

information, utilizing an improved ASPP module. Our study

extends this idea by complementing CBAM with the Criss-Cross

attention mechanism, incorporating this combination into the
TABLE 4 Comparison of evaluation indexes of ablation experiments with parametric quantities and calculation quantities.

Num CRCC FDCASPP DCN Aux_Loss mIoU mPA OA FLOPs/T Params/M

1 ✗ ✗ ✗ ✗ 72.99 83.53 95.36 0.27 65.74

2 ✗ ✗ ✗ ✓ 73.14 84.03 95.34 0.27 65.74

3 ✗ ✗ ✓ ✗ 74.46 84.26 95.52 0.29 67.55

4 ✗ ✗ ✓ ✓ 74.25 84.05 95.48 0.29 67.55

5 ✗ ✓ ✗ ✗ 75.53 85.15 95.69 0.22 52.37

6 ✗ ✓ ✗ ✓ 75.56 85.44 95.70 0.22 52.37

7 ✗ ✓ ✓ ✗ 76.14 85.63 95.66 0.23 53.08

8 ✗ ✓ ✓ ✓ 76.12 86.01 95.71 0.23 53.08

9 ✓ ✗ ✗ ✗ 73.00 83.13 95.35 0.28 67.34

10 ✓ ✗ ✗ ✓ 73.29 83.52 95.46 0.28 67.34

11 ✓ ✗ ✓ ✗ 74.60 84.54 95.14 0.29 69.15

12 ✓ ✗ ✓ ✓ 74.55 84.97 95.71 0.29 69.15

13 ✓ ✓ ✗ ✗ 75.43 85.11 95.75 0.23 54.68

14 ✓ ✓ ✗ ✓ 75.61 85.43 95.78 0.23 54.68

15 ✓ ✓ ✓ ✗ 76.03 85.40 95.88 0.24 54.68

16 ✓ ✓ ✓ ✓ 76.58 86.02 95.99 0.24 54.68
In the table, a checkmark (✓) indicates that a specific module was included in that group of experiments, while a cross (✗) signifies that the module was not incorporated in that particular
experimental setup.
Bold indicates that this metric has the best performance.
TABLE 5 Comparison of different feature extraction backbone networks
in LT-DeepLab.

Model mIoU mPA OA

DeepLabV3Plus+replknet 53.75 64.96 90.75

LT-DeepLab+replknet 71.59 83.10 94.33

DeepLabV3Plus+vgg16 60.66 70.94 93.20

LT-DeepLab+vgg16 73.49 83.91 95.30

DeepLabV3Plus
+MobileNetV3

56.79 67.30 92.19

LT-DeepLab+ MobileNetV3 70.07 81.18 94.51

DeepLabV3Plus+ResNeSt 69.76 80.28 94.56

LT-DeepLab+ ResNeSt 72.59 83.03 95.06

DeepLabV3Plus
+ResNet(baseline)

72.99 83.53 95.36

LT-DeepLab+ResNet(our) 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
TABLE 6 Comparison of individual category IoUs between the baseline
model and our model.

0 1 2 3 4 5

Baseline 95.59 84.20 64.75 50.68 72.84 69.89

Ours 96.22 86.47 70.33 59.94 75.14 71.38
fron
where 1-5 denote background, diseased leaves, rust, leaf spot, diseased trunks, frost
damage respectively.
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FDCASPP structure to further enhance multi-scale feature

extraction. Zhu et al. (2024) replaced dilated convolutions in the

ASPP module with deformable convolutions to address issues such

as poor segmentation accuracy for irregular defects in navel orange

surface defect detection. Similarly, this study employs deformable

convolutions in the self-proposed FDCASPP structure to assist in

feature extraction, particularly in the decoder stage, to better fit

irregular lesions on leaves and trunks, further demonstrating the

effectiveness of deformable convolutions in extracting features from

irregular targets. However, when comparing our study with the

UNet network, unlike (Han et al., 2024) success in brain tumor

image segmentation by integrating the Criss-Cross attention

mechanism into UNet, the U-Net network performed poorly on

our dataset. This could be attributed to UNet’s skip connection

structure, which directly combines low-level and high-level features,
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leading to issues such as unclear boundaries when dealing with

targets that have fuzzy edges or are difficult to distinguish from the

background. In our dataset, diseased leaves are particularly

challenging to differentiate from healthy ones in a complex

environment, with the boundaries of the lesions being

especially indistinct.

The model proposed in this paper strikes a balance between

accuracy and model size when compared to the baseline network. It

also demonstrates strong robustness by effectively segmenting

multiple diseases simultaneously. Future work will focus on

validating the model’s generalizability using other datasets.

Despite the current model’s success in reducing computational

load and parameter count, there remains room for further

optimization. Future research will aim to develop a lighter and

more efficient network, facilitating easier deployment in field
FIGURE 11

Detail of faded green areas.
TABLE 7 Comparison of different feature extraction backbone networks in LT-DeepLab.

Module Location Params /M - Time/s LT-DeepLab

CRCC

CRCC_backbone 1.1
Train_time 0.0273

12.56fps

Test_time 0.0091

CRCC_FDCASPP 6.1
Train_time 0.0361

Test_time 0.0145

FDCASPP – 17.1
Train_time 0.0991

Test_time 0.0465
The data dimensions of the aforementioned modules during training are (4, 256, 64, 64), while during testing, the dimensions are (1, 256, 86, 64). This discrepancy in feature map sizes between
training and testing is attributable to the differing data augmentation strategies employed.
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environments. Additionally, the possibility of segmenting

peppercorn fruits will be explored, enabling real-time monitoring

and segmentation of Zanthoxylum bungeanum Maxim diseases to

enhance the efficiency and productivity of peppercorn cultivation.
5 Conclusion

To address the challenge of integrated segmentation of diseases

on Zanthoxylum bungeanumMaxim leaves and trunks, this research

proposes an enhanced version of DeepLabv3+, named LT-DeepLab.

This method innovatively applies semantic segmentation technology

for joint disease targeting on both leaves and trunks. This paper have

improved the Criss-Cross Attention module by integrating the

channel-space attention capabilities of the CBAM, and proposed a

new attention mechanism, the CRCC module, which accurately

extracts edge information of leaves and trunks. Additionally, a

deformable convolution module has been implemented to

effectively capture low-dimensional information, enhancing the

fusion with high-dimensional feature maps. Addressing the issue of

the original ASPP module’s high parameter count and limited cross-

scale information extraction capability, this paper has developed the

FDCASPP module, designed to enhance the extraction of multi-scale

information and improve target segmentation in complex

backgrounds. Experimental results demonstrate that LT-DeepLab’s

segmentation capabilities in complex environments surpass those of

other commonly used semantic segmentation networks. Relative to

the baseline model, LT-DeepLab not only reduces the number of

parameters and computational demands but also achieves superior

performance across all evaluation metrics.
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