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Jian-zhi Ma1, Ming-yang Du1 and Rui-jun Duan1,2*

1College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China, 2College of
Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
Three-amino-loop-extension (TALE) family belongs to the homeobox gene

superfamily and occurs widely in plants, playing a crucial role in regulating

their growth and development. Currently, genome-wide analysis of the TALE

family has been completed in many plants. However, the systematic

identification and hormone response analysis of the TALE gene family in barley

are still lacking. In this study, 21 TALE candidate genes were identified in barley,

which can be divided into KNOX and BELL subfamilies. Barley TALE members in

the same subfamily of the phylogenetic tree have analogically conserved motifs

and gene structures, and segmental duplications are largely responsible for the

expansion of the HvTALE family. Analysis of TALE orthologous and homologous

gene pairs indicated that the HvTALE family has mainly undergone purifying

selective pressure. Through spatial structure simulation, HvKNOX5–HvKNOX6

and HvKNOX5–HvBELL11 complexes are all formed through hydrogen bonding

sites on both the KNOX2 and homeodomain (HD) domains of HvKNOX5, which

may be essential for protein interactions among the HvTALE family members.

Expression pattern analyses reveal the potential involvement of most HvTALE

genes in responses to exogenous hormones. These results will lay the foundation

for regulation and function analyses of the barley TALE gene family in plant

growth and development by hormone regulation.
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1 Introduction

Homeobox genes encode a prodigious superfamily of

transcription factors (TFs), which occur widely in animals, plants,

and other eukaryotes. A typical homeobox domain comprises a

triple helix structure of 60 amino acids, forming a ring structure in

the first and second helix regions and forming a helix-turn-helix

structure in the second and third helix regions (Billeter et al., 1993).

The first plant homeobox gene, maize Knotted1, was reported by

Vollbrecht et al. (1991). Three-amino-loop-extension (TALE) TFs

with a non-classical homeobox domain comprising 63 amino acids,

and three further residues (P-Y-P) inserted between the first and

second helices, are referred to as the TALE gene family. Based on

protein sequences and evolution, this family is divided into a

knotted-like homeodomain (KNOX) subfamily, and a BEL1-like

homeodomain (BELL) subfamily, which interacts between specific

individuals (Hake et al., 2004; Hamant and Pautot, 2010). Selective

targeting of KNOX–BELL heterodimer to the nucleus may be the

purpose of interaction between BELL and KNOX proteins (Bhatt

et al., 2004; Kim et al., 2013). KNOX proteins usually have four

domains (KNOX1, KNOX2, ELK, and homeodomain). According

to gene structural characteristics, the KNOX subfamily has been

divided into three classes: KNOX I, II, and III. The KNOX III class

lacks homeodomains and was only reported in dicotyledons (Hake

et al., 2004). BELL subfamily proteins, which contain a MID (also

known as POX) composed of BELL and SKY domains and a

homeodomain (HD), were less well studied (Müller et al., 2001;

Cole et al., 2006). BEL1-like proteins have not been systematically

classified to date.

The TALE family members play a vital role in regulating plant

growth and development (Lin et al., 2013) and maintaining organ

morphology (Belles-Boix et al., 2006), signal transduction (Cnops

et al., 2006), hormone regulation (Shani et al., 2006), tuber

formation (Kondhare et al., 2019), and resistance to abiotic stress

(Tao et al., 2018). The KNOX gene subfamily has been intensively

studied. KNOX I genes are primarily expressed in meristems and

have distinct roles (Hake et al., 2004; Hay and Tsiantis, 2010; Qi and

Zheng, 2013). For instance, Arabidopsis KNAT2 is expressed in the

apical meristems, influences AGAMOUS (AG) ectopic expression

in the carpel and ovule center, and causes the nucellar structure to

homomorphically convert to a carpel-like structure (Pautot et al.,

2001). The KNAT1 mutation causes a decrease in PIN2 expression

levels in the root tip, enhances auxin accumulation in roots, and

downregulates auxin transport in basal leaves. According to these

findings, KNAT1 may adversely affect root tilt by regulating auxin

transport (Qi and Zheng, 2013). KNOX II genes were expressed in a

variety of tissues. Among these genes, KNAT7 is important for

secondary cell wall (SCW) biosynthesis and cell elongation in

Arabidopsis (AtKNAT7), rice (OsKNAT7), cotton (GhKNAT7-

A03), and poplar (PoptrKNAT7) (Li et al., 2012; Ma et al., 2019;

Yu, 2019). To prevent more rhizobia infection and nodule

development, KNAT3/4/5-like genes may activate the EFD/RR4

pathway, partially inhibiting cytokinin signaling, thereby regulating

the nodular organ boundary and shape in Medicago truncatula

(Vernié et al., 2008). KNOX III gene in Arabidopsis contains just
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one KNATM, which also affects leaf development and leaf polarity

(Magnani and Hake, 2008). The functions of ATH1, BEL1, BLH2,

BLH4, PNF/BLH8, and PNY/BLH9 in the Arabidopsis BELL

subfamily have also been confirmed, but the roles of the other

BELL-like genes remain unknown. For example, ATH1 is a

flowering inhibitor that controls the expression level of

FLOWERING LOCUS C (FLC) gene (Proveniers et al., 2007).

BLH9 stimulates flowering when it interacts with BLH8, while it

inhibits flowering when it interacts with ATH1 (Rutjens et al.,

2009). One or more KNOX genes were regulated by BLH2 and

BLH4 to prevent the growth of specific leaf subdomains (Kumar

et al., 2007).

At present, genome-wide analysis of the TALE family has been

completed in many plants such as Arabidopsis thaliana (Hamant

and Pautot, 2010), Populus trichocarpa (Zhao et al., 2019), Glycine

max (Wang et al., 2021), and Triticum aestivum (Han et al., 2022).

Meanwhile, considering the importance of this family in the

development of flowers and leaves in the Poaceae family, it is

urgent and necessary to conduct research on the barley TALE

gene family. However, the systematic identification and hormone

response analysis of the TALE gene family in barley (Hordeum

vulgare) are still lacking. Here, a whole genome-wide analysis of the

TALE family in barley was fulfilled and identified. We also fulfilled a

phylogenetic analysis and confirmed chromosome location, gene

structure, and homology analysis, protein interactions, expression

patterns of barley TALE genes (HvTALEs). This study will help us

to better understand the roles of TALE family members in the

growth and development of hormone regulation in barley. These

studies depicted the characterization and diversity of HvTALE

genes, revealing their roles in the growth and development of

barley in the future.
2 Materials and methods

2.1 Identification and characteristics of
TALE genes in barley

Barley protein sequences were downloaded from the Ensembl

Plants database (http://plants.ensembl.org/index.Html) (Bolser

et al., 2017). A Pfam domain (PF00046) was used to find

members of the barley TALE family in the HMMER3 program

(http://hmmer.org) using the hidden Markov model (HMM)

searching method. To exclude genes lacking the conserved

domain, the candidate barley TALE family members were

submitted to the following databases for validation: Pfam (http://

www.ebi.ac.uk/interpro/), SMART (https://smart.embl.de), and

National Center for Biotechnology Information (NCBI) protein

Batch CD-search (http://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi) (Yang et al., 2020; Mistry et al., 2021). Genes with HD

and KNOX1 or KNOX2 domains were selected as KNOX subfamily

members, and those with HD and POX domains were selected as

BELL subfamily members, so barley TALE family members were

identified in the barley genome. Then, amino acid (aa) numbers,

isoelectric point (pI), and molecular weight (MW) of identified
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barley TALE proteins were predicted in ExPASy (https://

web.expasy.org/compute_pi/) online tools (Artimo et al., 2012).
2.2 Phylogenetic analysis and classification
of barley TALE proteins

Conserved protein sequences were extracted for multi-species

phylogenetic analysis. Required barley TALE CDs and genomic

DNA sequences were downloaded from the Ensembl Plants

database. TALE protein sequences of T. aestivum, G. max, and P.

trichocarpa were obtained from published papers (Zhao et al., 2019;

Wang et al., 2021; Han et al., 2022). Arabidopsis protein sequences

were obtained from TAIR (https://www.arabidopsis.org/), while

TALE protein sequences of Oryza sativa and Zea mays were

obtained from PlantTFDB v4.0 (http://planttfdb.gao-lab.org/) (Jin

et al., 2017). Using the neighbor-joining (NJ) method, phylogenetic

trees were constructed in MEGA7 software (https : / /

www.megasoftware.net/) (Kumar et al., 2016) and EvolView 10

(https://evolgenius.info//evolview-v2/#login). Using Mapchart

software, the location information of barley TALE superfamily

members comes from the Ensembl Plants database (Voorrips,

2002), and its members were mapped to seven barley chromosomes.
2.3 Duplication and syntenic analyses of
barley TALE genes

Using the MCScanX program, segmental and tandem

duplications in the barley TALE genes were found (Gu et al.,

2002; Kong et al., 2013; Wang et al., 2013). Duplicated gene pairs

in the barley H. vulgare Morex v3 genome were prepared using

Circos software (Krzywinski et al., 2009). Syntenic relationships

between TALE superfamily members in barley and other species

were identified using TBtools (Chen et al., 2020). Required barley

TALE CDS and protein sequences were downloaded from the

barley pan-genome, such as Akashinriki, Golden_Promise, and

B1K-04–12 (Jayakodi et al., 2020), and the wild barley OUH602

genome (Liu et al., 2020). TALE orthologous gene pairs in barley

were determined among Morex and four barley accessions by an

alignment of full-length aa sequences. TBtools software was used to

calculate non-synonymous/synonymous (Ks/Ka) ratios, and the

Ka/Ks values were defined by three criteria: Ka/Ks < 1 (purifying

selection), Ka/Ks = 1 (neutral selection), and Ka/Ks > 1 (positive

selection) (Anisimova et al., 2001).
2.4 Protein motifs and gene structure
characterization of barley TALE genes

GSDS (Gene Structure Display Server 2.0) (http://gsds.gao-

lab.org/Gsds_help.php) was used to show gene structures (Hu

et al., 2015). Conserved motifs in predicted barley TALE proteins

were examined using the Multiple Expectation Maximization for

Motif Elicitation (MEME) program (http://meme-suite.org/tools/

meme) (Bailey et al., 2009) and were visualized by TBtools.
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2.5 Identified cis-element analysis in the
promoter region of TALE genes

The 2,000-bp region upstream of the start codon of barley

TALE family members was used as the promoter sequence (Zhao

et al., 2016). The promoter sequence was submitted to the

PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/) to identify cis-elements (Lescot et al., 2002).
2.6 Interaction network of barley TALE
genes and protein–protein
interaction analysis

The Orthovenn2 site (https://www.genengnews.com/best-of-

the-web/orthovenn2/) was used to map barley genes with

Arabidopsis gene homology. Eight Arabidopsis TALE proteins

representing eight barley TALE proteins were submitted to the

STRING online server (https://string-db.org/) to predict protein–

protein interactions. The barley TALE protein interaction network

was visualized using Cytoscape (https://cytoscape.org/).

We use the FlyFish program with AlphaFold to realize

automatic 3D structure modeling (Jumper et al., 2021). FlyFish is

bioinformatics software that enables data analysis, task

management, database operations, and more. We sought to write

a 3D structure modeling analysis and data processing program in

FlyFish, then run this program to automatically perform batch

analysis in AlphaFold, and export results and 3D structures data.

We selected reported interacting proteins as positive controls to

identify the possibility of interaction between the two proteins of

interest by MEGADOCK 4.0 docking software (Ohue et al., 2014).
2.7 Expression analysis of barley TALE
genes in different tissues and under
different exogenous hormone treatments

Transcriptional profiles were provided by the Leibniz Institute

of Plant Genetics and Crop Plant Research (IPK) barley BARLEX

server (https://pgrc.ipk-gatersleben.de/projects/barley/) in 14

tissues and at different development stages (Monat et al., 2019).

The fragments per kilobase of transcript per million fragment

mapped reads (FPKM) were used to quantify the levels of gene

expression. A heatmap of gene expression data was constructed in

TBtools software using log2-transformed mean FPKM values.

To explore expression patterns of barley TALE genes under

hormone treatments, publicly available 57 RNA-seq samples were

downloaded [nine RNA-seq samples of ABA and SA treatments

from the Sequence Read Archive (SRA) database using transcripts

per million (TPM) treats and 48 RNA-seq samples of ABA and

MeJA treatments from Gene Expression Omnibus (GEO)

BioProject in NCBI]. Accession numbers and sample information

of RNA-seq are listed in Supplementary Table 1. Agilent Feature

Extraction Software (v 9.1) was used for background subtraction

and LOWESS normalization of GEO sample data. Two heatmaps

for gene expression data were constructed in TBtools software using
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log2 (TPM+1) of SRA data and downloaded GEO sample data. All

reads from these datasets were mapped to the Morex v3 genome

(Mascher et al., 2021).
2.8 Plan materials, RNA isolation, and
qRT-PCR

Barley variety ‘Morex’ was used for hormone treatments. After

sterilization with 10% bleach for 5 min and rinsing thrice with

deionized water, the seeds were put into Petri dishes to germinate in

the dark for 48 h at 22°C. In growth chambers, sprouted seeds were

grown under carefully regulated circumstances, including 55%

relative humidity, 22°C, and a 16-h/8-h light/dark photoperiod

with 20,000 lx of light intensity. Barley seedlings were exposed to

100 mM GA3, 100 mM ABA, and 100 mM 6-BA for hormone

treatments at 12 d after germination. At 0 h, 3 h, 6 h, 9 h, 12 h, and

24 h, the leaves of barley seedlings were taken from all treatments

and controls. TRIzol was used to extract RNA from barley leaves,

and a FastKing RT Kit (TIANGEN, Beijing, China) was used to

synthesize cDNA. Real-time quantitative PCR was carried out using

PerfectStart™ GREEN qPCR SuperMix (SYBR Green I) (Transgen,

Beijing, China). For every qRT-PCR analysis, the barley b-actin
gene served as an internal reference. The 2−DDCT value was utilized

for the analysis of gene expression data. The qRT-PCR-specific

primers are listed in Supplementary Table 2.
3 Results

3.1 Identification and chromosomal
distributions of barley TALE
family members

We identified 21 HvTALE genes including nine KNOX genes

(HvKNOX1 to HvKNOX9) and 12 BELL genes (HvBELL1 to

HvBELL12) from H. vulgare Morex v3 genome, named according

to their gene coordinate on the seven barley chromosomes (Han

et al., 2022) (Table 1). These 21 HvTALE genes were unevenly

distributed on the seven barley chromosomes (Supplementary

Figure 1). Notably, Chr4H enclosed the most HvTALE genes

(10), whereas Chr2, Chr3, and Chr6H had a single gene only.

Fundamental physical and biochemical characteristics of

HvTALE family members were explored (Table 1), including

protein length, isoelectric point, MW, grand average of

hydropathicity, and subcellular localization. Protein sizes of

HvTALE members varied from 297 aa (HvKNOX8) to 809 aa

(HvBELL6), and corresponding MW ranged from 32.41241 to

85.47339 kDa (Table 1); pI values ranged from 5.40 (HvKNOX1)

to 8.74 (HvKNOX4). Subcellular location predictions indicated that

HvTALE proteins (19 members) occurred mainly in the nuclear

region. Two HvTALE members (HvKNOX2 and HvBELL10) may

occur in nuclear and cytoplasm regions. Gene CDS and protein

sequences are presented in Supplementary Table 3, and HD
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sequences of barley HvTALE members are presented in

Supplementary Table 4.
3.2 Phylogenetic analysis and classification
of HvTALEs

A phylogenetic tree was built using 167 TALE protein sequences

from five species (A. thaliana, H. vulgare, O. sativa, Z. mays, and T.

aestivum) to investigate the phylogeny and taxonomic relationships

of TALE superfamily genes (Figure 1). Additionally, an unrooted

evolutionary tree with just barley TALE proteins was also built

(Supplementary Figure 2). Based on structural characteristics and

the classification in Arabidopsis (Supplementary Table 5), the 21

HvTALE family members were classified into KNOX and BEL1-like

subfamilies (Table 1). Nine members of the KNOX subfamily were

further divided into six members of class KNOX I and three

members of class KNOX II.
3.3 Gene structures and motif
compositions of HvTALE members

We investigated exon–intron patterns and conserved domain

compositions of discovered HvTALE genes to gain a better

understanding of possible relationships between the structure and

function of HvTALE genes (Figure 2A). HvTALE genes displayed

two to five exons (one HvTALE gene contains two exons, one HvTALE

gene contains three exons, 10 HvTALE genes contain four exons, and

nine HvTALE genes contain five exons). HvTALE genes in the same

subfamily showed similar gene structures. Notably, except for

HvBELL4 and HvBELL7, the BEL1-like subfamily genes had four

exons, but the KNOX subfamily genes had five exons. Conserved

domains of HvTALEmembers are depicted in Figure 2A. All HvTALE

members contained HD domains, the BEL1-like subfamily members

harbored POX domains, and KNOX1, KNOX2, and ELK domains

occurred only in the KNOX subfamily. Significantly, the MEINOX

domain, which mediates the formation of heterodimers between

KNOX and BEL1-like proteins, is composed of the KNOX1 and

KNOX2 domains (Bhatt et al., 2004; Kim et al., 2013).

To better understand conserved domain patterns, we used

MEME online software to scan HvTALE gene motifs and set the

motif quantity at 10. A drawing was constructed using the 10 scanned

MEME-motifs in Figure 2A, and the MEME-motifs’ Sequence Logos

are shown in Figure 2B. HvTALE members of the same subfamily

also display similar motif compositions. Motifs 1–3 and 7–10 were

present in most BEL1-like subfamily members, while Motifs 1, 4–6,

and 8 were present in KNOX subfamily members. The KNOX

subfamily showed different motif components across different

clades. Class KNOX II members were linked to Motifs 1, 4, 5, and

8, while class KNOX I members contained Motifs 1 and 4–6. The

BELL subfamily exhibited two types of motif components: four

HvBELL members contained Motifs 1, 2, 5, 7, and 10, and others

were associated with Motifs 1, 2, 5, 7, 9, and 10.
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3.4 Expansion and evolutionary analyses of
HvTALE genes

Plant gene family expansions are thought to be primarily driven by

tandem and segmental duplication events (Cannon et al., 2004).

Tandem duplication events are defined as 200-kb chromosomal

regions containing two or more genes (Han et al., 2022). We

detected a tandem duplication event linked to two HvTALE genes

(HvBELL4/HvBELL5) on Chr4H (Supplementary Figure 1). In

contrast, segmental duplications result in a significant number of

duplicated chromosomal blocks within genomes and frequently

happen during chromosome rearrangement-related polyploidization

events (Yu et al., 2005). In the barley genome, we found three

segmental duplication events (Supplementary Table 6A, Figure 3).

Compared with tandem duplications, the segmental duplications

mainly drive the expansion of the HvTALE superfamily.

To explore evolutionary clues of TALEmembers among barley (H.

vulgare) and other species, three dicots (A. thaliana, G. max, and
Frontiers in Plant Science 05
P. trichocarpa) and three monocots (O. sativa, Z. mays, and T.

aestivum) were used for syntenic analyses (Supplementary Table 6B).

In total, 3, 2, 5, 15, 56, and 14 HvTALE orthologous genes were

identified for these species (Supplementary Figure 3). Output results

were integrated into the comparative syntenic schematics in Figure 4.

Two barley TALE members (HvBELL2 and HvBELL3) have collinear

pairs with five species. Eight barley TALEmembers have collinear pairs

with three monocot species. Thus, barley has more collinear pairs with

the monocots O. sativa, Z. mays, and T. aestivum.

The Ka/Ks ratios of TALE orthologous gene pairs between barley

and the six species were also calculated to uncover the evolutionary

constraints on the TALE superfamily (Supplementary Table 6B). All

orthologous TALE gene pairs show Ka/Ks < 1, indicating that the

barley TALE superfamily has undergone purifying selective pressure

in monocotyledons (Han et al., 2022). Obtained Ka/Ks ratio values

among barley and three monocot species are shown in Figure 5A.

Variations in TALE genes among five barley accessions (Morex,

Akashinriki, Golden Promise, B1K-04–12, and OUH602) were
TABLE 1 Physical and biochemical properties of TALE genes identified in barley.

Gene
name

Gene ID
HvTALE
subfamily

Chr.
Gene
start
(bp)

Gene
end
(bp)

Length
(aa)

pI
Mw
(kDa)

GRAVY PSL

HvKNOX1 HORVU.MOREX.r3.1HG0016370.1 KNOX Class I Chr1H 47,506,515 47,512,144 306 5.40 33.10021 −0.568 Nucleus

HvKNOX2 HORVU.MOREX.r3.2HG0154270.1 KNOX Class I Chr2H
363,973,953 363,977,826

349 6.32 38.57452 −0.639
Nucleus,
cytoplasm

HvKNOX3 HORVU.MOREX.r3.4HG0333990.1 KNOX Class I Chr4H 7,173,641 7,185,231 321 5.65 35.78888 −0.822 Nucleus

HvKNOX4 HORVU.MOREX.r3.4HG0334040.1 KNOX Class I Chr4H 7,401,532 7,405,517 353 8.74 39.2952 −0.736 Nucleus

HvKNOX5 HORVU.MOREX.r3.4HG0339120.1 KNOX Class I Chr4H 24,234,352 24,242,112 364 6.31 40.34435 −0.599 Nucleus

HvKNOX6 HORVU.MOREX.r3.4HG0412370.1
KNOX
Class II

Chr4H
594,364,765 594,369,936

315 5.92 34.84649 −0.505 Nucleus

HvKNOX7 HORVU.MOREX.r3.5HG0513530.1 KNOX Class I Chr5H 535,228,694 535,235,584 420 8.09 46.42088 −0.471 Nucleus

HvKNOX8 HORVU.MOREX.r3.6HG0568300.1
KNOX
Class II

Chr6H
111,189,013 111,194,443

297 5.95 32.41241 −0.563 Nucleus

HvKNOX9 HORVU.MOREX.r3.7HG0744200.1
KNOX
Class II

Chr7H
613,060,146 613,064,327

298 5.85 32.84187 −0.614 Nucleus

HvBELL1 HORVU.MOREX.r3.1HG0052320.1 BEL1-like Chr1H 348,794,735 348,800,106 596 6.61 63.63255 −0.515 Nucleus

HvBELL2 HORVU.MOREX.r3.1HG0073900.1 BEL1-like Chr1H 464,310,250 464,314,963 580 8.34 62.68864 −0.621 Nucleus

HvBELL3 HORVU.MOREX.r3.3HG0302040.1 BEL1-like Chr3H 547,804,242 547,808,949 611 7.91 66.03347 −0.601 Nucleus

HvBELL4 HORVU.MOREX.r3.4HG0334350.1 BEL1-like Chr4H 8,338,174 8,339,591 342 5.44 37.49787 −0.556 Nucleus

HvBELL5 HORVU.MOREX.r3.4HG0334360.1 BEL1-like Chr4H 8,722,968 8,726,333 636 5.39 70.23389 −0.688 Nucleus

HvBELL6 HORVU.MOREX.r3.4HG0339810.1 BEL1-like Chr4H 27,555,371 27,565,963 809 6.29 85.47339 −0.569 Nucleus

HvBELL7 HORVU.MOREX.r3.4HG0350220.1 BEL1-like Chr4H 98,313,718 98,318,816 666 5.88 69.90024 −0.507 Nucleus

HvBELL8 HORVU.MOREX.r3.4HG0402730.1 BEL1-like Chr4H 561,849,331 561,852,756 589 5.80 62.84729 −0.566 Nucleus

HvBELL9 HORVU.MOREX.r3.4HG0412330.1 BEL1-like Chr4H 594,228,348 594,233,452 622 6.03 66.86208 −0.594 Nucleus

HvBELL10 HORVU.MOREX.r3.5HG0420480.1 BEL1-like Chr5H
3,415,223 3,417,664

649 5.80 72.14237 −0.73
Nucleus,
cytoplasm

HvBELL11 HORVU.MOREX.r3.7HG0636950.1 BEL1-like Chr7H 4,915,798 4,918,264 477 6.97 53.15032 −0.481 Nucleus

HvBELL12 HORVU.MOREX.r3.7HG0717740.1 BEL1-like Chr7H 512,372,117 512,374,191 541 6.02 58.31130 −0.342 Nucleus
fro
MW, molecular weight; pI, isoelectric point; aa, amino acid; PSL, predicted subcellular localization; GRAVY, grand average of hydropathicity.
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investigated. Approximately 105 TALE family genes were identified

from three cultivated and two wild accessions, with 21 genes in each

(Supplementary Table 3). Ka/Ks values of barley TALE homologous

gene pairs among Morex and four barley accessions were calculated

to study selection pressure on the TALE superfamily during barley

domestication (Supplementary Figure 3, Supplementary Table 7).

Excepting BELL4 (Ka/Ks = 1.70) between Morex and Akashinriki,

the Ka/Ks values were all <1, indicating that TALE superfamily

genes are continuously evolving through purification selection. It is

possible that BELL4 in Akashinriki (cultivated barley) had great

artificial variation. Ka/Ks values are depicted in Figure 5B.
3.5 Interaction network and protein
interaction analysis of HvTALE proteins

Protein–protein interactions are central mediators in biological

processes. Clarifying interaction relationships among HvTALE

proteins is important to characterize their potential functions and

regulatory pathways. A protein interaction network among
Frontiers in Plant Science 06
HvTALE proteins prepared using STRING software predicted

eight HvTALE family members to interact with other proteins

(Supplementary Table 8, Figure 6). Excepting HvBELL7, seven

HvTALE proteins could interact with other HvTALE members.

HvKNOX5 was central to the interaction network and interacted

strongly with five HvTALE members, including one KNOX

subfamily member (HvKNOX6) and four BELL subfamily

members (HvBELL3, HvBELL5, HvBELL11, and HvBELL12).

Additionally, the BELL subfamily member (HvBELL5) may

interact with KNOX subfamily member HvKNOX6, and

HvBELL3 may interact with HvKNOX1. This is consistent with

previous studies to form KNOX–BELL heterodimer proteins.

On the basis of the HvTALE family interaction network, we

selected HvKNOX6–HvKNOX5 and HvBELL11–HvKNOX5

protein interaction and simulated the spatial structure of their

protein complexes. According to 3D structure modeling

(Figure 7), HvKNOX5 and HvKNOX6 interact with each other

through 11 hydrogen bonds and two salt bridges (Supplementary

Figure 5A). The 3D modeling of the HvKNOX5–HvKNOX6

complex has a confidence score of 0.9775 (Supplementary
FIGURE 1

Phylogenetic analysis of HvTALE proteins. In total, 167 KNOX/BELL protein sequences from five species, including four monocotyledons (Hordeum
vulgare, Oryza sativa, Zea mays, and Triticum aestivum) and one dicotyledon (Arabidopsis thaliana), were used to construct the unrooted neighbor-
joining (NJ) tree. Different subclass genes are distinguished by color: KNOX I (pink), KNOX II (gray), KNOX III (red), and BELL (green). All barley TALE
proteins are denoted by red triangles, Arabidopsis TALE proteins are represented by blue pentacles, and wheat TALE proteins are represented by
yellow circles.
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Table 9). In the HvKNOX5–HvKNOX6 complex, the KNOX2

domain of the HvKNOX5 protein has one bonding site (Tyr174),

and the C-terminal side of the HD domain has three consecutive

hydrogen-bonding sites (Lys324, Arg325, and His326). HvKNOX5

and HvBELL11 interact with each other through 15 hydrogen

bonds and one salt bridge (Supplementary Figure 5B). The 3D

modeling of the HvKNOX5–HvBELL11 complex has a confidence

score of 0.9763 (Supplementary Table 9). In the HvKNOX5–

HvBELL11 complex, in addition to one hydrogen bonding site

(Leu189) on the KNOX2 domain, there is another (Lys324) on the

C-terminal side of the HD domain; the HvKNOX5 protein has two

hydrogen bonding sites (Glu265 and Lys269) on the ELK domain

and two (Ala303 and Glu306) on HD domains. HvKNOX5–

HvKNOX6 and HvKNOX5–HvBELL11 complexes are formed

through a hydrogen bonding site on the KNOX2 domain and a

hydrogen bonding site on the C-terminal of the HD domain, which
Frontiers in Plant Science 07
may be essential for the interaction between HvKNOX5 and other

TALE superfamily members.
3.6 cis-Element analyses of barley
TALE genes

cis-Elements are crucial for transcriptional control of gene

expression (Wang et al., 2017). For cis-element studies, we

extracted the HvTALE genes’ promoter region sequences, namely,

the 2,000-bp upstream sequences from gene initiation codons

(Supplementary Table 10). cis-Elements are proportionally

displayed in Supplementary Figure 6. Interestingly, cis-elements

with a wide distribution in gene promoter regions included light,

hormone, defense, and stress responsiveness and anaerobic

induction (Supplementary Table 11). The results also manifest
B

A

FIGURE 2

Gene structures and motif patterns of HvTALE members. (A) Gene structures and motif patterns of HvTALE genes. Colors: green boxes, exons; gray
lines, introns; yellow boxes, untranslated 5′ and 3′ regions. Ten motifs are set by Multiple Expectation Maximization for Motif Elicitation (MEME)
software. (B) Seq Logos of HvTALE members; 10 motifs are set by MEME software.
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that barley TALE members are probably linked to responses to

plant hormones, such as abscisic acid (53), jasmonic acid methyl

ester (76), salicylic acid (17), auxin (18), and gibberellin (23)

(Figure 8). This means that the potential functions of HvTALE

genes include responses to abiotic stressors and plant hormones and

participation in various biological processes.
3.7 Expression profiling of HvTALEs in
different barley tissues and responses to
exogenous hormones

Expression patterns of barley TALE genes were analyzed by

generating a tissue-specific expression heatmap (Supplementary

Table 1E, Figure 9). Four TALE genes show very low or no

expression, with log2(FPKM+1) < 1 for all developmental

stages; others were expressed with log2(FPKM+1) > 1 in at least

one organ. Of them, transcription levels of HvKNOX8

(HORVU .MOR E X . r 3 . 6 H G 0 5 6 8 3 0 0 . 1 ) , H v KNOX 9

(HO R VU . MO R E X . r 3 . 7 H G 0 7 4 4 2 0 0 . 1 ) , H v B E L L 5

(HORVU.MOREX. r3 . 4HG0334360 .1 ) , and HvBELL10

(HORVU.MOREX.r3.5HG0420480.1) are high at all stages. Most

HvTALE genes are expressed more strongly in the third internode

of tillers than in the other organs. The expression of HvKNOX6

(HORVU.MOREX.r3.4HG0412370.1) was abundant in the third

internode of tillers and lemma.

We also analyzed expression profiles of barley HvTALE genes

responding to plant hormones based on public RNA-seq datasets.

Based on mapping all reads from SRA and GEO datasets to the
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Morex v3 genome, we found that there were 16 reads in SRA datasets

(ABA and SA treats) (Supplementary Table 1A) while only four reads

in the GEO datasets (ABA and MeJA treats) (Supplementary

Table 1C) mapping to TALE genes from the Morex v3 genome.

From the overall trend, under ABA and SA stress, KNOX family

members were basically unchanged compared with the control in

14-d leaves after seedling, and most BELL family members [e.g.,

HvBELL6 (HORVU.MOREX.r3.4HG0339810) , HvBELL9

(HORVU .MOREX . r 3 . 4HG0412 3 30 ) , a nd HvBELL11

(HORVU.MOREX.r3.7HG0636950)] were slightly downregulated

(Figure 9). GEO sample data reveal that four genes in the

development of shoots and roots exhibit expression changes

under MeJA treatments (Figure 9), of which HvBELL12

( H O R V U . M O R E X . r 3 . 7 H G 0 7 1 7 7 4 0 ) , H v B E L L 7

(HORVU .MOREX . r 3 . 4HG0350 2 2 0 ) , a n d HvKNOX6

(HORVU.MOREX.r3.4HG0412370) were upregulated compared

with the control and HvBELL11 (HORVU.MOREX.r3.7HG0636950)

was downregu l a t ed . Under ABA s t r e s s , HvKNOX6

(HORVU.MOREX.r3.4HG0412370) was upregulated in the shoot

compared with the control, and three BELL family members

[HvBELL12 (HORVU.MOREX.r3.7HG0717740), HvBELL7

(HORVU .MOREX . r 3 . 4HG0350 2 20 ) , a nd HvBELL11

(HORVU.MOREX.r3.7HG0636950)] were downregulated.

Additionally, HvBELL12 (HORVU.MOREX.r3.7HG0717740) and

HvBELL7 (HORVU.MOREX.r3.4HG0350220) increased

significantly in the roots in ABA treatments compared with the

control, and HvKNOX6 (HORVU.MOREX.r3.4HG0412370) and

HvBELL11 (HORVU.MOREX.r3.7HG0636950) genes showed much

lower expressions.
FIGURE 3

A circular figure showing the HvTALE genes’ collinearity. Duplicate HvTALE gene pairs are connected by red curves, and genome-wide collinear
blocks are used as the background (gray).
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3.8 Expression patterns of HvTALEs
responding to exogenous hormones in
seedling leaves using quantitative RT-PCR

Based on previous studies (Zhang et al., 2021; Han et al., 2022),

we used qRT-PCR to detect expression levels under ABA, GA3, and

6-BA stress for four TALE genes that were relatively highly

expressed in each tissue (Figure 10; Supplementary Table 12).

When treated with ABA, the expression levels of HvKNOX6 and

HvNOX8 decreased more significantly than those of their controls

(the 0-h sample point). Compared with that of the control groups,

the expression level of HvKNOX9 was downregulated at 3-h, 6-h, 9-

h, and 24-h sample points but upregulated at 12 h. The expression

level of HvBELL10 did not differ significantly from controls at 3 h, 6

h, 12 h, and 24 h but was significantly decreased at 9 h. For GA3

treatments, the expression levels of HvKNOX6 and HvNOX9
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trended downward compared with controls, while those of

HvBELL10 trended upward at all sample points. At 6 h, 9 h, and

12 h, the expression levels of HvNOX8 increased more significantly

than control values. When treated with 6-BA, the expression level of

HvKNOX6 also decreased more significantly than controls. The

expression levels of HvNOX8 increased more significantly

compared with controls at 12 h. The expression levels of

HvNOX9 did not differ significantly from controls at 3 h, 9 h,

and 24 h but increased significantly compared with its controls at

6 h and 12 h. The expression levels ofHvBELL10 at 3 h, 9 h, and 24

h were significantly higher than for controls. For treatments of

exogenous ABA, GA3, and 6-BA, three KNOX II genes showed

relatively complicated expression patterns at 3 h, 6 h, 9 h, 12 h,

and 24 h, possibly indicating that each gene had a different

regulating function in barley (Matsumoto et al., 2014; Hartmann

et al., 2022).
FIGURE 4

Syntenic relations of TALE members among barley and six plant species; 3, 2, 5, 15, 56, and 14 HvTALE orthologous genes were identified between
barley and Arabidopsis thaliana, Glycine max, Populus trichocarpa, Oryza sativa, Zea mays, and Triticum aestivum, respectively. Gray lines
(background) indicate collinear blocks within barley and other plant genomes; red lines highlight syntenic HvTALE gene pairs.
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4 Discussion

4.1 Identification and evolutionary
relationships of TALE gene family in barley

Members of the TALE superfamily are essential for regulating

plant development, growth, and hormone responses. We

comprehensively investigated the HvTALE gene family and

provided perspectives into their biological functions. The number

of TALE gene family members varies between taxa: Arabidopsis

(22), poplar (35), soybean (68), and wheat (70) (Hamant and
Frontiers in Plant Science 10
Pautot, 2010; Zhao et al., 2019; Wang et al., 2021; Han et al.,

2022). In barley, the total number of TALE members identified (21)

is close to that in diploid Arabidopsis but below that in polyploid

plants (triploid poplar, tetraploid soybean, and hexaploid wheat).

Therefore, we speculate that numbers of TALE superfamily genes

are associated with species ploidy levels.

To explore the phylogeny and evolutionary relationships among

TALE family genes, a phylogenetic tree comprising five species

(four dicotyledons and one monocotyledon) was constructed. With

reference to the classification in Arabidopsis, we divided barley

TALE gene family members into KNOX and BELL-like subfamilies.
BA

FIGURE 5

Boxplot of non-synonymous/synonymous substitutions (Ka/Ks) ratios in orthologous gene pairs. (A) Ka/Ks values of TALE orthologous gene pairs
among barley (Hordeum vulgare) and three species (Oryza sativa, Zea mays, and Triticum aestivum). (B) Ka/Ks values of barley TALE homologous
gene pairs among Morex and four barley accessions (Akashinriki, Golden_Promise, B1K-04–12, and OUH602).
FIGURE 6

Predicted functional interaction networks of barley TALE proteins. The eight barley genes identified and marked in red are orthologs mapped using
Arabidopsis genes. Medium confidence (0.400); 20 interactors.
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In barley, KNOX subfamily members are further divided into class I

KNOX and class II KNOX. The BELL-like subfamily has not been

previously systematically classified. In terms of the conserved

domains of HvTALE members, all HvTALE members contained

HD domains. The BELL-like subfamily members harbored POX

domains, but the KNOX subfamily had only KNOX1, KNOX2, and

ELK domains (Müller et al., 2001; Cole et al., 2006). Our

classification results are supported by the specific domains or

motif combinations found in each HvTALE subfamily and

hereditary class. Introns are essential for both evolution and the

production of new gene family members (Roy and Penny, 2007).

Investigating the evolution of HvTALE genes may be aided by

understanding the intron distribution patterns of these genes.

HvTALE gene structures are distinct in different subfamilies. All

genes in the KNOX subfamily contain five exons, and most BEL1-

like subfamily members contain four exons (except HvBELL4 and

HvBELL7). Members of HvTALE may exhibit distinctive

divergences and consistencies that indicate their functional
Frontiers in Plant Science 11
differences and comparability, and members of the same TALE

branch may perform comparable biological functions.

Segmental and tandem gene replication plays a driving role in

the evolutionary expansion of plant gene families, and low-tandem,

high segmental duplication classes are involved in various

enzymatic functions (Cannon et al., 2004; Zhang et al., 2018).

Gene duplication analysis revealed that most HvTALE genes had

originated from segmental duplications, further identifying the

crucial role that these segmental duplications play in barley TALE

gene family expansion. Syntenic gene pairs among species may be

useful for evolutionary research on the gene family (Han et al.,

2022). To further investigate evolutionary clues from HvTALE

genes, three dicotyledons and three monocotyledons were

recruited for syntenic analysis (Figure 4). More HvTALE

orthologous genes were detected in monocotyledons than in

dicotyledons, and barley and wheat had the most syntenic pairs.

This indicates that syntenies among TALE genes may parallel the

evolutionary divergence of species. Important homologous pairs are
B

C
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FIGURE 7

The 3D structure modeling of HvKNOX5–HvKNOX6 and HvKNOX5–HvBELL11 complexes. (A) HvKNOX5–HvKNOX6 complex with a hydrogen
bonding site (Tyr174) on the KNOX2 domain of the HvKNOX5 protein and three consecutive bonding sites (Lys324, Arg325, and His326) on the C-
terminal side of the HD domain of the HvKNOX5 protein. (B) HvKNOX5–HvBELL11 complex with a hydrogen bonding site (Leu189) on the KNOX2
domain of the HvKNOX5 protein, three hydrogen bonding sites (Ala303, Glu306, and Lys324) on the HD domain of the HvKNOX5 protein and two
hydrogen bonding sites (Glu265 and Lys269) on the ELK domain of the HvKNOX5 protein. (C) KNOX1, KNOX2, ELK, and HD domain sequences
of HvKNOX5.
FIGURE 8

Number of plant hormone cis-elements detected in HvTALE genes.
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often highly conserved, and they may exist before taxonomic

differentiation (Xie et al., 2018; Wang et al., 2020). We report

HvBELL2 and HvBELL3 to show homologous pairing in

dicotyledonous and monocotyledonous, indicating that this

conserved pairing may have existed before monocotyledons

separated from dicotyledons.

Selective pressure at the protein level is usually measured by the

non-synonymous/synonymous rate ratio (Ka/Ks), with Ka/Ks < 1,

Ka/Ks = 1, and Ka/Ks > 1 indicating purifying (or negative)

selection, neutral evolution, and diversifying (or positive)

selection, respectively (Anisimova et al., 2001). Except for the

BELL4 Ka/Ks value (1.70) between the Morex and Akashinriki

varieties of barley, Ka/Ks values were all <1, indicating that the

barley TALE superfamily member had undergone a strong

purifying selection. The Ka/Ks value of BELL4 between the Morex

and Akashinriki varieties was >1, possibly because BELL4 of

Akashinriki had been subject to abnormal artificial mutation.
4.2 Prediction and 3D structure modeling
of barley TALE proteins

The protein interactions between members of the TALE gene

family are widespread in plants. For example, the interaction

between the KNAT3 protein in Arabidopsis and the BLH1 protein

can influence how plants respond to ABA and may also indirectly

influence how resilient plants are to adversity (Bhatt et al., 2004;

Kim et al., 2013). Certain GhBEL1-like proteins in cotton interact

with GhKNAT7 homologs to influence the network responsible for

the formation of fiber SCWs (Ma et al., 2019). In protein
Frontiers in Plant Science 12
interactions, some domains or patterns are crucial (Liu et al.,

1999). The KNOX1 and KNOX2 domains comprise the MEINOX

region. The KNOX1 domain is crucial for reducing the expression

of the target gene, while the functionally essential KNOX2 domain

is thought to be necessary for dimerization (Nagasaki et al., 2001);

even the KNOX2 domain alone can interact with the BELL protein

(Liu et al., 2014). In Arabidopsis, the MEINOX domain in KNOX

proteins mediated BEL1 and particular KNOX protein interactions

to form heterodimers (Bellaoui et al., 2001). KNATM proteins that

have lost their HD domains also use the MEINOX domain to

selectively bind with Arabidopsis BELL proteins (Magnani and

Hake, 2008). The HD domain of MdKNOX15 in apple can also

interact with MdBLH1 through yeast double hybridization (Jia

et al., 2021a).

How KNOX–KNOX and KNOX–BELL interact in the TALE

gene family may vary from species to species. Compared with

KNOX proteins, there has been less research performed on BELL

proteins, which contain an HD and MEINOX interacting domain

composed of POX domains (Müller et al., 2001; Cole et al., 2006). In

this study, through interaction network analysis, we report that

barley HvKNOX5 has strong interactions with five HvTALE

members (HvKNX6, HvBELL3, HvBELL5, HvBELL11, and

HvBELL12). Accordingly, we chose HvKNOX5–HvKNOX6 and

HvKNOX5–HvBELL11 complexes for protein interaction studies.

In the HvKNOX5–HvKNOX6 complex, the KNOX2 domain of the

HvKNOX5 protein has one hydrogen bonding site (Tyr174), and

the HD domain has three consecutive hydrogen bonding sites

(Lys324, Arg325, and His326). In the HvKNOX5–HvBELL11

complex, HvKNOX5 has two hydrogen bonding sites (Glu265

and Lys269) on the ELK domain, one hydrogen bonding site
B
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FIGURE 9

Expression heatmaps of HvTALE genes in different tissues and different responses to exogenous hormones. Expression heatmaps of HvTALE genes in
(A) diverse tissues at different developmental stages [using profiles provided by the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)],
(B) responses to ABA and SA [using Sequence Read Archive (SRA) samples], and (C) different responses to ABA and MeJA [using Gene Expression
Omnibus (GEO) BioProject samples].
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(Leu189) on the KNOX2 domain, and three hydrogen bonding sites

(Ala303, Glu306, and Lys324) on the HD domain. The C-terminal

of the MEINOX domain of KNOX3 that is the former name of

HvKNOX5 in barley is necessary for KNOX–KNOX and KNOX–

BELL complex interactions (Müller et al., 2001). We report the

barley HvKNOX5 protein to have a hydrogen binding site on the

KNOX2 domain, regardless of whether it binds to HvKNOX6

or HvBELL11.
4.3 The roles of HvTALEs in
phytohormone responses

Excepting in the third internode of tillers and developing grains 5

d and 15 d after anthesis, the expression level of KNOX I genes was

relatively low in different barley developmental stages, consistent with

results reporting KNOX I member expression in meristems (Hake

et al., 2004; Hay and Tsiantis, 2010; Qi and Zheng, 2013).

Additionally, KNOX genes control the metabolic processes and

signaling pathways linked to several hormones, such as cytokinin,

auxin, and gibberellin (Tsuda and Hake, 2015). Exogenous ethylene
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treatment could promote the downregulation of Bkn3, which has a

305-bp insertion sequence in the fourth intron of HvKNOX5 and

change the phenotype of the barley hooded mutation (Osnato et al.,

2010). In apple,MdKNOX19 (a class II KNOX gene) was significantly

upregulated when ABA was applied to its seeds, leaves, and fruits (Jia

et al., 2021b). We report many cis-elements in the 2,000-bp

promoter sequence to respond to hormones, indicating that most

TALE superfamily members may be inducible by exogenous

phytohormones. Excepting HvKNOX9 at 6 h and 12 h, we report

ABA to inhibit the expression of class II KNOX genes in barley leaves.

From these SRA sample data, the expression of KNOX II family

members under ABA stress is unchanged compared with control

values. According to GEO sample data, the expression of the KNOX

II family member HvKNOX6 differs in shoots and roots under ABA

stress. Accordingly, we conclude that barley KNOX II subfamily

members may have different expressions in different growth periods,

tissues, and organs in ABA treatments. Class KNOX I genes are TFs

that help preserve meristem identity by inhibiting GA production

and stimulating cytokinin synthesis (Hay and Tsiantis, 2010).

Compared with controls, we report the expression of HvKNOX6

and HvKNOX9 to trend downward and for HvKNOX8 to trend
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FIGURE 10

HvTALE gene expression patterns responding to exogenous hormones in seedling leaves. The expression patterns of (A) HvKNOX6, (B) HvKNOX8,
(C) HvKNOX9, and (D) HvBELL10 in response to the ABA treatment. The expression patterns of (E) HvKNOX6, (F) HvKNOX8, (G) HvKNOX9, and (H)
HvBELL10 in response to the GA3 treatment. The expression patterns of (I) HvKNOX6, (J) HvKNOX8, (K) HvKNOX9, and (L) HvBELL10 in response to
the 6-BA treatment. Asterisks indicate significant differences from controls (0-h sample points) and others (3 h, 6 h, 9 h, 12 h, and 24 h): *p < 0.05,
**p < 0.01, ***p < 0.001, Student’s t-test.
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upward with GA3 treatment. Therefore, the expression of class II

KNOX genes responds differently to GA3. In Arabidopsis, class

KNOX I genes can be mediated by cytokinin to promote cell

division and maintain meristem (Jasinski et al., 2005). Although we

found no CK-responsive cis-elements in the promoter sequence of

the barley KNOX family, qRT-PCR results indicate that cytokinin (6-

BA) also has a regulatory effect on class II KNOX genes in barley.

Therefore, we assume that CK regulates the expression of KNOX II

genes by regulating other genes.

Few studies have examined interactions between BELL genes

and hormones. We report HvBELL11 to be downregulated

compared with control values under ABA, SA, and MeJA stress.

From the interaction network among HvTALE proteins, HvBELL11

may interact with HvKNOX5. Given that HvKNOX5 plays an

important regulatory role in the formation of barley awns

(Osnato et al., 2010), the regulatory relationship between them

warrants study in specific barley tissues (such as awns).
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