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YOLO-Ginseng: a detection
method for ginseng fruit in
natural agricultural environment
Zhedong Xie, Zhuang Yang, Chao Li, Zhen Zhang,
Jiazhuo Jiang and Hongyu Guo*

College of Engineering and Technology, Jilin Agricultural University, Changchun, China
Introduction: The accurate and rapid detection of ginseng fruits in natural

environments is crucial for the development of intelligent harvesting

equipment for ginseng fruits. Due to the complexity and density of the growth

environment of ginseng fruits, some newer visual detection methods currently

fail to meet the requirements for accurate and rapid detection of ginseng fruits.

Therefore, this study proposes the YOLO-Ginseng detection method.

Methods: Firstly, this detection method innovatively proposes a plug-and-play

deep hierarchical perception feature extraction module called C3f-RN, which

incorporates a sliding window mechanism. Its unique structure enables the

interactive processing of cross-window feature information, expanding the

deep perception field of the network while effectively preserving important

weight information. This addresses the detection challenges caused by

occlusion or overlapping of ginseng fruits, significantly reducing the overall

missed detection rate and improving the long-distance detection performance

of ginseng fruits; Secondly, in order to maintain the balance between YOLO-

Ginseng detection precision and speed, this study employs a mature channel

pruning algorithm to compress the model.

Results: The experimental results demonstrate that the compressed YOLO-

Ginseng achieves an average precision of 95.6%, which is a 2.4% improvement

compared to YOLOv5s and only a 0.2% decrease compared to the

uncompressed version. The inference time of the model reaches 7.4ms. The

compressed model exhibits reductions of 76.4%, 79.3%, and 74.2% in terms of

model weight size, parameter count, and computational load, respectively.

Discussion: Compared to other models, YOLO-Ginseng demonstrates superior

overall detection performance. During the model deployment experiments,

YOLO-Ginseng successfully performs real-time detection of ginseng fruits on

the Jetson Orin Nano computing device, exhibiting good detection results. The

average detection speed reaches 24.9 fps. The above results verify the

effectiveness and practicability of YOLO-Ginseng, which creates primary

conditions for the development of intelligent ginseng fruit picking equipment.
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1 Introduction

Ginseng, a precious medicinal herb, is a perennial herbaceous

plant belonging to the family Araliaceae. It boasts a long history of

cultivation and medicinal use and is acclaimed as the “King of Herbs”

in China. Ginseng is widely distributed, being cultivated in various

regions, including Northeast China, the Korean Peninsula, Japan,

Russia, the United States, and Canada (Shuai et al., 2023b; Yoon et al.,

2022). Although ginseng varieties differ across locations, their efficacy

remains similar. Research indicates that ginseng exhibits various

health benefits, such as lowering blood pressure (Chen et al., 2024),

protecting the myocardium (Liu et al., 2023), enhancing immune

function, and promoting hematopoiesis (Song et al., 2023).

Ginseng fruit, also known as ginseng berries (Rho et al., 2020), is

the mature fruit produced by ginseng plants after several years of

growth and serves as the seeds of the ginseng plant (Min et al., 2022).

The interior of ginseng fruit contains various functional components,

including ginsenosides (Liu et al., 2019b; Liu et al., 2022; Wan-Tong

et al., 2023), amino acids, proteins, polysaccharides, and Syringaresinol

(Choi et al., 2022; Hwang et al., 2023), which have the same medicinal

and economic value as ginseng. When ginseng fruit reaches maturity,

its surface color transitions from green to a vibrant red, indicating the

opportune time for harvesting. The ginseng fruit generally forms at the

top of the ginseng plant, with dozens of oval-shaped ginseng seeds

densely clustered on the ginseng stamen, arranged in an umbrella-like

structure supported by the ginseng stem, as illustrated in Figure 1A.

The ginseng fruit displays a distinct color difference between the

mature and immature stages, as depicted in Figure 1B. This study

primarily conducts visual detection research on the mature fruits of
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garden-cultivated ginseng in the Northeast China region. Currently,

the harvesting of ginseng fruits has not yet achieved mechanization

and automation, still relying on traditional manual harvesting

methods. This approach is characterized by low efficiency, high

labor strength, and elevated labor costs. Therefore, developing

intelligent harvesting equipment for ginseng fruits to replace manual

harvesting is a healthy path to promote the sustainable development of

the ginseng industry. Building precise and rapid visual detection

technology for ginseng fruits is crucial to achieving mechanized

harvesting of ginseng fruits, providing essential visual guidance for

intelligent harvesting equipment. However, due to the different growth

heights of ginseng plants, the growing environment of ginseng fruits is

dense and complex, which leads to serious overlap and occlusion

problems between ginseng fruits or leaves. Furthermore, due to the

unique growth structure of ginseng plants, they are susceptible to

disturbances from external environmental factors such as wind

direction, resulting in continuous shaking of ginseng fruits or even

the lodging of ginseng plants. These circumstances pose challenges for

the visual detection task of ginseng fruits. Moreover, the overall

growth size of ginseng fruits is relatively small, which also brings a

burden to the long-distance viewing of ginseng fruits.

Currently, machine vision technology has been widely applied

in the field of agricultural engineering, playing a crucial role in

various agricultural tasks such as intelligent harvesting of crops

(Shuai et al., 2023a), intelligent monitoring and early warning (Pan

et al., 2022), and path navigation in complex field environments

(Wang et al., 2022; Luo et al., 2016) proposed a grape automatic

detection method for accurately detecting grape clusters in dense

environments. This method combines grape color components with
(a) (b)
FIGURE 1

Growth status of ginseng fruit. (A) structure of ginseng fruit. (B) mature and immature ginseng fruit.
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the AdaBoost classification framework. It is capable of suppressing

the influence of complex background conditions such as weather,

tree leaf occlusion, and lighting variations to a certain extent. Liu

et al. (2019a) proposed a method for navel orange recognition.

Initially, they introduced an improved Otsu threshold segmentation

method based on the Cr color component and the centroid filling

circle algorithm. This approach effectively identifies the overall

contour of navel oranges, leading to a noticeable improvement in

recognition accuracy. However, the above method is limited to the

target’s geometric shape, color space, surface texture and other

characteristic information for detection, it is not suitable for solving

the detection problem of ginseng fruit.

With the advancement of machine vision technology, deep

learning-based object detection methods have demonstrated

significant advantages in terms of accuracy, efficiency, data

requirements (Zhang et al., 2024b), generalization capability, and

stability (Huang et al., 2023; Zhang et al., 2021). Currently, the one-

stage detection method YOLO (You Only Look Once) is rapidly

evolving (Terven and Cordova-Esparza, 2023), and its advantages

of being lightweight, fast, and accurate enable YOLO to meet the

requirements of agricultural operational scenarios. Among them (Li

et al., 2022), proposed the tea bud detection method YOLOv3-SPP

in order to solve the overlapping and occlusion problems of tea bud

detection in dense and complex growth environments. This method

introduces SPP (Spatial Pyramid Pooling) (He et al., 2015) into the

backbone network of YOLOv3 (Redmon and Farhadi, 2018).

Simultaneously, channel and layer pruning algorithms are applied

to compress the model. As a result, YOLOv3-SPP achieves a mean

average precision of 89.61%, with noticeable reductions in model

inference time, weight size, parameter count, and computational

cost. (Wang et al., 2023b) replaced the backbone network of

YOLOv5 with the inverted residual convolutional modules from

the MobileNetv2 (Sandler et al., 2018) network and integrated them

with a target association recognition method to design a multi-

object selection path. Subsequently, the model’s misjudged output

results were corrected using the least squares method, ultimately

enhancing the recognition speed and accuracy of the apple

harvesting robot effectively (Zhu et al., 2021) introduced a small

detection layer into YOLOv5x, combined with Transformer

encoder block modules and the CBAM (Convlutional Block

Attention Module) (Woo et al., 2018) attention mechanism. This

enhancement effectively improves the accuracy of long-distance

target detection based on remote sensing images (Ma et al., 2023)

proposed the YOLOv5-lotus single-target detection method to

detect mature lotus seedpods. In this method, the CA (Coordinate

Attention) attention mechanism is introduced at the end of the

YOLOv5 backbone network. Ultimately, YOLOv5-lotus achieves an

average precision of 98.3% (Yu et al., 2023) proposed a strawberry

stolon detection method named Stolon-YOLO. In this method, the

authors introduced the HorBlock-decoupled head and Stem Block

feature enhancement module into YOLOv7 to facilitate the

interaction of high-order spatial information and reduce

computational costs. As a result, Stolon-YOLO achieved an

average precision of 88.5% for stolon detection, with a
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computational load of 107.8 GFLOPS (Ang et al., 2024) proposed

the YCCB-YOLO detection method for effectively detecting young

citrus in dense growth environments. To enhance detection

precision while maintaining computational efficiency, this method

integrates pointwise convolution (PWonv) lightweight network and

simplified spatial pyramid pooling fast-large kernel separated

attention (SimSPPF-LSKA) feature pyramid into YOLOv8n.

Additionally, the Adam optimization function is utilized to

further enhance the model’s nonlinear representation and feature

extraction capabilities. As a result, the detection precision of YCCB-

YOLO reaches 97.32%.

In conclusion, deep learning-based object detection methods

are widely applied in the agricultural domain, however, there is

relatively limited research on the detection of ginseng fruits. At the

same time, there are overlapping and occlusion problems caused by

the intricate growth of ginseng fruits and their leaves in the natural

environment, unstable detection problems caused by wind

interference from the external environment, and low long-

distance detection quality caused by the small overall size of

ginseng fruits. The problem also brings difficulties to the task of

accurate and rapid detection of ginseng fruits. Therefore, in order to

solve the above problems, this study proposed the ginseng fruit

detection method YOLO-Ginseng from the perspective of the

growth environment and biological characteristics of ginseng

fruit. The method first conducts comparative experiments and

analyses of several advanced detection methods using a ginseng

fruit image dataset. Finally, the YOLOv5s detection method is

selected as the base network model, considering its highest model

inference speed, minimal computational and parameter

requirements, and overall stable detection performance; Next, to

enhance the overall detection precision of ginseng fruits, improve

the distant detection performance, and enhance the quality of target

prediction bounding box localization, a deep-level perceptual

feature extraction module named C3f-RN with a sliding window

mechanism is designed and integrated into the backbone network of

YOLOv5s in a plug-and-play manner. Since the C3f-RN module

will reduce the inference speed of the model and increase the model

size, this article finally uses a mature channel pruning algorithm to

compress the model to make up for the defects brought by the C3f-

RN module to the model and strengthen the foundation of model

application. In this study, the main contributions are as follows:
1. A new ginseng fruit image dataset was established. The

basic data includes 1,519 ginseng fruit images under

different angles, scales, light intensity and other conditions.

2. A plug-and-play deep perception feature extraction module

C3f-RN with a sliding window mechanism is designed to

improve the YOLO-Ginseng backbone network’s feature

information extraction capabilities for ginseng fruits and

enhance the overall network information transmission

efficiency and regression effect.

3. Utilizing channel pruning algorithm to compress YOLO-

Ginseng, enhancing model inference speed, and reinforcing

model applicability.
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2 Materials and methods

2.1 Image data acquisition

The image data for this study were acquired in August 2023 at

the Ginseng Plantation Base in Sandaohezi Village, Dashitou Town,

Dunhua City, Jilin Province, China (latitude 43°18’21”, longitude

128°29’41”), as depicted in Figure 2. The species collected are

ginseng fruits grown from garden ginseng, which is the main

ginseng species grown in Northeast China. The environmental

conditions of the ginseng cultivation base are illustrated in

Figure 3A. The ginseng is grown using a wide-ridge shed planting

pattern, with a ridge width of approximately 1.60m-1.70m and a

ridge height above the ground of approximately 0.16m-0.20m.

Figure 3B illustrates the in-field growth conditions of ginseng

fruits, with ginseng plants spaced approximately 0.10-0.15m apart

and exhibiting varying growth heights ranging from approximately

0.30m to 0.60m. The ginseng fruits grow densely and chaotically,

displaying significant disparities in growth height. In summary,

ginseng fruit grows in a complex environment, with high density

and chaotic distribution, and the landform environment is relatively

poor. Despite the protection of the trellis, ginseng fruit is still

affected by the intensity of external light. Therefore, in order to

accurately collect various types of image data of ginseng fruit in a

complex environment and effectively restore its growth state, this

puts forward certain requirements for the data acquisition method.

It is necessary to try to avoid collecting image data with unclear

characteristic information of ginseng fruit, such as image data with

overexposure of brightness and blurred pixels.

Given the high standards of ginseng cultivation and the

complex growth environment of ginseng fruits, in order to

effectively enhance the quality of ginseng fruit detection and
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obtain reliable experimental data, facilitating subsequent research

on the efficiency of automatic detection and operational

convenience of intelligent ginseng fruit picking equipment, the

methods for ginseng fruit image data collection in this study are

as follows: As shown in Figure 3C, Data collection work was

conducted using the wide-angle camera of an iPhone 11

smartphone. Initially, the image storage format was set to JPEG

with a resolution of 4032×3024 or 3024×4032. HDR mode was

activated to enhance exposure details, and automatic focus and

exposure modes were selected. Turn on the anti-shake function.

Start the 3-second delayed shooting or continuous shooting mode

when acquiring image data required by special scenes; Secondly, the

mobile phone was fixed on the camera stand and adjusted manually

within a range of about 0.6m-1.0m from the ground. The rotating

joint of the camera stand was adjusted reasonably to ensure that the

angle of the optical axis of the mobile phone relative to the

horizontal plane of the space was within the range of 0°-90°for

data collection. Among them, according to the growth

characteristics of ginseng fruit and the needs of mechanical

equipment, this study obtained global image data of ginseng fruit

at different angles, different scales and different background

conditions at shooting angles of 0°, 45° and 90°. In order to

ensure the randomness of image data and increase the diversity of

data samples, this study also collected image data from other

shooting angles. In order to restore the growth conditions and

surrounding environment of ginseng fruit as closely as possible, the

image data collection work also utilized the data collection method

of manual handheld shooting, and also carried out data collection

work according to the light intensity conditions in different time

periods. Finally, a total of 1664 pieces of image data were collected.

After cleaning some of the image data with unclear ginseng fruit

characteristic information, 1519 pieces of image data remained.
FIGURE 2

The geographic locations of data collection.
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2.2 Data augmentation and establishment
of a ginseng fruit image dataset

In order to enhance the quality of the image dataset and achieve

more equitable detection results, this study strictly adheres to

annotation principles for annotating the image data. Single-object

annotation was performed using LabelImg 1.8.6, designated as

“RSZ,” with label files in txt format. It is noteworthy that ginseng

fruits posing difficulty for human eye discernment or having

occlusion areas greater than 90% were excluded from annotation.

Finally, the annotated image data were randomly partitioned

according to a 7:2:1 ratio, yielding 1063 images for the training

set, 304 images for the validation set, and 152 images for the test set.

Due to the complex growth environment of ginseng fruits, the

manually collected data samples cannot effectively replicate the

distinctive characteristics of the ginseng fruit’s growth environment.

To ensure the integrity and diversity of the data samples and

improve the generalization ability of the network model, this

study employed data augmentation techniques such as affine

transformation, simulated occlusion, and data concatenation on

the training set. Through a random combination approach, the

dataset was expanded, subsequently, manual means are used to

check and delete the incorrectly labeled noise data to ensure the

correctness of the expanded data (Zhang et al., 2024a), ultimately

yielding 2415 images in the training set. It is worth noting that the

image data in all training sets, validation sets, and test sets are

distinct from each other. An example of augmented image data is

illustrated in Figure 4, and detailed information on the ginseng fruit

image dataset is provided in Table 1.
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2.3 YOLO-Ginseng

In fact, during the real-time detection process of ginseng fruits,

in order to avoid the interference of external environmental changes

on ginseng fruit detection and improve the detection effect of

ginseng fruit in complex environments, the detection method is

required to have a higher model reasoning speed and excellent

image data processing capabilities. In other words, the detection

network can quickly and accurately obtain and process the global

image feature information of ginseng fruit when performing

detection tasks. Therefore, for the mechanized harvesting task of

ginseng fruits in complex agricultural environments, the ability to

be deployed on edge computing devices and possess high detection

speed is the primary consideration in this study, this forms an

important foundation for real-time detection of ginseng fruits.

Secondly, consideration is given to how to improve the overall

detection quality of ginseng fruits. Based on the above analysis, this

study first conducted preliminary experimental analyses of

advanced and typical detection methods, namely YOLOv5s

(Jocher et al., 2020), YOLOv7 (Wang et al., 2023a), YOLOv8s

(Jocher et al., 2023), and YOLOv9-C (Wang et al., 2024),

considering factors such as model inference speed, computational

cost, weight size, and detection accuracy. The results show that

YOLOv5s has the fastest inference speed and the lowest

computational cost and weight size. Although YOLOv5s performs

weakly in average precision, its detection effect on ginseng fruits in

complex scenes is excellent, which shows that relying solely on

average precision cannot fully measure the quality of the model.

Given the advantages of YOLOv5s in speed and resource
(a)

(b) (c)
FIGURE 3

Ginseng planting and image data collection scene. (A) The environmental conditions of the ginseng cultivation base. (B) The in-field growth
conditions of ginseng fruits. (C) Data collection platform.
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consumption, and its precision has reached a high level, this study

finally selected YOLOv5s as the basic network model for ginseng

fruit detection research, and finally the average precision of ginseng

fruit detection will be improved through technical means. efforts

will be made to improve the average precision of ginseng fruit

detection through technical means. The YOLOv5s network

architecture mainly consists of four parts: the input module, the

backbone network, the neck network, and the head network. The

input module is used to preprocess the input image data, including

data augmentation, adaptive resizing, and adaptive anchor box

calculation; The backbone network adopts the CSPDarknet53

structure to extract feature information from the input image

data; The neck network utilizes the FPN (Feature Pyramid

Network) structure and the PAN (Pyramid Attention Network)

structure to integrate the extracted feature information; The head

network is responsible for performing simple object classification,

position regression, and confidence inference predictions on the

final feature information, thereby generating the ultimate detection

results. Based on the preliminary experimental analyses, it was

found that YOLOv5s is still insufficient to handle the visual

detection tasks of ginseng fruits. Therefore, in order to improve

the average precision of YOLOv5s in detecting ginseng fruits,

enhance the long-distance detection effect of ginseng fruits and

the quality of target prediction bounding box positioning, and solve

the problem of detection difficulties caused by occlusion or overlap
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of ginseng fruits and interference from the external environment,

this study finally proposes a detection method YOLO-Ginseng

(Ginseng, You Only Look Once). In this detection method, the

deep-level perceptual feature extraction module C3f-RN, designed

in this study with a plug-and-play sliding window mechanism, is

integrated into the backbone network of YOLOv5s. Finally, a

channel pruning algorithm is employed to compress the model,

compensating for the shortcomings introduced by C3f-RN and

enhancing the model’s applicability. The model network

architecture of YOLO-Ginseng is illustrated in Figure 5.

2.3.1 C3f-RN
Due to the unique biological structure and growth environment

of ginseng fruits, their mature bright red color is easily

distinguishable from the background. From a two-dimensional

pixel image perspective, the detection of ginseng fruits can be

regarded as a binary classification problem, where each pixel is

classified into two categories: red representing ginseng fruits and

green representing the background. Therefore, this study aims to

enhance the feature extraction capability of the YOLOv5s backbone

network, enabling it to accurately and effectively process or

distinguish these binary pixel points to improve the detection

performance of ginseng fruits. As is well-known, deepening and

widening the overall hierarchical structure of a network can

potentially expand the network’s receptive field and enhance its
TABLE 1 Detailed information on the ginseng fruit image dataset.

Dataset Raw data Augment data Training set Validation set Test set

RSZ 1519 1352 2415 304 152
The bold values indicate the number of image data in each stage dataset.
(a)

(b)

FIGURE 4

Example of image data augmentation. (A) Example of original image data. (B) Example of augmentation techniques, including random rotation,
random translation, brightness adjustment, simulated occlusion, and data concatenation, sequentially.
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learning capability. Therefore, this study adopts the design

principles of the residual network ResNet (He et al., 2016) and

combines them with the advantages of the C3 structure to design a

plug-and-play deep-level perceptual feature extraction module

named C3f-RN, which incorporates a sliding window mechanism,

as illustrated in Figure 6. C3f-RN possesses a unique network

structure and introduces the novel Swin Stage module along with

the SAC (Switchable Atrous Convolution) convolution (Qiao et al.,

2021). It effectively combines with lightweight attention

mechanisms, including CA (Coordinate Attention) (Hou et al.,

2021) and a simple, parameter-free attention module called SimAM

(A Simple, Parameter-Free Attention Module) (Yang et al., 2021),

to assist in enhancing the ability of the C3f-RN module to extract

both global and detailed features of ginseng fruits. This ultimately

achieves the advantages of plug-and-play functionality. The overall

workflow and advantages of the C3f-RN module are as follows:

(1) First, the initial characteristic information of ginseng fruits is

input and allocated to two main branches, namely branch one and

branch two. Among them, multiple Bottlenecks are introduced on

two branches respectively in a direct and residual manner,

deepening the hierarchical structure of the network and helping

C3f-RN to extract ginseng fruit image feature information in more

detail. Simultaneously, in both branches, Split operations are

applied to set hidden channel branches in the channel dimension

and extend the unique feature processing operations of the Swin

Stage. This design not only widens the network structure and

potentially expands C3f-RN’s field of vision for ginseng fruit

feature information, but also increases the diversity of C3f-RN’s

processing of ginseng fruit feature information and enriches the

flexibility of the network structure. It is worth noting that the

combination of branch one and branch two ultimately forms a

unique C3 structure.
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(2) On branch one, the initial feature information of ginseng

fruit is first subjected to a 1×1 convolution for dimensionality

reduction, adjusting the number of feature information channels

while helping the network learn more complex feature information;

Next, the obtained feature information is halved and separated in

the channel dimension through Split operation, with one part

directly outputted through the residual branch and the other part

outputted through n Bottleneck units. A series of Bottleneck units

are responsible for conducting certain feature extraction operations

on the input feature information through two 3×3 convolutions,

enabling the network to learn more, finer, more abstract, and

advanced feature information; Finally, the output parts of the two

are concated in the channel dimension and undergo a 1×1

convolution again to transform the fused feature information in

the channel dimension to facilitate the forward propagation of the

fused feature information. Among them, the Bottleneck structure

with residual branches is used on branch one, and the SimAM

attention module is introduced at the end of the structure to further

improve the network’s attention to and retention of the detailed

information of the ginseng fruit when extracting feature

information in each small step. The SimAM attention module

introduces the concept of three-dimensional attention for the first

time, as illustrated in Figure 7A. Based on neuroscience theory,

SimAM calculates the importance of each neuron by optimizing the

energy function to adjust the attention weight distribution shape.

The advantage of this module is that there is no need to add

redundant parameters to the original network, and the three-

dimensional attention weight information of the feature map can

be inferred using a small number of parameters. Therefore, based

on its advantages, this study embeds the SimAM attention module

at the end of each Bottleneck structure in the network, without

affecting the overall parameter count of the C3f-RN module. This
FIGURE 5

YOLO-Ginseng network structure.
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(a)

(b)

(c) (d)
FIGURE 7

(A) Structure of the SimAM. (B) New swin stage structure. (C) Structure of the CA. (D) Structure of the SAC.
FIGURE 6

C3f-RN network structure.
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enables each Bottleneck to automatically learn and dynamically

adjust attention weight distribution ratios based on the input

feature information of different categories. Consequently, it guides

each Bottleneck to focus more on the detailed feature information of

ginseng fruits and filter out irrelevant feature information.

(3) On branch two, the initial feature information of ginseng

fruit is still subjected to a 1×1 convolution operation; Secondly, the

obtained feature information is halved and separated in the channel

dimension through the Split operation. One part undergoes N

Bottleneck output through the residual branch, and the other part

undergoes a 3×3 convolution for feature extraction and is directly

input to the Swin Stage module for further processing. Processed in

one step. Part of the Bottleneck here has a residual structure, and

part of it has no residual structure and is set to a interleaved

arrangement. This unique design arrangement is to make the

network more flexible when processing feature information,

improve the generalization ability of the network, and enhance

embeddability of C3f-RN modules.

The Swin Stage module is a novel structural design based on the

most crucial component of the Swin Transformer model (Liu et al.,

2021). It extracts the primary stage of the Swin Transformer model,

encapsulating the Patch Partition operation and Linear Embedding

operation within the same stage while eliminating the Patch

Merging operation. The overall structure of the Swin Stage

module is illustrated in Figure 7B. The module first divides the

input ginseng fruit feature information into multiple fixed-size and

non-overlapping local feature map blocks through Patch Partition

operation, enabling independent processing of each block. This aids

in better capturing local feature details; Next, through the Linear

Embedding operation, the input feature information is mapped to a

lower-dimensional feature space to reduce feature dimensionality

and obtain more compact feature information. Finally, the feature

information processed by the upper layer is input to the even-

numbered stacked core unit Swin Transformer Block for

information transformation and interactive operations to achieve

the extraction and integration of feature information. The unique

Swin Stage structure enables the C3f-RN module to rapidly capture

the global feature information of ginseng fruits. Its efficient cross-

window information interaction processing capability allows the

C3f-RN module to constantly grasp and learn the detailed

information of ginseng fruits at different pixel positions,

enhancing sensitivity to this information. This effectively

addresses detection challenges arising from overlap or occlusion

between ginseng fruits or leaves, thereby assisting and improving

the quality of target prediction bounding box positioning; Finally,

the outputs of both branches are concatenated along the channel

dimension and then passed through another 1×1 convolutional

layer to transform the fused feature information in the channel

dimension, facilitating the propagation of the fused feature

information forward.

(4) The processed feature information from branches one and

two are separately passed through 1×1 convolutions and then

summed up. Subsequently, SAC convolutional operations are

employed to assist the C3f-RN module in further enhancing the
Frontiers in Plant Science 09
overall network’s global receptive field for ginseng fruit, ensuring

the integrity of information weights, and improving the expressive

capability of the C3f-RN module. Among them, SAC consists of

Atrous Convolution, Pre- and Post-Context Modules, and is

combined with a Switch Mechanism. This module adjusts the

dilation rate and switch value of Atrous Convolution to perceive

details of targets at different scales, reducing information loss and

enhancing the model’s ability to process image data. Its structure is

illustrated in Figure 7D. The incorporation of SAC effectively

enhances the capability of C3f-RN in handling multi-scale

ginseng fruit detection, assisting the backbone network in

capturing feature information of distant ginseng fruits. Finally,

this study quoted the CA attention mechanism at the end of the

C3f-RN module structure to help the C3f-RN module integrate and

select the captured and processed ginseng fruit feature information

in the final stage, and eliminate redundant information. The

remaining information is directly output to the next layer of

network, with the ultimate goal of protecting the characteristic

information of ginseng fruits. Among them, the CA attention

mechanism is a lightweight attention mechanism that enhances

feature representation capabilities. Its core idea is to embed

positional information in the feature channel dimension,

decomposing channel attention into aggregated features along

two spatial directions. One direction captures long-range

dependencies, while the other preserves precise positional

information. Finally, the two are complementarily fused to learn

the importance weights of different channels, thereby enhancing

interest in complex target features and suppressing redundant or

noisy channels. Its structure is illustrated in Figure 7C.

The C3f-RN module, with its flexible and unique network

structure, not only deepens and widens the hierarchical structure

of the network but also effectively integrates other advanced feature

information processing models. Furthermore, the input feature

information can be maintained unchanged in size through a

series of 1×1 convolutions, Concat, and addition operations,

enabling the C3f-RN module to be easily integrated into other

networks, achieving the advantage of plug-and-play. However,

although the designed C3f-RN module in this study can

effectively extract the features of ginseng fruits in complex

backgrounds and enhance the overall detection performance of

ginseng fruits, its integration into the backbone network of

YOLOv5s increases the parameter count and computational

burden of the overall YOLO-Ginseng network model, resulting in

a reduction in the model’s inference speed, as shown in Table 2.

Therefore, this study aims to address this issue by employing

mature channel pruning algorithms to mitigate the drawbacks

introduced by the C3f-RN module to the overall YOLO-Ginseng

network model.

2.3.2 Model compression
To effectively reduce the parameter count and computational

burden of the YOLO-Ginseng overall network model, enhance

model inference speed, and preserve the significant effects of the

C3f-RN module on detecting ginseng fruits, this study utilizes
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mature channel pruning algorithms (Liu et al., 2017) to compress

the YOLO-Ginseng overall network model. The channel pruning

algorithm mainly consists of three steps: sparse training, model

pruning, and model fine-tuning.

Firstly, sparse training is the initial step in model compression,

representing a crucial technique for reducing the model parameter

count to optimize both the training and inference processes. This

study employs the L1 norm method and iteratively adjusts the

sparsity parameter l multiple times to strike a balance between the

model’s sparsity and accuracy. This process ensures that the scaling

factor g coefficient of the BN (Batch Normalization) layer converges

rapidly to zero. The variation in the g coefficient adjusts the range

and degree of change in the BN layer’s output feature information,

thereby influencing the changes in BN layer parameter weights and

the subsequent learning capacity of the model. Ultimately, it reveals

the contribution levels of each channel to the network

computations. Specifically, for the input x, weights W, scaling

factor g coefficient, and bias term b of the BN layer, the

calculation of the BN layer output y is shown in Equation 1:

y = g
x − mffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 + e

p
� �

+ b (1)

where m denotes the input mean, s represents the input

standard deviation, e is a small constant for numerical stability,

and g and b are learnable parameters. Secondly, model pruning is

performed, as illustrated in Figure 8. The basic principle involves

utilizing the g coefficients of BN layers based on the sparse

training results to assess the contribution levels of channels to
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the network. High-contribution channels are retained, while low-

contribution channels are pruned, ultimately consolidating the

deep network structure to compress the model. Finally, due to the

sparse training and pruning of the model, which lead to a

decrease in detection accuracy, the model requires fine-tuning.

Model fine-tuning involves readjusting the pruning weights,

using the compressed model as a pre-trained model for further

iterative training until the detection performance of the model

is restored.
2.4 Evaluation standard

This study employs seven model evaluation standard to assess

the detection performance of YOLO-Ginseng. The evaluation

standard consist of precision (P), recall (R), average precision

(AP), model weight size (MB), model detection efficiency

(evaluated through the model inference time on the validation set

(ms), including image data preprocessing time (pre-process),

network model inference time (inference), and non-maximum

suppression time for processing predicted targets (NMS-per)),

model parameter count (parameters), and model computational

load (GFLOPS). Where P represents the proportion of the actual

positive samples during the model detection process to the total

predicted positive samples by the model. R is the proportion of the

predicted actual positive samples by the model to the total actual

positive samples. AP is the area under the PR curve formed by P and

R. The calculations are shown in Equations 2-4:
TABLE 2 Comparing C3f-RN structural parameters.

Network
+C3f-RN

depth n heads win size AP0:5 (%) T
(ms)

Size
(MB)

parameters GFLOPS

None - - - 93.2 5.5 14.4 7022326 15.9

(1) 2 8 1×1 94.2 21.3 44.5 21990962 36.0

(2) 2 4 1×1 94.2 21.3 44.5 21990930 36.0

(3) 2 2 1×1 93.9 21.3 44.5 21990914 36.0

(4) 2 1 1×1 93.5 21.3 44.2 21990906 35.9

(5) 2 16 4×4 94.5 21.3 44.8 21997170 36.1

(6) 2 8 4×4 95.8 21.3 44.5 21994034 36.0

(7) 2 4 4×4 94.3 21.3 44.5 21992466 36.0

(8) 2 2 4×4 94.0 22.3 44.5 21991682 36.0

(9) 2 1 4×4 93.9 21.3 44.3 21991290 35.9

(10) 2 8 7×7 95.3 22.4 45.2 22991682 36.3

(11) 2 4 7×7 94.4 21.3 45.0 21996306 36.2

(12) 2 2 7×7 94.2 21.3 44.9 21993602 36.1

(13) 2 1 7×7 93.7 21.3 44.8 21992250 36.1
fr
The bold value indicates that each set of experiments under different parameter configurations shows the best results under different evaluation indicators.
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P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

AP =
Z 1

0
P(R)dR (4)

where TP is the count of samples predicted as positive and are

actually positive; FP is the count of samples predicted as positive but

are actually negative; FN is the count of samples predicted as

negative but are actually positive. The confidence IoU is the

overlap ratio between the predicted bounding box and the true

bounding box, with a threshold typically set at 0.5. When the

network-computed overlap ratio IoU is greater than 0.5, the sample

is considered TP; otherwise, the sample is considered FP. This study

takes into account the application requirements of YOLO-Ginseng

in actual agricultural scenarios, and uses AP0:5 (IoU=0.5) as the

average accuracy index of YOLO-Ginseng for ginseng

fruit detection.
3 Results

3.1 Experimental setting

This study will evaluate, compare, and discuss YOLO-Ginseng

through multiple sets of experiments to verify its effectiveness,

stability, and practicality in performing ginseng fruit detection

tasks. It is noteworthy that all experiments in this study were

conducted on the same PC device and based on the PyTorch

framework for training, validation, and testing. The specific

experimental environment is presented in Table 3. YOLO-

Ginseng will employ transfer learning to enhance training speed.

Where the number of epochs is set to 200, batch size is 8, and the

image input size is 640×640. The experiment utilized the Stochastic

Gradient Descent (SGD) optimizer, with the remaining parts
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configured with the parameters from hyp.scratch-low.yaml in the

official YOLOv5-7.0 version by default.
3.2 The overall detection performance of
YOLO-Ginseng

The YOLO-Ginseng proposed in this study, after training,

validation, testing, and compression, demonstrates specific

evaluation results and detection performance are shown in

Table 4; Figures 9, 10. The results indicate that YOLO-Ginseng

achieves precision, recall, and average precision of 93.6%, 91.1%,

and 95.6%, respectively. The model inference time is 7.4 ms, with

parameters totaling 4,545,903, computational cost reaching 9.3

GFLOPS, and the final model weight size being 10.5 MB. As can

be seen from the blue PR curve in Figure 9, YOLO-Ginseng

demonstrates excellent average precision performance when

trained with pre-trained weights (yolov5s.pt). As shown in

Figure 10, YOLO-Ginseng maintains high detection quality in

various scenarios, including densely complex scenes in images

(a), overlapping and occluded situations in images (b), and
TABLE 3 Experimental environment configuration.

Configuration name Environmental and version

System Windows

CPU 12th Gen Intel(R) Core (TM)
i7-12700H

GPU NVIDIA GTX3060

Running memory 32G

Graphics card memory. 6G

CUDA 11.7

Python 3.10.9

Pytorch 2.0.0
The bold values indicate the environment configuration, version, and parameters used in
each experiment.
FIGURE 8

The principle of model channel pruning, where the blue portion signifies channels with high contribution, and the red portion indicates channels
with low contribution.
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varying light intensity conditions in images (c). It exhibits broad

detection coverage and accurate localization of object prediction

bounding boxes. However, in the dense and complex scene in

images (a), the regression confidence of long-distance detection

of tiny ginseng fruits is low. This may be due to the fact that

the long-distance ginseng fruit targets are small and are obscured

by other environmental factors or their own fruits during

detection. In summary, YOLO-Ginseng performs excellently in

the single-target detection of ginseng fruits in agricultural

natural environments.
3.3 Study on the impact of optional
parameters in C3f-RN

Given the diversity of content and complexity of the structure in

the C3f-RN module, it is essential to investigate its impact on

YOLO-Ginseng. Due to the effective integration of the novel Swin

Stage module within the C3f-RN module, it is necessary to

investigate the impact of the Swin Transformer Block’s quantity

(depth), the number of attention heads (n heads), and the size of the

local window (win size) in the Swin Stage module on the model.

This study will conduct a comparative test analysis based on the

official setting experience and training configuration performance

of these three parameters and based on the ginseng fruit image data

set to determine the best comprehensive parameter value. The

parameter comparison results are shown in Table 2. The results

demonstrate that the integration of the C3f-RN module with the

YOLOv5s backbone enhances the average precision of YOLO-

Ginseng. However, this fusion increases the model’s size,
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parameter count, and computational load, thereby extending the

model’s inference time. Among them, test (6) raised the average

precision of the model to the highest value, which was 2.6% higher

than YOLOv5s in  AP0:5. Therefore, this study finally selected the

data in experiment (6) as the final structural parameters of the C3f-

RN module: depth is 2, n heads is 8, and win size is 4×4.

The rules for the above parameter settings are as follows: To

simplify the model structure and improve computational efficiency,

the C3f-RN module primarily adopts the first stage of the Swin

Transformer in the Swin Stage module, eliminating the Patch

Merging operation; therefore, the parameter depth is set to 2.

Secondly, the value of n heads will be reasonably determined

based on win size and training configuration performance, as

calculated by the following Equations 5, 6:

num  wins =
H �W

win   size � win   size
(5)

n   heads =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
num  wins

p
(6)

Where num wins represents the number of windows into which

the input feature information is divided, and H and W represent the

height and width of the input feature information, respectively. In this

study, H and W are set to the average size of the feature information

input into the C3f-RN module from the backbone network. The win

size controls the range of the local attention mechanism, where a

larger win size helps the model learn longer dependencies but

increases computation and memory costs. On the other hand, a

smaller win size aids in introducing a local attention mechanism,

but excessively small window sizes may limit the model’s ability to

capture global dependencies. Therefore, in accordance with the
TABLE 4 Evaluation results of YOLO-Ginseng.

Network P (%) R (%)         AP0:5   (%) T (ms) Size (MB) Parameters GFLOPS

YOLO-Ginseng 93.6 91.1 95.6 7.4 10.5 4545903 9.3
The bold values indicate the best results of “YOLO-Ginseng” on each evaluation metric.Here I would like to remind you that the value corresponding to Parameters should be changed to 4545903.
FIGURE 9

PR curves of different models.
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empirical settings provided by the official documentation, this study

conducted comparative experiments with three different sizes of local

windows: 1×1, 4×4, and 7×7. In principle, the value of n heads should

ideally be equal to num wins. However, to reduce the computational

cost of the model, enhance feature extraction efficiency, and consider

overall training configuration performance, this study sets the value of

n heads to be the square root of numwins, thus obtaining a reasonable

range of values. Secondly, determine a certain integer through the

value range and at the same time take an even multiple of the integer

upward until it is 1. Finally, experimental results are used to eliminate

outliers, and the remaining values are considered as the appropriate n

heads (The calculation formula is derived from multiple comparative

experiments and manual parameter adjustment).
3.4 YOLO-Ginseng
compression performance

According to the channel pruning algorithm steps, the first step

is to determine an appropriate sparsity rate   l   for conducting

sparse training on the model. The comparative results of training
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with different sparsity rates are shown in Table 5. The results

indicate that when selecting a sparsity rat l   of 0.002, the average
precision of YOLO-Ginseng decreases to 91.6%. Figure 11 shows

the g coefficient distribution form of the BN layer. It can be seen that

the g coefficient distribution center gradually and rapidly converges

to 0, and becomes stable after 100 rounds of iterative training. In

conclusion, selecting a sparsity rate l   of 0.002 for sparse training is
deemed more reasonable for the model.
TABLE 5 Comparison of training performance under different
sparsity rate.

Spares rate (l) AP0:5 (%)

0 95.8

0.001 91.3

0.002 91.6

0.003 84.1

0.004 82.3

0.005 78.9
The bold values indicate the best results achieved by the model at different sparsity rates.
(b)

(a)

(c)

FIGURE 10

Detection performance of YOLO-Ginseng on ginseng fruits in different scenarios. (A) Dense and complex scenarios. (B) Scene with occlusions.
(C) Scenes with varying light intensity.
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After the model is sparsely trained, it is necessary to determine the

appropriate pruning coefficient r to prune channels with low model

contribution. This study uses 0.1 steps to select appropriate pruning

coefficients, the model pruning changes are shown in Figure 12. The

results show that after the pruning coefficient is 0.8, the average

accuracy of YOLO-Ginseng decreases, while the model parameters

change slightly, which shows that when the pruning coefficient is 0.8,

the model can achieve the optimal pruning effect. As shown in

Figure 12B, a total of 89 network channels in YOLO-Ginseng were

pruned, with a cumulative removal of 12,038 channels. This indicates

that the channel pruning algorithm employed in this study effectively

reduces the model parameter count.

To ensure that the pruned model maintains a high learning

capability and detection performance, fine-tuning of the model is

necessary. This is achieved by utilizing the pruned model as a pre-

trained model for iterative training, thereby restoring the model’s

detection performance. Table 6 presents the variations in average

precision, model parameter count, weight size, and inference time

of YOLO-Ginseng throughout the entire model compression

process. The results indicate that, following fine-tuning, the

compressed YOLO-Ginseng model exhibits reductions of 65.3%,
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76.4%, and 79.3% in inference time, weight size, and parameter

count, respectively, compared to the initial model. Meanwhile, the

average precision only experiences a marginal decrease of 0.2%.
4 Discussion

4.1 The impact of data augmentation on
model performance

In order to evaluate the impact of ginseng fruit image data

augmentation on model performance, this study selected two groups

of models, YOLOv5s and YOLO-Ginseng (uncompressed), for

comparative experiments. The comparison results are shown in

Table 7. Among them, data type A represents the original dataset

without amplification, data type B represents the final dataset after

amplification, that is, the ginseng fruit image dataset finally established

in this study, D1 represents the average precision difference between

the training set and the validation set, and D2 represents the total loss

difference between the training set and the validation set. After 200

rounds of iterative training, the total loss of the training set and the
(a) (b)
FIGURE 12

Channel pruning effects of the model. (A) Effects of different pruning coefficient on the model. (B) Changes in the number of channels for each layer
before and after pruning.
(a) (b)
FIGURE 11

Distribution of the g coefficient in the BN layer. (a) Before sparse training. (b) After sparse training.
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validation set continued to decrease and gradually converged. In order

to eliminate the impact of fluctuations in the early stage of training

and focus on the performance of the model after stabilization, this

study selected the average total loss value of the last 20 rounds for loss

difference calculation. The results show that there is no significant

change in the indicators of YOLOv5s before and after data

augmentation; in YOLO-Ginseng, data augmentation improves the

average accuracy of the model by 0.7%, and other evaluation criteria

do not change much. For the average precision difference and the total

loss difference, all difference results are small, indicating that the

performance of the model in the training set and the validation set is

relatively consistent, and both can maintain a low loss. This further

shows that the model has good generalization ability on the two data

sets A and B, and there is no over-reliance on the training set. All

models perform normally on the two data sets A and B.

In summary, the ginseng fruit image dataset established in this

study is reasonable, and data augmentation has made a certain
Frontiers in Plant Science 15
contribution to the improvement of the average precision of

YOLO-Ginseng.
4.2 Effect of different models on ginseng
fruit detection

To assess the effectiveness of YOLO-Ginseng in ginseng fruit

detection, this section conducted comparative experiments by

selecting seven different models for evaluation alongside YOLO-

Ginseng. Table 8 presents the comparative results of YOLOv3-tiny

(Adarsh et al., 2020), YOLOv4-tiny (Bochkovskiy et al., 2020),

YOLOv5s, YOLOv7, YOLOv7-tiny, YOLOv8s, YOLOv9-C, and

YOLO-Ginseng. YOLOv3-tiny, YOLOv5s, YOLOv7, YOLOv8s,

YOLOv9-C and YOLO-Ginseng were selected for P-R curve

comparison. The comparison effect is shown in Figure 9. The

results indicate that, compared to YOLOv5s, YOLO-Ginseng
TABLE 7 Comparison results of data augmentation on model performance.

Type Model AP0:5 (%) T
(ms)

Size
(M)

Parameters GFLOPS D1 D2

A YOLOv5s 93.5 6.1 14.4 7012822 15.8 0 0.016

B YOLOv5s 93.2 5.5 14.4 7022326 15.9 0 0.023

A YOLO-Ginseng 95.1 21.1 42.4 21967879 35.8 0.1 0.017

B YOLO-Ginseng 95.8 21.3 44.5 21994034 36.0 0 0.006
The bold values indicate the best results of different models on different types of datasets A and B.
TABLE 6 Comparison results of the model compression process.

Evaluation Standard Initial
model

Sparse
training

Model
pruning

Model
fine-tuning

AP0:5 (%) 95.8 91.6 91.4 95.6

Parameters 21994034 21994034 4545903 4545903

Model size (MB) 44.5 44.5 13.4 10.5

Inference (ms) 21.3 17.8 8.4 7.4
The bold values represent the best results in different evaluation indicators at different stages of model compression; the rows represent different stages of model compression, and the columns
represent different evaluation indicators.
TABLE 8 Comparison results of different models.

Model P
(%)

R
(%)

AP0:5 (%) T
(ms)

Size
(MB)

Parameters GFLOPS

Our method 93.6 91.1 95.6 7.4 10.5 4545903 9.3

YOLOv3-tiny 89.2 80.8 86.7 19.3 17.4 8666692 12.9

YOLOv4-tiny 89.5 85.8 89.2 8.9 20.6 7540110 13.6

YOLOv5s 90.9 87.0 93.2 5.5 14.4 7022326 15.9

YOLOv7 90.2 87.2 93.8 22.8 74.8 36481772 103.2

YOLOv7-tiny 90.9 87.5 93.7 11.4 23.2 6014988 13.2

YOLOv8s 90.7 88.2 94.2 14.2 21.4 11125971 28.4

YOLOv9-C 91.6 86.7 94.7 41.9 102.8 50958630 237.6
The bold values indicate the best results of different models on different evaluation metrics.
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exhibits an improvement of 2.4% in average precision; The model

inference time is increased by 1.9ms, finally reaching 7.4ms; It has

the smallest model weight size, parameter count, and computational

load. Compared to the remaining models, YOLO-Ginseng exhibits

superior performance across all evaluation metrics. Among them,
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YOLO-Ginseng surpasses the relatively newer YOLOv7 and

YOLOv8s and YOLOv9-C by 1.8% and 1.4% and 0.9% in terms

of average precision; It is the fastest in terms of model inference

time; It exhibits reductions of 86.0% and 50.9% and 89.8% in model

weight size, 87.5% and 59.1% and 91.1% in parameter count, and
(a)

(b)

(c)

(d)

(e)

A B

FIGURE 13

The performance of different models in detecting ginseng fruits in dense and complex scenes (A) and occluded scenes (B). (a) YOLO-Ginseng.
(b) YOLOv5s. (c) YOLOv7. (d) YOLOv8s. (e) YOLOv9-C.
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90.9% and 67.3% and 96.1% in computational load, respectively.

Figure 13 presents the detection performance of YOLO-Ginseng,

YOLOv5s, YOLOv7, YOLOv8s, and YOLOv9-C in dense and

complex scenes (A) and occluded scenes (B) for ginseng fruit

detection. The results indicate that compared to YOLO-Ginseng,

the other models exhibit more instances of missed detections when

detecting ginseng fruit in dense and complex scenes, particularly in

distant detection of ginseng fruit. However, although YOLO-

Ginseng can detect most of the ginseng fruits globally, the

detection effect of long-distance ginseng fruits is still not ideal,

and its regression confidence is low. This may be because the long-

distance ginseng fruits are not only small targets, Moreover, it was

also caused by other ginseng fruits, leaves or other environmental

factors blocking the detection. But overall, YOLO-Ginseng still has

better detection results than other models. In the scenario of close-

range occlusion of ginseng fruits, all models can detect the occluded

ginseng fruits. However, in images (b), (d), and (e), the localization

of the predicted bounding boxes is not precise enough, failing to

fully capture all features of the occluded ginseng fruits. In image (c),

multiple overlapping boxes are detected for the same ginseng fruit

target, indicating occurrences of false positives. Additionally, in
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images (c), (d), and (e), the regression confidence for detecting

occluded ginseng fruits at close range is low.

In summary, YOLO-Ginseng has the best detection

performance for ginseng fruits.
4.3 Comparison results of different models
based on a public dataset

To further evaluate the detection performance of YOLO-Ginseng,

this section will conduct tests using the public dataset PASCAL

VOC2012. Comparative experiments will be carried out with

YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv7-tiny,

YOLOv8s, and YOLOv9-C under the same PC device and training

parameters. The comparative results are presented in Table 9. The

results indicate that, on the public dataset, YOLO-Ginseng maintains

superior performance across various evaluation standard, achieving an

average precision of 70.8%, only below YOLOv7’s 76.7%; The model’s

inference time reaches 6.8 ms, slightly inferior to other models.

However, YOLO-Ginseng exhibits the smallest model weight size,

parameter count, and computational load. In summary, YOLO-
TABLE 9 Comparison results based on the PASCAL VOC2012 dataset.

Model P
(%)

R
(%)

AP0:5 (%) T
(ms)

Size
(MB)

Parameters GFLOPS

Our method 76.2 70.2 70.8 6.8 12.9 4572763 10.1

YOLOv3-tiny 50.3 46.7 43.4 3.5 17.5 8710582 13.0

YOLOv4-tiny 62.1 54.2 56.5 5.1 18.3 7340251 13.8

YOLOv5s 72.0 62.2 66.5 4.6 14.4 7064065 15.9

YOLOv7 75.2 71.9 76.7 13.1 75.0 37299042 105.4

YOLOv7-tiny 71.2 60.3 65.7 4.4 12.4 6059010 13.2

YOLOv8s 73.7 65.1 69.8 4.1 22.5 11133324 28.5

YOLOv9-C 69.6 63.6 68.8 14.6 102.9 50742168 236.9
The bold values indicate the best results of different models on different evaluation metrics.
FIGURE 14

Model deployment platform and test results.
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Ginseng demonstrates certain advantages in detection performance

compared to other models on the public dataset PASCAL VOC2012.
4.4 Deployment experiments of the model

Finally, to validate the practicality and stability of YOLO-Ginseng,

this study deployed the model on the Jetson Orin Nano computing

device for simulated ginseng fruit detection experiments. The Jetson

Orin Nano is equipped with 20 TOPS of computing power and

supports a wide range of AI inference frameworks and tools. In this

experiment, the RGB lens of the Intel Realsense D435i depth camera is

used to capture image data, and the detection results were presented

on a 7-inch touch screen. The visual detection system and detection

results are depicted in Figure 14. The results demonstrate that YOLO-

Ginseng can successfully accomplish ginseng fruit detection tasks on

Jetson Orin Nano, achieving an average real-time detection speed of

24.9 fps. This indicates that YOLO-Ginseng possesses excellent

practicality, meeting the detection requirements for future intelligent

harvesting equipment of ginseng fruits.
5 Conclusions

This study proposes a ginseng fruit detection method, YOLO-

Ginseng, which demonstrates outstanding overall detection

performance and can provide visual guidance for ginseng fruit

harvesting robots. The main contributions and conclusions of

YOLO-Ginseng are as follows:
Fron
1. From the perspective of enhancing the feature extraction

capabilities of the backbone network, this study designed a

plug-and-play deep perception feature extraction module C3f-

RN with a sliding window mechanism. This module expands

the hierarchical structure of the YOLO-Ginseng backbone

network, improves the backbone network’s local deep

attention and global interactive processing capabilities for

ginseng fruit image feature information, expands the

network’s deep perception field of view, and can retain more

important weight information. In the end, this method

improved the localization quality of predicting boundary

boxes for closely detected ginseng fruits, significantly

reduced the missed detection rate of global ginseng fruit

detection, enhanced the detection effectiveness of ginseng

fruits at long distances, ultimately resulting in a 2.6%

increase in the model’s average precision.

2. To mitigate the drawbacks caused by the C3f-RN module

and maintain a balance between the detection precision and

inference speed of YOLO-Ginseng, this study employed

channel pruning algorithms for model compression. The

results indicate that compared to the model before

compression, YOLO-Ginseng experiences only a 0.2%

decrease in average precision after compression.

Meanwhile, the inference time, model weight size,

parameter count, and computational load decrease by

65.3%, 76.4%, 79.3%, and 74.2%, respectively. This
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demonstrates the effectiveness of the channel pruning

algorithm used for YOLO-Ginseng.

3. Finally, YOLO-Ginseng achieves a precision of 93.6%, a recall

of 91.1%, an average precision of 95.6%, an inference time of

7.4ms, a model weight size of 10.5MB, 4,545,903 parameters,

and a computational load of 9.3 GFLOPS, the detection effect

is remarkable. It is noteworthy that YOLO-Ginseng exhibits

the best overall detection performance compared to other

models. On the publicly dataset, YOLO-Ginseng also

demonstrates certain advantages in detection. In the model

deployment, YOLO-Ginseng successfully accomplishes real-

time detection tasks for ginseng fruits on the Jetson Orin

Nano computing device, with an average detection speed

reaching 24.9fps. However, YOLO-Ginseng has poor

detection results for blocked ginseng fruits in long-distance

detection scenarios, which is a problem that needs to be

solved in subsequent research. In summary, this study

provides effective visual guidance for ginseng fruit

intelligent harvesting equipment, builds a bridge for ginseng

fruit spatial positioning technology, and promotes the healthy

development of the ginseng industry in the future.
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