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The use of biofertilizers is becoming an economical and environmentally friendly

alternative to promote sustainable agriculture. Biochar from microalgae/

cyanobacteria can be applied to enhance the productivity of food crops

through soil improvement, slow nutrient absorption and release, increased

water uptake, and long-term mitigation of greenhouse gas sequestration.

Therefore, the aim of this study was to evaluate the stimulatory effects of

biochar produced from Spirulina (Arthrospira platensis) biomass on the

development and seed production of rice plants. Biochar was produced by

slow pyrolysis at 300°C, and characterization was performed through

microscopy, chemical, and structural composition analyses. Molecular and

physiological analyses were performed in rice plants submitted to different

biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and

productivity parameters. Morphological and physicochemical characterization

revealed a heterogeneous morphology and the presence of several minerals (Na,

K, P, Mg, Ca, S, Fe, and Si) in the biochar composition. Chemical modification of

compounds post-pyrolysis and a highly porous structure with micropores were

observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease

in root length, followed by an increase in root dry weight. The same

concentration influenced seed production, with an increase of 44% in the

number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in

the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain
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area. Differential proteomic analyses in shoots and roots of rice plants submitted

to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource

allocation towards seed production. These results suggest that biochar derived

from Arthrospira platensis biomass can stimulate rice seed production.
KEYWORDS

agriculture, biostimulant, biofertilizer, cyanobacteria, microalgae, Oryza sativa,
resource allocation, Spirulina
Highlights
• Spirulina-derived biochar presents composition and

structure suitable for use in agricultural systems.

• Exposure of rice plants to biochar for 20 days leads to

proteomic changes in shoots and roots.

• Rice plants treated with biochar optimize resource

allocation towards seed production.
1 Introduction

Rice (Oryza sativa L.) is one of the most important crops for

meeting dietary needs and ensuring global food security. This crop

covers 150 million hectares of planted area worldwide (Chen et al.,

2020). Additionally, according to the World Agricultural Production

report, global rice production in 2023/24 is projected to reach 520.9

million tons, surpassing previous crop yields (U.S. Department of

Agriculture, 2024). In this production context, the American continent

ranks second in global rice productivity, with Brazil being the largest

producer, yielding 11.66 million tons in 2021 (FAO, 2023).

The high global demand for rice production necessitates the use of

fertilizers, typically of chemical origin, to facilitate plant growth and

development. However, the excessive and continuous application of

chemical fertilizers can lead to environmental contamination, including

soil mineral depletion and disruption of soil microbiota, as well as

surface and groundwater pollution. Moreover, it contributes to

greenhouse gas emissions, leaching, and poses risks to human health

(Divya et al., 2023). Additionally, less than 50% of chemical fertilizers

are effectively absorbed by plants, necessitating larger quantities for

desired outcomes (Adhikari and Ramana, 2019). Therefore, the

development of new products that minimize environmental impact,

provide necessary nutrients for plant growth, and increase agricultural

productivity becomes indispensable (Kawalekar, 2013).

Bioinputs such as biofertilizers and biostimulants are natural

substances, providing an eco-friendly and economically viable

alternative that aids in soil conditioning and enhances plant growth,

ultimately increasing crop productivity. Various microorganisms have

been utilized as bioinputs to stimulate plant growth and development
02
(Pirttilä et al., 2021). Notably, microalgae/cyanobacteria likeArthrospira

platensis exhibit key traits essential for sustainable agriculture,

characterized by their photosynthetic nature, rapid growth rates,

capability to thrive in wastewater, and utilization of atmospheric CO2

as a carbon source. Microalgae contain various compounds such as

proteins, polysaccharides, lipids, minerals, and pigments that can

enhance plant metabolic processes (Cao et al., 2023). The study by

Lamb et al. (2023) demonstrated that indole compounds, siderophores,

and exopolysaccharides present in microalgae act as biostimulants/

biofertilizers in the development and seed production of rice plants.

The dry biomass of A. platensis contains approximately 45% C,

10% N, 12% P, 14% K, and other trace elements such as Mg, Ca, and

Na, which are compounds of interest for plant growth (Binda et al.,

2020). Therefore, A. platensis biomass has the potential to be directly

applied in sustainable agriculture or used as a raw material to produce

biofertilizers like biochar, the co-product resulting from the pyrolysis of

any biomass (Huang and Gu, 2019). This compound is rich in carbon

and, when applied to the soil, can increase water retention and ion

exchange capacity, promote microbiota activity, minimize nutrient

leaching, and regulate pH, thereby contributing to improved plant

productivity (El-Naggar et al., 2019). Moreover, biochar can reduce

phytotoxicity and stimulate plant metabolism, enhancing resilience

capacity against biotic and abiotic stresses (Joseph et al., 2021).

Biochar derived from microalgae/cyanobacteria has been

extensively studied for water and wastewater treatment,

particularly in the removal of heavy metals, antibiotics, and dyes

(Morais et al., 2024). However, there are still few studies

demonstrating the advantages of microalgae/cyanobacteria

biochar in soil enrichment, plant development, and productivity,

especially in rice cultivation. Therefore, the aim of this study was to

evaluate the molecular and physiological effects of biochar

produced from A. platensis as biofertilizers and biostimulants on

the development and productivity of rice plants.
2 Materials and methods

2.1 Material

Arthrospira platensis biomass was commercially acquired from

Galena Quıḿica e Farmacêutica LTDA (Campinas, Brazil). Rice
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seeds (Oryza sativa L. ssp. indica cv. Puitá INTA-CL) were provided

by Instituto Rio-Grandense do Arroz (IRGA) (Rio Grande do Sul,

Brazil). All reagents used were analytical grade.
2.2 Biochar production

The powdered biomass of the cyanobacteria/microalgae A.

platensis was acquired from Galena Quıḿica e Farmacêutica

LTDA (Campinas, Brazil). For the preparation of the biochar, we

followed the methodology described by Agnol et al. (2021), with

minor modifications. The pyrolysis was conducted in a muffle

furnace (SolidSteel, São Paulo, Brazil) at a heating rate of 10°C/

min. To prepare the biochar, approximately 20 g of the biomass was

placed in 55 mL porcelain crucibles, which were then placed in the

muffle furnace for calcination at 300°C for 2 h. After carbonization,

the biochar was cooled within the heating system until it reached

room temperature. Subsequently, the biochar was manually

pulverized into a fine powder using a mortar and pestle.
2.3 Characterization of biochar

The biochar was mounted on a metallic support using carbon

tape and coated with gold for morphology analysis using scanning

electron microscopy (SEM) (Carl Zeiss EVO-LS10, Germany). The

chemical composition of the biochar was evaluated using the

TESCAN VEGA3 model (Czech Republic), operating at 20 kV

with a magnification of 100x, appraised through energy dispersive

spectroscopy (EDS), which was integrated with SEM using the

Bruker Nano XFlash Detector 6-10. Additionally, the samples were

analyzed by X-Ray Fluorescence spectrometer (XRF) (Shimadzu,

EDX 7000) for elemental mapping. Changes in the molecular

structure of the biochar were assessed using Fourier-Transform

InfraRed (FTIR) spectroscopy. The spectrophotometer (Shimadzu

IRAffinity-1, Japan) was utilized to detect functional groups,

recording spectra between 400 and 4000 cm-1 with a spectral

resolution of 4 cm-1. Surface area was determined using the

Brunauer, Emmett, Teller (BET) method, and porosity was

assessed using the Barret, Joyner, Halenda (BJH) method on a

Gemini VII 2390 surface analyzer (Micromeritics, USA). Prior to

analysis, the sample was dried at 180°C for 3 h in a nitrogen

atmosphere, following the procedure outlined by Reis et al. (2021).

pH analysis of the biochar was conducted using a digital pH meter

at 25°C (Digimed, Brazil).
2.4 Plant cultivation

Seed asepsis was conducted by immersing the seeds in a solution

comprising 60% distilled water, 40% sodium hypochlorite (2%), and

three drops of neutral detergent for 5 min. Subsequently, the seeds were

rinsed five times with distilled water for 5 min each. Following asepsis,

rice seeds were germinated in Olen boxes (model K31-1000-5),

containing a complete nutrient solution (pH 5.4) as described by

Ricachenevsky et al. (2011). The nutrient solution was changed three
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times per week. The boxes were placed in a BOD-type growth chamber

set at 25°C with a photoperiod of 16 h light (200 mmol m−2 s−1) and 8 h

dark for 20 days to facilitate seed germination and seedling

development. After this initial period, the seedlings were transferred

to a growth room maintained at 25°C with a photoperiod of 16 h light

(200 mmol m−2 s−1) and 8 h dark for an additional 20 days.
2.5 Biochar treatment and plant
growth evaluation

The experiment consisted of four treatments: a control

condition with only nutrient solution, as described by

Ricachenevsky et al. (2011), and three conditions with different

concentrations of biochar (0.02, 0.1, and 0.5 mg mL-1) added to the

complete nutrient solution. The pH of the nutrient solutions was

adjusted to 5.4 after the addition of biochar. The experiment was

conducted in biologically independent triplicates. Plant collections

were carried out after 10 and 20 days of treatment with biochar,

approximately at the V4 vegetative stage, according to Counce et al.

(2000). At each collection, 15 plants from each condition were

harvested for growth parameter analysis. Following the second

collection, rice plants from each treatment were transplanted into

8 L pots containing Tropstrato substrate (Vida Verde). The water

level in the pots was established after 5 days using distilled water,

and the plants remained in a greenhouse until the end of the cycle

(approximately 125 days) for productivity analyses.
2.6 Productivity parameters

Plants were analyzed based on key components recommended

for the culture, including the time to phase transition (vegetative vs.

reproductive), which involved counting days to reach stages R3

(panicle emergence), R4 (anthesis), and R5 (grain filling), according

to Counce et al. (2000). Other parameters assessed included the

plant height, number of tillers, number of seeds per plant,

percentage of full seeds per plant, weight of 1,000 full seeds, seed

weight per plant, grain length, and grain area. Grain length was

measured using a digital caliper (DIGIMESS-100.172, Brazil), and

the grain area was calculated using ImageJ software. All data were

presented as the means and standard errors of at least 15

independent biological replicates.
2.7 Protein extraction and digestion

Proteins were extracted from 250 mg of fresh shoots and roots

from rice plants submitted to control condition or to 0.5 mg mL-1

biochar for 20 days by pulverizing them in the presence of liquid

nitrogen until a fine powder was formed. Subsequently, proteins

were extracted and purified using the solvents provided in the Plant

Total Protein Extraction Kit (Sigma-Aldrich, USA), following the

manufacturer’s recommendations. The protein concentration was

determined using the 2-D Quant Kit (Cytiva, USA). Protein

digestion was carried out using 100 mg of protein from each
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sample and trypsin as a denaturing agent. Initially, the samples were

precipitated using a methanol/chloroform solution to remove

possible detergent fragments, following the protocol outlined by

Nanjo et al. (2012). After precipitation, the samples were

resuspended in a 7 M urea/2 M thiourea buffer, and tryptic

digestion of proteins (V5111; Promega, USA; final enzyme-to-

protein ratio of 1:100) was performed using the filter-aided

sample preparation (FASP) method (Wiśniewski et al., 2009),

with modifications (Burrieza et al., 2019). The resulting peptides

were quantified using the protein and peptide method at 205 nm

using a NanoDrop 2000c spectrophotometer (Thermo Fisher

Scientific, USA).
2.8 Mass spectrometry analysis

Mass spectrometry was performed using a nanoACQUITY

ultra-performance liquid chromatograph (UPLC) coupled to a Q-

TOF SYNAPT G2-Si instrument (Waters, UK) as described by da

Paschoa et al. (2024).
2.9 Proteomic data analysis

Spectra processing and database search conditions were

performed according to da Paschoa et al. (2024). For data

analysis, the proteome of the species Oryza sativa (ID:

UP000059680), available on UniProtKB (https://www.uniprot.org/

), was used. Label-free quantification analysis was performed

according to da Paschoa et al. (2024). For the comparative

analysis, only the proteins present or absent (for unique proteins)

in the three biological replicates were accepted for differential

abundance analysis. Comparative analyses were performed on

samples treated with biochar relative to control samples. Data

were analyzed by Student’s t-test (two-tailed). Proteins with a p-

value < 0.05 were deemed up-accumulated if the Log2 of the fold

change (FC) > 0.6, and down-accumulated if the Log2 of the FC <

-0.6. The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

e t a l . , 2 0 22 ) p a r tn e r r epo s i t o r y w i t h th e da t a s e t

identifier PXD051225.
2.10 Protein-protein interaction network

A protein-protein interaction (PPI) network analysis was

conducted to unravel rice responses to 20-days biochar exposure.

PPI networks were constructed via the metasearch tool STRING

11.5 (https://string-db.org/) utilizing all differentially abundant

proteins identified through MS/MS using the Oryza sativa

database, adding 50 shell proteins (directly associated with our

input proteins), and with the “Textmining” option disabled. Given

that an additional shell of proteins was used as input together with

the proteins identified by MS/MS, a minimum required interaction

score of high confidence was chosen (0.700). To pinpoint high-

degree proteins pivotal in the PPI network as predicted by STRING,
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we employed Cytoscape software 3.9.1 (https://cytoscape.org/), and

subsequently utilized the Cytoscape plugin Cytohubba 0.1 (https://

apps.cytoscape.org/apps/cytohubba).
2.11 Statistical analysis

For all data, except the proteomics, Shapiro–Wilk (for

normality) and Levene (for homogeneity of variance) tests were

performed on the residuals of the fitted model. All data

demonstrated normal distribution and were statistically compared

(control vs. biochar concentrations) utilizing One-Way ANOVA

followed by Tukey’s test (p ≤ 0.05) in the case of homogeneous

variance or followed by Dunnett’s C test (p ≤ 0.05) in the case of

heterogeneous variance. SPSS Base 23.0 for Windows (SPSS Inc.,

USA) was used for statistical analysis.
3 Results and discussion

3.1 Morphological and physicochemical
characterization of biochar

In the SEM images, the biochar exhibits a heterogeneous

morphology characterized by irregular structures, a rough surface,

and the presence of particles of various sizes and shapes

(Figures 1A, B). These features likely indicate the presence of

amorphous organic reg ions affec ted by the thermal

decomposition of the raw material, as the carbon structure

typically remains unaffected by pyrolysis at 350°C (Mendonça

et al., 2017). Similar observations were made by Ma et al. (2022),

who also noted a heterogeneous morphology and rough surface in

Spirulina biochar. EDS analysis indicated high levels of C, N, and O

(51.00, 26.00, and 20.00 wt%, respectively - Figure 1C).

Additionally, several minerals were identified using XRF analysis

(Na: 1.08; K: 0.67; P: 0.63; Mg: 0.19; Ca: 0.17; S: 0.16; Fe: 0.05; and Si:

0.05 wt% - Figure 1D). Such elemental composition may contribute

to the formation of its rough surface and positively influence seed

germination. Sun et al. (2023) reported an 11% increase in the

germination rate of Nasturtium officinale seeds treated with

microalgae biochar compared to the control group. Additionally,

Binda et al. (2020) identified higher levels of Na, K, and Mg in

Arthrospira sp. biochar compared to Chlorella vulgaris biochar.

According to Law et al. (2022), alkali and earth alkali metals

presented in biochar composition may increase the pH of the

biochar. Therefore, the mineral composition of the Spirulina-

derived biochar may have contributed to the observed alkalinity

(pH 7.8). pH is a critical parameter in considering the application of

A. platensis biochar in agriculture, as it can be utilized for soil

correction purposes. Furthermore, biochar with a high alkaline pH

indicates a high ash content, which can lead to improved soil

structure, microbial biodiversity, rhizobia nodulation, and

increased concentrations of minerals crucial for plant

development (Gryta et al., 2023). Generally, biochar has an

alkaline pH due to synthesis conditions, biomass used, and

inorganic elements comprising it, such as phosphates and ashes
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(Chen et al., 2019a). Despite its basic characteristic, studies suggest

the addition of biochar even in alkaline soils as a mitigative measure

to increase carbon sequestration, improving their physicochemical

properties and, consequently, the development of cultivated plants

(Abrishamkesh et al., 2015; Mete et al., 2015). Other studies show

that the application of alkaline biochar does not increase the pH of

alkaline soils; instead, it may induce a decreasing trend in pH,

especially with higher rates of biochar application (Zhang and Liu,

2012). The use of biochar in sandy or acidic soils has been shown to

significantly increase plant productivity (Dai et al., 2020). However,

it’s important to conduct a prior evaluation of soil composition to

determine the most suitable biochar, as negative effects on plants

may arise if the properties of the biochar and soil are not

considered together.

The A. platensis biochar produced through slow pyrolysis

exhibited a yield of 55% of the original A. platensis weight. The

high yield is attributed to the low temperature (300°C) employed in

this study during the production process, as this parameter depends

on both temperature and residence time. Sun et al. (2023)

demonstrated that microalgae biochar yields decreased from
Frontiers in Plant Science 05
approximately 37% to 32% with an increase in pyrolysis

temperature from 450 to 700°C. The pyrolysis of microalgae

biomass begins with dehydration at temperatures below 200°C,

followed by the decomposition of carbohydrates, lipids, and

proteins between 200 and 550°C (Sun et al., 2022). The high

production yield of biochar is considered highly feasible and

reliable for agricultural use when compared to other methods, as

described by Yu et al. (2017).

FTIR analysis was conducted to identify the different functional

groups present in the A. platensis biomass and biochar (Figure 2). In

the biomass spectrum, a broad band around the peak at 3460 cm-1 is

observed, representing the hydroxyl (O-H) group (Cheng et al.,

2023), attributed to compounds such as phenols and amine groups

(Binda et al., 2020), and polysaccharides (Wang et al., 2024). The

peak at 2925 cm-1 is associated with asymmetric C-H vibration

(Wang et al., 2022), indicating the presence of hydrocarbons (CH2

and CH3 groups - Cheng et al., 2023), typical of polysaccharides

structures, mainly cellulose fiber (Wang et al., 2024). At 1680 cm-1

peak we detected a broad band present in both spectra, typical of

C=O bond stretching of the amide of polypeptides/proteins (Chen
FIGURE 1

SEM images (A, B) at two different magnifications (1,500x and 3,000x), SEM-EDS 20 kV spectra (C), and elemental composition (D) by XRF of biochar
derived from Arthrospira platensis.
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et al., 2019b). The peak around 1080 cm-1 indicates the coupling of

the C-O or the C-C stretching modes (Tas et al., 2022), suggesting

the presence of phosphate compounds (Choi et al., 2020) or

polysaccharides (Wang et al., 2022; Cheng et al., 2023). The

absence or low intensity of peaks representing functional groups

in the biochar indicates that pyrolysis causes modification in the

structure and chemical bonds of the compounds. In some cases,

high pyrolysis temperatures can also lead to the formation of

aromatic compounds, such as the peak at 880 cm-1 observed in

the biochar spectrum (Pena et al., 2023). Our results are similar to

those reported in the literature for other microalgae/cyanobacteria

biomasses (Cheng et al., 2023; Ladjal-Ettoumi et al., 2024).

Therefore, these compounds present in A. platensis biochar could

potentially participate in the biostimulation of rice plants.

The A. platensis biochar exhibited a surface area of 0.5236 m² g-1, a

pore volume of 0.000298 cm³ g-1, and an average pore size of 2.039 nm.

These parameters, including porosity and specific surface area, play

crucial roles in improving soil properties and promoting water

adsorption. They are significantly influenced by the pyrolysis

temperature, with higher temperatures resulting in increased surface

area and pore volume (Gan et al., 2018). For instance, the surface area

of Spirulina biochar increased from 2.2 to 4.0 m² g-1 when the

production temperature was raised from 300 to 400°C. A similar

trend was observed regarding pore volume (Piloni et al., 2021).

The pore distribution analysis revealed a heterogeneous surface

of the biochar, consisting of micropores (0-2 nm) and mesopores
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(2-40 nm). This porous structure offers numerous benefits,

including increased water retention capacity, gas and nutrient

adsorption, and greater soil carbon stability and storage (Amin

et al., 2016). Consequently, the characterization of biochar

highlights the potential of the microalgae/cyanobacteria A.

platensis to produce biomaterials with intriguing physicochemical

and structural properties for various applications, such as soil

fertilizers and plant growth stimulants. Moreover, the

morphology, presence of mineral salts, and highly porous

structure of biochar may have contributed to enhanced nutrient

availability for plants, thereby increasing rice plant productivity, as

demonstrated in the subsequent sections.
3.2 Influence of biochar on the growth and
development of rice plants

Improved absorption of nutrients and water by plants is attributed

to the increased length of primary and adventitious roots (Cochavi

et al., 2020). Additionally, mass increment is a crucial factor for plant

development, as it contributes to increased leaf number and area,

enhancing light interception efficiency and photosynthate metabolism

in plants (Liu et al., 2021b). In our study, no significant differences were

observed in shoot length after 10 (F = 1.555; df = 3, 27; p = 0.223) and

20 days (F = 2.332; df = 3, 25; p = 0.100) of exposure to different

biochar concentrations when compared to the control condition
FIGURE 2

FTIR spectra of biomass and biochar from Arthrospira platensis showing the putative functional groups.
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(Figure 3A). However, a significant reduction (20-23%) in root length

was detected after 10 (10.26 ± 0.40; F = 4.142; df = 3, 25; p = 0.016) and

20 days (12.71 ± 0.57; F = 6.959; df = 3, 26; p = 0.001) of exposure to 0.5

mg mL-1 biochar in relation to the control condition (10 days: 12.90 ±

0.57; 20 days: 16.43 ± 0.92 - Figure 3B). The absence of a significant

effect on shoot length and the observed reduction in root length were

not entirely unexpected, as previous studies have reported conflicting

results regarding the impact of biochar treatment on these parameters

(Liu et al., 2021a). While some studies have shown an increase in shoot

and/or root length following biochar treatment (An et al., 2022; Han

et al., 2023), others have reported a decrease (Lakitan et al., 2018; Yin

et al., 2023; Ruan and Wang, 2024). Despite the various benefits

associated with biochar incorporation into soil or hydroponics,

outcomes can be highly variable due to factors such as the origin/

quality of the raw material, the production process of the biochar, the

application dosages of biochar, the genotype/cultivar/species tested, as

well as the management practices and irrigation systems used in plant

cultivation (Joseph et al., 2021). It is well-established that high

concentrations of biochar applied to soil can lead to toxic effects

(Zafar et al., 2023). For instance, concentrations as high as 40 mg

mL-1 inhibited the growth of Arabidopsis thaliana roots by up to 55%,

attributed to the toxic accumulation of molecules in the root

meristematic nucleus. This accumulation can disrupt the

transcription levels of genes involved in auxin biosynthesis, a critical

hormone for root development, ultimately hindering plant growth

(Yan et al., 2021). However, in our study, the highest concentration

used (0.5 mg mL-1) was likely insufficient to induce toxicity. Therefore,

the observed lack of stimulatory effects on shoot and root length may
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signify an optimization of resource allocation, a notion supported by

the proteomic data presented in subsequent sections.

Similar to the shoot length data, the exposure of rice plants to

different biochar concentrations for 20 days did not result in

significant changes in shoot dry weight (F = 2.614; df = 3, 27; p =

0.072). After 10 days of exposure to 0.1 mg mL-1 of biochar, we

detected a slight decrease in shoot dry weight (11.74 ± 0.70; F =

7.350; df = 3, 23; p = 0.001) when compared with the control

condition (15.30 ± 1.12 - Figure 3C). Surprisingly, when rice plants

were exposed to 0.5 mg mL-1 of biochar for 10 days, we detected the

highest root dry weight (F = 8.337; df = 3, 13; p = 0.002 - Figure 3D),

despite the same treatment resulting in the lowest root length

(Figure 3B). This suggests that the increase in dry weight may be

attributed to the thickening of the cell wall of root cells, probably

leading to an increase in the diameter of these roots, rather than

growth in length. Therefore, it is noteworthy that the primary

growth and developmental effects of biochar application in rice

plants are related to root tissues. While many studies linking

biochar use to enhanced root development focus on increased

root length and improved uptake of immobile nutrients in soils

(Abiven et al., 2015; Huang et al., 2021), it is important to recognize

that increasing root diameter can also contribute to enhancing root

surface area. This strategy may be particularly relevant for plants

grown in a hydroponic system like ours. To the best of our

knowledge, this is the first report of enhanced thickening of the

root system in plants subjected to a brief exposure to biochar. After

20 days, no significant differences were observed among the

treatments for root dry weight (F = 0.445; df = 3, 20; p = 0.724 -
FIGURE 3

Growth parameters of rice plants treated with 0.02, 0.1, and 0.5 mg mL-1 of Spirulina-derived biochar for 10 and 20 days. Shoot length (A), root
length (B), shoot dry weight (C), and root dry weight (D). Bars represent the mean ± SE (n = 8). Different letters indicate statistically significant
differences (P ≤ 0.05) between tested conditions (Control, 0.02, 0.1, and 0.5 mg mL-1 of biochar) in each exposure time (10 and 20 days).
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Figure 3D), suggesting that the increase in root thickening is a rapid

response to the biochar application.

After the plants were transplanted to the substrate and maintained

under greenhouse conditions, compared with the control condition, we

were unable to detect any effect of biochar exposure on the number of

days to reach specific developmental stages (R3: F = 4.510; df = 3, 61; p
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= 0.006; R4: F = 3.013; df = 3, 64; p = 0.036; R5: F = 5.209; df = 3, 64; p =

0.003 - Figure 4A), plant height at maturity (F = 0.366; df = 3, 64; p =

0.778 - Figure 4B), and tiller number (F = 3.910; df = 3, 62; p = 0.013 -

Figure 4C), regardless of the tested concentration. According to Lakitan

et al. (2018), the application of wood biochar at rates up to 1.2 Mg ha-1

in rice cultivation increased tillering and rice yield without affecting
FIGURE 4

Developmental characteristics of rice plants treated with 0.02, 0.1, and 0.5 mg mL-1 of Spirulina-derived biochar for 20 days during the vegetative stage.
Number of days to reach specific developmental stages (A), plant height at maturity (B), and tiller number (C). Bars represent the mean ± SE (n = 15).
Different letters indicate statistically significant differences (P ≤ 0.05) between tested conditions (Control, 0.02, 0.1, and 0.5 mg mL-1 of biochar). In (A),
different letters indicate statistically significant differences (P ≤ 0.05) between tested conditions (Control, 0.02, 0.1, and 0.5 mg mL-1 of biochar) in each
developmental stage: R3 (panicle emergence), R4 (anthesis), and R5 (grain filling).
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plant height at maturity. In the following section, we demonstrate that a

20-day exposure of rice plants to 0.5 mg mL-1 Spirulina-derived

biochar during the vegetative stage can increase seed production

without interfering with the tiller number.
3.3 Influence of biochar on rice
seed production

At the full maturity stage, seed production was evaluated to

assess the effect of 20 days’ exposure of rice plants to Spirulina-

derived biochar. Compared with the control condition, the

highest biochar concentration (0.5 mg mL-1) resulted in an
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increased number of seeds (empty + full) per plant (F = 3.139;

df = 3, 59; p = 0.032 - Figure 5A), percentage of full seeds per

plant (F = 13.911; df = 3, 63; p < 0.001 - Figure 5B), weight of

1,000 full seeds (F = 9.090; df = 3, 196; p < 0.001 - Figure 5C),

seed weight per plant (F = 4.115; df = 3, 61; p = 0.010 -

Figure 5D), and grain area (F = 7.697; df = 3, 116; p < 0.001 -

Figure 5F), while grain length was not affected by the biochar

application (F = 1.262; df = 3, 116; p = 0.291 - Figure 5E). Similar

results were found using biochar produced from different

biomasses. Lakitan et al. (2018) showed that applying wood

biochar to rice plantation at rates up to 1.2 Mg ha-1 increase

several rice yield components, as number of grains per panicle,

panicle density, percentage of filled grain, and weight of 1,000
FIGURE 5

Seed characteristics of rice plants treated with 0.02, 0.1, and 0.5 mg mL-1 of Spirulina-derived biochar for 20 days during the vegetative stage.
Number of seeds (empty + full) per plant (A), percentage of full seeds per plant (B), weight of 1,000 full seeds (C), seed weight per plant (D), grain
length (E), and grain area (F). Bars represent the mean ± SE [n = 15 in (A, B, D); n = 50 in (C); n = 30 in (E, F)]. Different letters indicate statistically
significant differences (P ≤ 0.05) between tested conditions (Control, 0.02, 0.1, and 0.5 mg mL-1 of biochar).
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grains. Rice straw biochar application increased the grain yield of

rice plants after 6-year successive application (1.5 t ha-1 year-1 -

An et al., 2022). Also applying rice straw biochar (20 g kg-1 soil)

during the entire growing season, Chen et al. (2023) showed that

rice plants increased the effective panicle, grain number per

panicle and seed setting rate. However, it decreased the 1,000-

grain weight, resulting in an increase in yield (Chen et al., 2023).

It is important to note that most of the research on biochar

involves long and/or continuous applications (Huang et al., 2018;

Xu et al., 2022), spanning up to six years (An et al., 2022). To the

best of our knowledge, this is the first study to demonstrate a

beneficial effect of short-term biochar application (20 days during

the vegetative stage) on rice seed production. The Puitá INTA-CL

cultivar (used in our work) is characterized by a medium cycle,

short stature, and high tillering capacity. In field conditions, this

genotype demonstrates its maximum productive potential, with a

weight of 1,000 grains reaching 25.7 g. However, achieving this

potential relies heavily on the soil and climatic conditions of the

cultivated area, which are rarely optimal in arable areas, even with

ideal soil profiles (He et al., 2023). In this study, we demonstrated

that the incorporation of microalgae/cyanobacteria biochar into the

growing medium enabled plants to approach very close to the

maximum productive potential, reaching approximately 24 g. This

can significantly enhance both the quality and quantity of grains in

a smaller planting area. Moreover, the utilization of microalgae

biochar can reduce fertilizer costs in crop management when

combined with other cost-effective sources of N for soil

application, thanks to the presence of micropores that facilitate

the slow release of essential nutrients for plants (Gonçalves et al.,

2023; Yadav et al., 2023).

Another promising application is the addition of biochar to

crop rotation areas in conjunction with green manure, as it helps

mitigate greenhouse gas emissions and provides C availability for

subsequent crops (Zhang et al., 2023). The food crisis, wars, and

climate change have posed challenges to global agricultural

production. In addition, agricultural soils have been experiencing

degradation and leaching over the past 100 years. It is estimated that

food demand will increase by approximately 70% by 2050 (Kopittke

et al., 2019). Therefore, the development of environmentally

friendly, low-cost, slow-release, and highly efficient biofertilizers is

necessary. In this context, the use of Spirulina-derived biochar may

emerge as an efficient mitigating measure for soil recovery and

nutrient delivery to plants, as well as reducing the effects of climate

change through long-term C sequestration and contributing to

global food security.

The productivity of rice grown in soils with biochar largely

depends on the type of management. In rainfed rice cultivation, an

increase of 10.6% in productivity was observed, while flooded rice

showed an increase of 5.6% (Ye et al., 2020). This difference can be

attributed to the ability of biochar to retain water and alkalinize the

soil, resulting in less significant responses under ideal water

conditions. Other studies have reported an increase in the yield of

vegetables such as broccoli, tomato, lettuce, coriander, basil,

spinach, and pepper grown with biochar (≤ 20 t ha-1) combined

with inorganic fertilizers (Choi et al., 2018; Edussuriya et al., 2023).

This effect is attributed to the ability of biochar to retain and
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improve biological N2 fixation and make K available to plants,

contributing to up to a 15% increase in productivity (Rondon et al.,

2007; Güereña et al., 2013; Van Zwieten et al., 2015).

The use of biochar combined with organic fertilizers can

contribute to the increase in microbial taxa related to the cycles

of C, N, P, and S, and improve the soil’s ecosystem functions

(Antonangelo et al., 2021; Hu et al., 2024). Other combined

treatments of biochar at low dosages (0.5 and 2 t ha-1) with NPK,

cow urine, and organic compost revealed a significant increase of

20%, 103%, and 123%, respectively, in the yield of 13 evaluated

crops compared to treatments without biochar (Schmidt et al.,

2017). These results are suggested to be due to the high retention

capacity and interaction of biochar molecules with urine

compounds and fertilizers through chemical bonds and physical

entrapment. Puga et al. (2020) demonstrated that the use of 51%

biochar with 10% nitrogen (BN51/10) increased the yield of maize

plants by 21% compared to the control group treated with urea.

Furthermore, the BN51/10 treatment promoted carbon sequestration

in the soil and aided in greenhouse gas mitigation. Another study

utilized biochar-urea composites (Bio-MUC) that showed

improved N use efficiency and an increase of 37.7% in root

volume of maize plants. Additionally, the fresh shoot and root

mass increased by 13.8% and 25.1%, respectively, with the Bio-

MUC composite (Shi et al., 2020).
3.4 Overview of proteomic analysis

A total of 616 proteins were identified in rice shoots, while 534

proteins were detected in roots, comparing control and biochar (0.5

mg mL-1) conditions for 20 days. From these, only 38 (6.2%) and 18

(3.4%) were found exclusively or showed differential abundance in

shoots and roots, respectively (Figure 6). In the shoots, 21 were

more abundant (with 7 unique) under control condition, while 9

were more abundant (with 1 unique) under biochar exposure

(Figure 6A). In the roots, 10 were more abundant (with 2 unique)

under control condition, while 5 were more abundant (with 1

unique) under biochar exposure (Figure 6B). Each protein’s

sequence underwent comparison with NCBI BLASTp to

determine specific domains, molecular functions, and

annotations. Afterwards, proteins were classified into functional

categories according to existing literature and their presumed

molecular functions. Tables 1 and 2 contain lists of all unique or

differentially abundant proteins identified in the rice shoots and

roots, respectively. In the following sections, some of these proteins

will be discussed in terms of their putative impact on the rice

growth/development and the increased seed production observed in

biochar-treated plants.

3.4.1 Shoot proteins affected by biochar
Surprisingly, after 20 days of exposure to biochar, the functional

category most inhibited in rice shoots was photosynthesis, as

evidenced by decreased abundance of proteins such as

Photosystem II 22 kDa protein 2, Cytochrome b6-f complex

subunit 4, Photosystem I P700 chlorophyll a apoproteins, and

Photosystem II protein D1. Furthermore, proteins involved in
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amino acid synthesis (Threonine and Cysteine synthase), cell wall

synthes is (UDP-glucose 6-dehydrogenase 5) , defense

(Phenylalanine ammonia-lyase), glycogen synthesis (UDP-glucose

pyrophosphorylase), sulfur transfer (Thiosulfate sulfurtransferase),

vitamin biosynthesis (2-methyl-6-phytyl-1,4-hydroquinone

methyltransferase 2), and cell cycle (Rhodanese-like protein) were

also detected as less abundant in the shoots of rice plants under

biochar treatment (Table 1). This down-regulation of processes

under biochar treatment suggests that rice plants may adjust

growth, development, and biosynthetic processes during the

vegetative stage to optimize resource allocation towards other

energy-demanding processes, such as seed production. The

reduced energy demand resulting from decreased biosynthetic

processes may prompt the replacement of PSI and PSII proteins,

thereby adjusting the plant’s photosynthetic capacity to match its

energy requirements (Li et al., 2018). Additionally, by reducing the

investment in biosynthesis, plants may prioritize resources towards

root biomass accumulation, as evidenced by the high root dry

weight (Figure 4D), despite the observed decrease in root length

(Figure 4B) after 20 days of exposure to biochar. The decrease in

root length observed in response to biochar treatment could

potentially be associated with the reduced abundance of the

Rhodanese-like protein, a superfamily that fulfills various cellular

functions ranging from resistance to environmental threats such as

cyanide, to key cellular reactions related to sulfur metabolism and

progression of the cell cycle (Cipollone et al., 2007), both processes

also inhibited by the biochar treatment in our study.

However, it’s important to note that such a strategy of reducing

key processes during the vegetative stage in order to optimize

resource allocation towards the reproductive stage would likely be

feasible only under non-stressed environments (and with well-

nourished plants), since most of the energy produced under

challenging growing conditions is typically allocated to defense/
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stress-responsive pathways (Caretto et al., 2015). Initially, the

down-regulation of primary metabolic processes under biochar

treatment could be interpreted as a negative effect, as reported in

different studies (Liao et al., 2014; Gale et al., 2016; Liu et al., 2021a).

However, most of these studies focus solely on physiological

responses immediately after biochar treatment, without

considering the entire plant development or analyzing

seed production.

On the other hand, the functional category most induced in rice

shoots by biochar exposure was translation (Nascent polypeptide-

associated complex alpha subunit, Ribosomal proteins, and

Polyprotein of EF-Ts). Proteins related to protein modification

(Peptidylprolyl isomerase), carbon assimilation (Carbonic

anhydrase), amino acid degradation (Glycine cleavage system H

protein and Alanine transaminase), transcription (S1 RNA binding

domain containing protein), antioxidant system (Peroxidase), and

Cytoskeleton (Actin) were also detected as more abundant in the

shoots of rice plants under biochar treatment (Table 1). Notably,

biochar treatment enhances translational capacity and the flux of

nascent proteins in rice shoots. It is already known that under non-

stress conditions, the Nascent polypeptide-Associated Complex

(NAC) associates with ribosomes to promote translation and

protein folding (Kirstein-Miles et al., 2013). Peptidyl-Prolyl

Isomerases (PPIs) play roles in the folding of newly synthesised

proteins (Shaw, 2002), and several proteins with PPI activity have

been implicated with plant stress defense/tolerance (Lee et al., 2015;

Yoon et al., 2016; Roy et al., 2022). Rice plants overexpressing

OsCYP19-4, a cyclophylin with peptidyl-prolyl cis-trans isomerase

activity, show an increase in grain yield (Yoon et al., 2016).

While there may be studies exploring the role of carbonic

anhydrase (CA) activity in various aspects of plant physiology,

including photosynthesis and carbon fixation (Rudenko et al.,

2021), there is no study directly linking CA activity to improved
FIGURE 6

Venn diagram showing the overlap of proteins identified in shoots (a) and roots (B) of rice plants submitted to control and 0.5 mg mL-1 of Spirulina-
derived biochar for 20 days. Red circles: control condition; green circle: biochar 0.5 mg mL-1; yellow means overlap.
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TABLE 1 Differentially abundant proteins in rice shoots after 20 days of exposure to 0.5 mg mL-1 of Spirulina-derived biochar.

Rice Biochar x Control - Proteins unique or more abundant in shoots under control condition

Functional categories Description Uniprot
Reported
peptides

t-Test
Log2

Fold Change

Photosynthesis

Photosystem II 22 kDa protein 2, chloroplastic Q0J8R9 3 – –

Cytochrome b6-f complex subunit 4 P0C319 6 0.01235 -0.94

Photosystem I P700 chlorophyll a apoprotein A2 P0C358 12 0.03644 -0.85

Photosystem II protein D1 P0C434 9 0.00463 -0.65

Photosystem I P700 chlorophyll a apoprotein A1 P0C355 9 0.03046 -0.63

Amino acid synthesis
Threonine synthase Q6L4H5 4 – –

Cysteine synthase Q9XEA8 7 0.03604 -0.87

Translation
Eukaryotic initiation factor 4A-3 Q6Z2Z4 15 – –

Elongation factor protein Q8W0C4 8 – –

Cell wall synthesis UDP-glucose 6-dehydrogenase 5 Q2QS13 11 – –

Protein degradation 26S proteasome regulatory subunit protein A0A0P0VG21 2 – –

Defense Phenylalanine ammonia-lyase A0A0P0VM80 8 – –

Carbohydrate
metabolism (Glycogenesis)

UDP–glucose pyrophosphorylase Q6ZGL5 8 0.01292 -1.53

Sulfur transfer Thiosulfate sulfurtransferase Q0D5S1 2 0.01189 -1.35

Vitamin biosynthesis
2-methyl-6-phytyl-1,4-hydroquinone
methyltransferase 2, chloroplastic

Q2QM69 5 0.02984 -0.71

Cell cycle Rhodanese-like protein Q6H444 6 0.02216 -0.68
F
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Rice Biochar x Control - Proteins unique or more abundant in shoots under biochar treatment

Functional categories Description Uniprot
Reported
peptides

t-Test
Log2

Fold Change

Translation

Nascent polypeptide-associated complex
alpha subunit

Q8LMR3 3 0.02334 1.18

Ribosomal protein S6 Q75LD8 2 0.01168 0.94

Large ribosomal subunit protein uL5c Q9ZST0 10 0.01971 0.91

Ribosomal protein L3 Q0E446 5 0.01405 0.84

30S ribosomal protein S31 Q60EZ7 2 0.01099 0.77

Ribosomal protein Q60E59 7 0.01629 0.75

Rribosomal protein S18 A0A0P0V3F2 2 0.01196 0.73

Polyprotein of EF-Ts, chloroplastic Q2QP54 18 0.02363 0.73

50S ribosomal protein L19 Q6H8H3 2 0.01254 0.62

Protein modification

Peptidylprolyl isomerase Q6ZIT9 4 0.02665 1.51

Peptidylprolyl isomerase Q6YW78 9 0.03841 1.29

Peptidylprolyl isomerase Q5Z4M6 9 0.04375 1.16

Photosynthesis/Carbon assimilation
Carbonic anhydrase A0A0P0V5S4 2 – –

Ferredoxin-1, chloroplastic Q0J8M2 3 0.04140 1.46

Photosynthesis
Photosystem I iron-sulfur center P0C361 5 0.03461 1.22

Oxygen-evolving complex protein PsbP Q2QNI4 2 0.01038 0.64

(Continued)
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seed production in plants. However, it’s important to note that

the role of CA in facilitating CO2 assimilation and pH regulation

within plant cells (DiMario et al., 2018) could indirectly

influence seed production by optimizing photosynthetic

efficiency and overall plant growth. Additionally, increased CA

activity may promote C assimilation and partitioning towards

reproductive sinks, including developing grains, by providing a

steady supply of C precursors that can support grain filling and

increase grain yield in crop plants (Julius et al., 2017). Glycine

and Alanine degradation pathways are interconnected with

central C and energy metabolism. The breakdown of these

amino acids can generate intermediates that enter energy-

producing pathways, such as the tricarboxylic acid cycle, to

produce ATP (Hildebrandt et al., 2015). Increased energy

availability resulting from Glycine and Alanine degradation

may therefore support the energy-demanding processes

associated with protein translation, such as ribosome

biogenesis and aminoacyl-tRNA charging.

Besides being key components of the plant antioxidant defense

system, which helps maintain cellular redox homeostasis by

detoxifying ROS (Freitas et al., 2024), peroxidases are involved in

cell wall remodeling processes, including lignification and cross-

linking of cell wall components (Barros et al., 2015). Enhanced

peroxidase activity can promote cell wall strengthening and rigidity,

which can provide structural support to developing plant tissues,

including the vascular system. This enhanced structural integrity

can reduce lodging and support efficient nutrient and water

transport (Notaguchi and Okamoto, 2015), contributing to

increased grain filling and yield.

3.4.2 Root proteins affected by biochar
The functional category most inhibited in rice roots after 20

days of exposure to biochar was stress (Heat shock 70 kDa protein

BIP4 and Cold shock domain proteins). One protein related to lipid

metabolism (Non-specific lipid-transfer protein 3) was also detected

as less abundant in the roots of rice plants under biochar treatment

(Table 2). Plant non-specific lipid-transfer proteins (nsLTPs) are

involved in key processes, including resistance to biotic/abiotic

stress and plant growth/development (Missaoui et al., 2022).

Once again, the reduced accumulation of stress-related proteins

under biochar treatment appears to be part of an energy reallocation
Frontiers in Plant Science 13
strategy, wherein certain energy-demanding processes are

downregulated in favor of others. Since the control plants were

not under stressful conditions, we believe that a higher abundance

of stress-related proteins in this condition than biochar-treated ones

does not necessarily represent a stressful condition, but rather a

constitutive response that can be finely controlled (decreased) in

cases where the plant needs to reallocate energy resources.

On the other hand, the functional categories most induced in rice

roots by biochar exposure were defense (Hypersensitive-induced

reaction protein-like 2 and Jacalin-like lectin domain containing

protein) and water transport (Probable aquaporin PIP2-6 and

Aquaporin PIP1-3). Proteins related to phenylpropanoid biosynthesis

(Trans-cinnamate 4-monooxygenase), and translation (Elongation

factor protein) were also detected as more abundant in the roots of

rice plants under biochar treatment (Table 2). According to Li et al.

(2019), the hypersensitive induced reaction 3 (HIR3) gene contributes to

rice basal resistance, and Nadimpalli et al. (2000) postulated that these

proteins are generally involved in controlling ion channels, particularly

potassium ion channels. Considering that we found potassium

minerals in the Spirulina-derived biochar composition, we

hypothesize that the hypersensitive-induced reaction protein-like 2

found in our work could be related to potassium transport.

Nonetheless, the higher abundance of two defense-related proteins

under biochar exposure seems to indicate that these plants shift their

basal protection from stress proteins to defense proteins.

It is widely acknowledged that biochar application improves

water uptake and holding capacity (Wu et al., 2023), and thus the

use of biochar as a soil amendment can be a worthy strategy to

guarantee yield stability under short-term water-limited conditions

(Carvalho et al., 2014). Aquaporin proteins belong to a major

intrinsic protein superfamily that has a crucial role in

transporting water and some other molecules (Soliman et al.,

2023). Therefore, the higher abundance of these proteins under

biochar treatment was not unexpected. The phenylpropanoid

pathway is universally acknowledged as a crucial supplier of

metabolites in plants, pivotal for lignin synthesis and as a

precursor for numerous significant compounds such as

flavonoids, coumarins, and lignans (Fraser and Chapple, 2011).

Furthermore, phenylpropanoids play essential roles in various

facets of plant physiology, including growth, development, and

responses to environmental challenges, while also functioning as
TABLE 1 Continued

Rice Biochar x Control - Proteins unique or more abundant in shoots under biochar treatment

Functional categories Description Uniprot
Reported
peptides

t-Test
Log2

Fold Change

Amino acid degradation
Glycine cleavage system H protein, mitochondrial A3C6G9 4 0.02589 1.44

Alanine transaminase A0A0P0X1V6 23 0.00988 0.65

Transcription S1 RNA binding domain containing protein Q0DSD6 13 0.04516 1.24

Protein degradation 26S proteasome regulatory subunit 6A homolog P46465 2 0.00912 1.21

Antioxidant system Peroxidase Q6ER49 9 0.03997 0.94

Cytoskeleton Actin Q67G20 21 0.02514 0.68
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potent antioxidants (Rahim et al., 2023). Accordingly, we propose

that rice plants treated with Spirulina-derived biochar exhibit

greater diversity in secondary metabolites than control plants.
3.5 Computational systems
biology analyses

Protein-protein interaction (PPI) networks containing the

proteins with lower (down-regulated) and higher (up-regulated)

abundance in rice shoots and roots after 20 days of exposure to 0.5

mg mL-1 of biochar are shown in Figure 7. Corroborating the data

presented in Table 1, exposure of rice plants to biochar inhibited

biosynthetic processes in shoots, such as photosynthesis, cell wall

synthesis, and amino acid synthesis (Figure 7A), and stimulated

shoot translation and amino acid degradation (Figure 7B). In the

roots, besides the previously detected functional categories shown

in Table 2, the PPI interaction analysis revealed two novel metabolic
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processes modified by biochar exposure: inhibition of transcription

factors (Figure 7C), and stimulation of nitrogen assimilation

(Figure 7D). Both modified processes in rice roots during the

vegetative stage may be relevant for increasing grain production.

With decreased activity of transcription factors in root cells, less

energy is expended on regulating gene expression related to root

development, allowing more resources to be allocated to other

processes such as grain formation and growth (Vain et al., 2023).

Also, transcription factors are involved in regulating carbohydrate

metabolism, and a decrease in their activity can positively affect

starch reserve accumulation in grains, which is essential for their

growth and development (MacNeill et al., 2017). It is interesting to

note that a small number of proteins related to carbohydrate

metabolism were activated in rice roots after biochar exposure

(Figure 7D), but the amount of carbohydrate metabolism-related

proteins inhibited by biochar exposure was much greater

(Figure 7C), evidencing a downward remodeling of this pathway.

At the same time, increased nitrogen assimilation in root cells is
TABLE 2 Differentially abundant proteins in rice roots after 20 days of exposure to 0.5 mg mL-1 of Spirulina-derived biochar.

Rice Biochar x Control - Proteins unique or more abundant in roots under control condition

Functional categories Description Uniprot
Reported
peptides

t-Test
Log2

Fold Change

Stress

Heat shock 70 kDa protein BIP4 Q75HQ0 2 – –

Cold shock domain protein 2 Q84UR8 2 0.00892 -0.92

Cold shock domain protein 1 Q6YUR8 2 0.04823 -0.66

Carbohydrate metabolism (Glycolysis)

Glyceraldehyde-3-
phosphate dehydrogenase

Q9SNK3 4 0.03032 -0.89

Glyceraldehyde-3-
phosphate dehydrogenase

Q7X8A1 5 0.04078 -0.84

Transport
E1-E2 ATPase domain
containing protein

A0A0P0WKS4 4 – –

Lipid metabolism Non-specific lipid-transfer protein 3 Q2QYL3 2 0.04716 -0.76
Rice Biochar x Control - Proteins unique or more abundant in roots under biochar treatment

Functional categories Description Uniprot
Reported
peptides

t-Test
Log2

Fold Change

Defense

Hypersensitive-induced reaction
protein-like 2

Q6K550 5 – –

Jacalin-like lectin domain
containing protein

C7J408 4 0.02361 1.87

Water transport
Probable aquaporin PIP2-6 Q7XLR1 2 0.02408 1.01

Aquaporin PIP 1-3 Q9SXF8 3 0.03513 0.78

Transport Plasma membrane ATPase A0A0P0VQP6 8 0.00109 2.04

Carbohydrate metabolism (Glycolysis) Phosphopyruvate hydratase A0A0P0WS07 9 0.01182 1.26

Nucleotide metabolism ADP-ribosylation factor protein Q10QD5 3 0.02475 0.68

Phenylpropanoid biosynthesis Trans-cinnamate 4-monooxygenase Q5W6F1 2 0.03379 0.67

Translation Elongation factor protein A0A0N7KIH5 13 0.02630 0.60

Others
Transferase family protein protein A0A0P0Y2T0 5 0.00842 0.99

Dehydrogenase protein A0A0P0VRW1 4 0.04013 0.62
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important to sustain the increased translation detected in both

tissue (shoots and roots) under biochar exposure (Figures 7B, D).

Nitrogen assimilation in the roots can enhance the plant’s ability to

absorb other essential nutrients from the soil, such as phosphorus

and potassium (Anas et al., 2020; Jiaying et al., 2022). This

improved nutrient uptake can contribute to overall plant vigor,

facilitating better grain development and yield (Zhang et al., 2022).
4 Conclusion

The biochar obtained from the pyrolysis of Arthrospira platensis

biomass has emerged as a promising solution for enhancing rice
Frontiers in Plant Science 15
seed production. With an impressive yield of 55% and key attributes

such as the presence of mineral salts and a porous structure, it has

the potential to facilitate nutrient and water adsorption and gradual

release. Exposure of rice plants to 0.5 mg mL-1 of biochar for 20

days resulted in alterations in the expression of numerous proteins

in both shoots and roots, indicating, in conjunction with the

physiological findings, a fine-tuning of resource allocation

towards seed production. These alterations are summarized in

Figure 8. Consequently, this product holds promise as a viable

biostimulant for augmenting rice productivity. It would be

interesting to test whether Spirulina-derived biochar can also be

used to increase seed production in other plant species cultivated

under different agricultural practices and water regimes, thus
FIGURE 8

Schematic model illustrating the rice responses after 20 days of exposure to biochar derived from Arthrospira platensis, and its subsequent impact
on seed production.
FIGURE 7

Graphical visualization of the protein-protein interaction (PPI) network generated including proteins with lower (A, C) and higher (B, D) abundance in
shoots (A, B) and roots (C, D) of rice plants exposed to 0.5 mg mL-1 of Spirulina-derived biochar for 20 days, when compared to control condition.
Rectangles nodes represent the shell proteins directly associated with our input proteins (ellipsis nodes), while edges (straight lines) represent known
or inferred interactions. The network structure derives from Cytoscape following the application of the Organic layout. The color indicates the
degree value (red indicates greater degree).
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offering a significant contribution to sustainable agriculture and

global food security.
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