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Introduction: The aboveground carbon storage (AGC) in forests serves as a

crucial metric for evaluating both the composition of the forest ecosystem and

the quality of the forest. It also plays a significant role in assessing the quality of

regional ecosystems. However, current technical limitations introduce a degree

of uncertainty in estimating forest AGC at a regional scale. Despite these

challenges, remote sensing technology provides an accurate means of

monitoring forest AGC. Furthermore, the implementation of machine learning

algorithms can enhance the precision of AGC estimates. Lishui City, with its rich

forest resources and an approximate forest coverage rate of 80%, serves as a

representative example of the typical subtropical forest distribution in

Zhejiang Province.

Methods: Therefore, this study uses Landsat remote sensing images, employing

backpropagation neural network (BPNN), random forest (RF), and categorical

boosting (CatBoost) to model the forest AGC of Lishui City, selecting the best

model to estimate and analyze its forest AGC spatiotemporal dynamics over the

past 30 years (1989–2019).

Results: The study shows that: (1) The texture information calculated based on

9×9 and 11×11 windows is an important variable in constructing the remote

sensing estimation model of the forest AGC in Lishui City; (2) All three machine

learning techniques are capable of estimating forest AGC in Lishui City with high

precision. Notably, the CatBoost algorithm outperforms the others in terms of

accuracy, achieving a model training accuracy and testing accuracy R2 of 0.95

and 0.83, and RMSE of 2.98 Mg C ha-1 and 4.93 Mg C ha-1, respectively. (3)

Spatially, the central and southwestern regions of Lishui City exhibit high levels of

forest AGC, whereas the eastern and northeastern regions display comparatively

lower levels. Over time, there has been a consistent increase in the total forest
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AGC in Lishui City over the past three decades, escalating from 1.36×107 Mg C in

1989 to 6.16×107 Mg C in 2019.

Discussion: This study provided a set of effective hyperparameters and model of

machine learning suitable for subtropical forests and a reference data for

improving carbon sequestration capacity of subtropical forests in Lishui City.
KEYWORDS
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1 Introduction

The aboveground carbon storage (AGC) in forests is one of the

important indicators for evaluating the structure of forest

ecosystems and the quality of forests. It also serves as a significant

measure for evaluating the quality of the regional ecological

environment (Diao et al., 2022). Accurately quantifying forest

carbon storage and monitoring its spatial distribution is beneficial

for a more concrete understanding of the terrestrial carbon cycle

process and understanding the carbon sink patterns in different

regions. It also allows for a more accurate assessment of the

potential of forest carbon sinks. This has significant implications

for the formulation of carbon sequestration and emission reduction

policies (Liu and Wu, 2017; Su et al., 2016).

Currently, the estimation of forest AGC mainly falls into three

methods: field survey, model simulation, and remote sensing

estimation (Gomez and Gumersindo, 2017; Mngadi et al., 2021).

The traditional field survey method is the most intuitive and

accurate, but it is difficult to reflect the situation of the entire

forest area. This approach necessitates substantial human and

material resources and is inherently damaging. Model simulation

methods such as Biome-BioGeochemical Cycles (BIOME-BGC)

require a variety of vegetation parameters to estimate the forest

AGC. A lack of sufficient input data or the presence of missing data

can notably influence the accuracy of the prediction outcomes (Liu

et al., 2019). With the gradual development of forest AGC

estimation research technology and the continuous optimization

of research methods, remote sensing estimation methods have

gradually replaced field survey methods as the main research

methods for estimating forest AGC (Stovall et al., 2017). This

method infers and estimates the carbon storage on the Earth’s

surface by acquiring remote sensing data of the Earth’s surface and

combining it with ground monitoring data and model algorithms

(Li et al., 2022). Since its launch, the Landsat series of satellites

has demonstrated advantages such as a good performance-

price ratio, rich spectral information, and a quick image update

cycle. As a result, Landsat has become the most widely used

remote sensing data source in many applications, including

estimation of AGC, land use/cover surveys, agricultural yield

estimation, regional planning, and forest fire monitoring
02
(Wang and Gao, 2019; Li H, et al., 2023; Lu, 2006; Xu et al., 2011;

Du et al., 2008; Li et al., 2018).

However, remote sensing data cannot directly reveal the forest

AGC and its changes. It is necessary to establish a complete

mathematical model between the information received by the

satellite and the ground-measured AGC to realize the

spatiotemporal estimation of forest AGC (Du et al., 2012; Zhang

et al., 2019). Among the many AGC estimation models, machine

learning algorithms such as backpropagation neural network

(BPNN), support vector regression (SVR), random forest (RF),

and ensemble learning (EL) are widely used for forest AGC

estimation. For example, Wu (Wu et al., 2016) compared stepwise

linear regression, k-nearest neighbors (KNN), SVR, RF, and

stochastic gradient boosting (SGB) methods, and used Landsat

imagery to estimate the forest biomass in the northwest region of

Zhejiang, China. The results found that the RF method performed

the best. Xu (Xu et al., 2018) utilized QuickBird imagery to gather

data from the Houbaisha forest region in Fujian Province and

established a BP artificial neural network to estimate forest biomass.

Zhang (Zhang et al., 2020) conducted an assessment of eight

machine learning methodologies, which included multivariate

adaptive regression splines (MARS), SVR, RF, categorical

boosting (CatBoost), multilayer perceptron (MLP), etc., by

estimating forest biomass for performance comparison. The

results indicated that the CatBoost algorithm outperformed the

other algorithms in terms of performance.

Numerous researches have demonstrated that BPNN is a

commonly utilized conventional machine learning methodology

(Xu et al., 2018). RF stands out as one of the superior algorithms

when it comes to incorporating learning Bagging strategies (Ma

et al., 2023). And CatBoost is a high-performance algorithm in the

ensemble learning Boosting strategy (Zhai et al., 2023). However,

for a certain research area, there will be significant differences

between different machine learning algorithms. Therefore, it is

necessary to select three types of machine learning algorithms,

attempt to construct various machine learning models for the same

research area, and carry out forest AGC estimation. Simultaneously,

setting appropriate hyperparameters can enable a model to achieve

better generalization capability and optimal performance. However,

there is currently a lack of uniform and effective hyperparameters
frontiersin.org
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that are particularly suitable for estimating the forest AGC of

different regions and scales (Dong et al., 2020a). Consequently,

for the regional scale, obtaining the best machine learning algorithm

and its best effective hyperparameters will improve the accuracy of

forest carbon storage estimation.

Lishui City is the ‘ecological green heart’ of Zhejiang Province.

The city boasts a wealth of forest resources, with approximately 80%

of its area covered by forests. It has built the Baishanzu National

Forest Park which is an important distribution area of subtropical

typical forests in Zhejiang Province. Therefore, accurately

estimating the forest AGC in Lishui City and analyzing its

spatiotemporal dynamics is of great significance for evaluating the

contribution of forests in Lishui City to the regional ecosystem

carbon and serving the national carbon neutrality strategy.

Currently, there is an urgent need for a set of machine learning

models and corresponding optimized hyperparameters for the AGC

estimation of subtropical forest in Lishui City. Based on this

requirement, this study aims to obtain a set of machine learning

hyperparameters suitable for subtropical forests in Lishui City and

invert the spatiotemporal distribution of the forest AGC in Lishui

City. The specific objectives include: (1) selecting appropriate

remote sensing variables using the Boruta algorithm, (2) tuning

hyperparameters and compaing three kinds of machine learning:

BPNN, RF and Catboost, (3) selecting the best hyperparameters and

machine learning model to invert the forest AGC distributions,

(4) analyzing the spatiotemporal dynamics of the forest AGC in

Lishui City. This study offers methodological insights for accurately
Frontiers in Plant Science 03
monitoring subtropical forest carbon storage. Additionally, the

results will furnish invaluable data support for comprehending

the spatiotemporal distribution of forest AGC in Lishui City and

augmenting the forest’s carbon sequestration capacity.
2 Materials and methods

2.1 Study area

Lishui City (Figures 1A, B) is situated in the southwestern part of

Zhejiang Province, China, at the conjunction of Zhejiang and Fujian

provinces (27°25′N~28°57′N, 118°41′E~120°26′E). The total area

reaches 1.73×106 ha (Diao et al., 2022; Xiong et al., 2021). The

terrain of Lishui City is mainly characterized by hills and

mountains. The climate in the region exhibits characteristics of a

subtropical maritime monsoon. Lishui is the first ecological city in

Zhejiang Province, known as the “ forest sea of southern Zhejiang “.

The forest area of Lishui accounts for 21.98% of the total forest area in

Zhejiang Province. Lishui has a forested area of 5.8×105 ha, accounting

for 80.13% of the city area, with a total volume of 103.82 million m3 of

standing trees and a forest coverage rate of 81.70% (Xiong et al., 2020).

Lishui City is abundant in forest resources, housing a diverse array of

plant species. The predominant types of forests in the area are

coniferous forests, broad-leaved forests, and bamboo forests.

According to the Zhejiang Province Forest Land Protection

and Utilisation Plan (2017–2020) and the National Forest Plan
FIGURE 1

Study area: (A, B) Location of Lishui City; (C) Spatial distribution of sample plots for continuous forest inventory in Lishui City from 1989 to 2019;
(D) Landsat remote sensing imagery of Lishui City in 2019.
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(2016–2050) (Huang et al., 2020; Li et al., 2018; Zhang et al., 2019),

land-use types in Lishui City were classified into six categories,

including urban land, water body, cultivated land, broad-leaved

forest, needle-leaved forest and bamboo forest. In 2019, the area of

coniferous forests accounted for 43.99%, broad-leaved forests

accounted for 31.59%, and bamboo forests accounted for 8.90%.
2.2 Datasets and processing

2.2.1 Remote sensing data
This study uses Landsat5 TM data from 1989 to 2009 (every 5

years) and Landsat8 OLI data from 2014 and 2019 (Figure 1D) to

quantitatively estimate the forest carbon storage in Lishui City. GEE

possesses an extensive collection of remote sensing data and robust

parallel processing abilities (Li and Xu, 2021). The use of GEE

greatly saves data processing time and improves data processing

accuracy. Therefore, this study extracts the required remote sensing

images based on the GEE cloud platform. The GEE platform

performs radiometric calibration and atmospheric correction on

image data from various sensors to enhance consistency and

minimize the impact of different sensors on inversion results

(Gorelick et al., 2017; Xie et al., 2020). Additionally, GEE

harmonizes the wavebands of these sensors by selecting similar

bands for analysis, further reducing sensor-related discrepancies

and improving overall data consistency (Wang et al., 2020). The

criteria for image selection are cloud cover less than 10% and image

acquisition time in summer (June to September). The main Landsat

orbit numbers covering Lishui City are 119/040 and 119/041. To

mitigate the pseudo-changes in spectral features caused by cloud

cover, all clouds and cloud shadows in the images are eliminated

using the CFMask algorithm. Clear observations from nearby

months are used to fill in the gaps. After processing, a total of

192 Landsat TM and OLI images were collected. These images were

then synthesized into 7 periods of 14 scenes of remote sensing

images through annual median values and were stitched and

cropped according to administrative regions. This resulted in 7

clear, cloud-free Landsat remote-sensing images of Lishui City.

These remote sensing images are used for land use remote sensing

classification in Lishui City, construction of AGC remote sensing

estimation models, and more.
Frontiers in Plant Science 04
2.2.2 Processing observed data
This study uses the continuous forest resource survey data of

Zhejiang Province from seven periods: 1989, 1994, 1999, 2004,

2009, 2014, and 2019 as the measured data. The continuous survey

of forest resources in Zhejiang began in 1979, using a systematic

sampling method to set up sample plots (Figure 1C). Plots are set up

at the intersections of a grid with a north-south interval of 4 km and

an east-west interval of 6 km. The plot area is 0.08 ha (28.28 m ×

28.28 m). In the process of conducting a forest resource assessment,

data such as the height of the trees, the diameter at chest level, and

the breadth of the tree canopy are documented. By integrating the

allometric growth formulas specific to various tree species, the AGC

for each tree is computed. Subsequently, the AGC density for every

plot is determined (Yang et al., 2022). This study uses the method of

three times the standard deviation (Ribal and Young, 2020) to

eliminate outliers. A total of 1616 plot data were finally obtained.

The number of plots used to build the model each year and the

statistics are shown in Table 1. The annual plot data is randomly

segregated into training and testing subsets in a 7:3 ratio. The

training subset is used to train the AGC prediction model, whereas

the testing subset is employed to validate the accuracy of the model.
3 Research methodology

3.1 Remote sensing variable settings

The remote sensing parameters gathered in this research

encompass distinctive variables like original bands, tassel cap

transformation, vegetation index, and texture information, as shown

in Table 2. The tasseled cap transformation is capable of effectively

segregating spectral information associated with vegetation growth

and senescence (Hadi et al., 2016; Mostafiz and Chang, 2018).

Vegetation indices, which quantify vegetation cover and health

status by integrating reflectance from distinct spectral bands, are

indicative metrics (Macintyre et al., 2020). These indices

demonstrate a strong correlation with vegetation biomass.

Analyzing the GLCM can lead to a more precise identification of

vegetation structure (Chrysafis et al., 2019), thus assisting in the

estimation of forest AGC. These four types of features are key

parameters in estimating forest AGC. The original bands are six
TABLE 1 Statistical information of forest in sample plots in Lishui City.

Year Number of plots
Minimum
(Mg C ha-1)

Maximum
(Mg C ha-1)

Mean
(Mg C ha-1)

Standard
Deviation
(Mg C ha-1)

1989 262 0.04 43.65 9.11 7.16

1994 228 0.06 38.89 9.23 6.13

1999 180 0.30 34.37 12.49 5.97

2004 265 0.18 47.78 14.01 8.69

2009 253 1.86 58.38 21.82 10.43

2014 241 7.68 73.30 31.69 15.45

2019 194 0.21 69.58 30.31 18.18
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spectral bands: blue (B, 0.45–0.52 mm), green (G, 0.52–0.60 mm), red

(R, 0.63–0.69 mm), near-infrared (NIR, 0.77–0.90 mm), short-wave

infrared 1 (SWIR1, 1.55–1.75 mm), and short-wave infrared 2 (SWIR2,

2.08–2.35 mm). The tasseled cap transformations include tasseled cap

blue (TCB), tasseled cap green (TCG), tasseled cap wetness (TCW),

and tasseled cap angle transformation (TCA). Vegetation indices

include the commonly used difference vegetation index (DVI),

normalized difference vegetation index (NDVI), enhanced

vegetation index (EVI) ratio vegetation index (RVI), enhanced

vegetation index (EVI), and ratio vegetation index (RVI), and 11

other indices. The texture information contains nine pieces of

information such as variance, contrast, dissimilarity, correlation, etc.,
Frontiers in Plant Science 05
in which the texture features are extracted from five windows of size

3×3, 5×5, 7×7, 9×9 and 11×11. Based on the four original waveforms

acquired under the five windows, we obtained 180 texture features. In

summary, the feature variables acquired were 6 raw bands, 11

vegetation indices, 4 tassel cap transformations, and 180 texture

features, totaling 201 remotely sensed variables.
3.2 Feature variable selection

Feature selection refers to the procedure of choosing the most

impactful attributes from a collection of attributes to diminish the
TABLE 2 Remote sensing variables used for estimating forest AGC density.

Feature Types Feature Names Descriptions Notes and References

Original bands

Blue band (B)

/ /

Green band (G)

Red band (R)

Near-infrared band (NIR)

Shortwave infrared 1 band (SWIR1)

Shortwave infrared 2 band (SWIR2)

Tasseled
cap transformation

Angle (TCA)
0.3037 �B + 0.2793 �G + 0.4743 �R + 0.5585
�NIR + 0.5082 �SWIR1 + 0.1863 �SWIR2

(Sharaf El Din, 2020)

Brightness (TCB)
0:2043� B + 0:4158� G + 0:5524� R +

0:5741� NIR + 0:3124� SWIR1 + 0:2303�
SWIR2

Greenness (TCG)
− 0:1603� B − 0:2819� G − 0:4934� R +

0:7940� NIR − 0:0002� SWIR1 − 0:1446�
SWIR2

Wetness (TCW)
0:0315� B + 0:2021� G + 0:3102� R +

0:1594� NIR − 0:6806� SWIR1 − 0:6109�
SWIR2

Spectral
vegetation indices

Difference vegetation index (DVI) NIR − R (Alvarenga et al., 2023)

Normalized difference vegetation index (NDVI) NIR − R
NIR + R

(Zhen et al., 2021)

Ratio Vegetation Index (RVI) NIR
R

(Tan et al., 2019)

Modified Normalized Difference Water
Index (MNDWI)

G − SWIR1
G + SWIR1

(Qiu et al., 2022)

Normalized Difference Built-up Index (NDBI) SWIR1 − NIR
NIR + SWIR1

(Muhaimin et al., 2022)

Normalized Difference Moisture Index (NDMI) NIR − SWIR1
NIR + SWIR1

(Li et al., 2017)

Normalized Difference Infrared Index (NDII) SWIR2 − NIR
NIR + SWIR2

(Sriwongsitanon et al., 2016)

Chlorophyll Vegetation Index (CVI) NIR*R

G*G
(Maudhi et al., 2023)

Transformed Vegetation Index (TVI) 60� (NIR − R) − 100� (R − G) (Xing et al., 2019)

Soil Adjusted Vegetation Index (SAVI) 1:5� (NIR − R)
NIR + R + 0:5

(Zhen et al., 2021)

Enhanced vegetation index (EVI) 2:5� NIR − R
NIR + 6� R − 7:5� B + 1

(Zhen et al., 2021)

(Continued)
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dimensionality of the attribute space (Wan et al., 2020). The main

purpose of feature selection is to remove redundant or prediction-

irrelevant features (Jamei et al., 2023). The Boruta feature variable

selection method obtains shadow features by reordering the original

features (Liu et al., 2021), and ensures that the quantity of shadow

attributes remains equivalent to the original attributes. The RF

model is subsequently employed to train both the original and

shadow attributes and to compute the significance score for each

attribute. After multiple iterations, the Boruta algorithm compares

the importance scores of the original features and shadow features

to achieve importance evaluation (Habibi et al., 2023; Prasad et al.,

2019). If the significance score of the original attribute surpasses

that of the shadow attribute, the attribute is deemed significant.

Conversely, if not, the attribute is deemed unimportant. All original

features are marked as important or not important. The output is

the dataset of all important features calculated. This dataset is the

result of variable selection. This study uses the Boruta algorithm to

reduce the dimensionality of 201 remote sensing variables for each

year. The features marked as important by Boruta are selected as the

variables for building different machine-learning algorithms

each year.
3.3 AGC model construction scheme
and method

Following the outcomes of variable selection, three machine

learning methodologies, namely BPNN, RF and CatBoost, are

employed to formulate the forest AGC prediction model and fine-
Frontiers in Plant Science 06
tune the parameters. The precision of the three models is assessed

and juxtaposed in light of the annual results. Ultimately, a model

that exhibits superior performance and robust generalization

capabilities is chosen. It is used as the final model for estimating

and inverting the spatiotemporal distribution of the forest AGC in

Lishui City.

3.3.1 BPNN algorithm
BPNN is a multi-layer feedforward neural network. It boasts

benefits such as elevated precision, potent generalization

capabi l i t ies , commendable adaptabi l i ty , and minimal

computational intricacy. It is highly applicable for estimating

forest AGC. Its fundamental concept is gradient descent, which

employs gradient search techniques to minimize the mean squared

discrepancy between the network’s actual output value and the

anticipated output value (Eshraghian et al., 2023). First, the network

parameters are initialized, and the network model is constructed.

Subsequently, the training sample collection is fed into the network.

By calculating the loss function, the optimization of each node and

weight of the neural network is carried out. If the mean squared

discrepancy between the real output value and the anticipated

output value is excessively large, the weights are adjusted

sequentially from the output layer back to the input layer utilizing

the backpropagation algorithm. By perpetually fine-tuning the

connection weights among layers and the node thresholds, the

network’s output is brought nearer to the projected output (Huang

et al., 2019). This study uses the Python Keras library to build the

BPNN model, with the main hyperparameters including alpha

and max_iter.
TABLE 2 Continued

Feature Types Feature Names Descriptions Notes and References

Texture features based
on the gray-level co-

occurrence
matrix (GLCM)

Angular second moment (ASM) o
n

i=1
o
n

j=1

P(i, j)2

P(i, j) =
V(i, j)

on

i=1on

j=1
V(i, j)

V(i, j)is the ith row of the jth
column in the Nth moving window.

ux =o
n

j=1

jo
n

i=1

P(i, j)

uy =o
n

i=1

io
n

j=1

P(i, j)

sx =o
n

j=1

(j − ui)
2o

n

i=1

P(i, j)

sy =o
n

i=1

(i − uj)
2o

n

j=1

P(i, j)

(Bharati et al., 2004; Dong et al.,
2020b; Huang et al., 2023; Iqbal
et al., 2021; Mohammadpour

et al., 2022)

Contrast (CON) o
n−1

i−jj j=0
i − jj j2 o

n

i=1
o
n

j=1

P(i, j)

8<
:

9=
;

Inverse Difference Moment (IDM) oN−1

i,j=0

Pi,j
1 + i − jð Þ2

Correction (COR) oN−1

i,j=0
io

N−1

i,j
ijPi,j − mimj

s 2
i s 2

j

Variance (VAR) o
n

i=1
o
n

j=1

(i − m)2P(i, j)

Entropy (ENT) −o
n

i=1
o
n

j=1

P(i, j) log (P(i, j))

Dissimilarity (DIS) o
n

i−jj j=0
i − jj j o

n

i=1
o
n

j=1

P(i, j)

8<
:

9=
;

Cluster Shade (SHA) o
n

i=1
o
n

j=1

(i + j − mi − mj)
3P(i, j)

Cluster prominence (PRO) o
n

i=1
o
n

j=1

(i + j − mi − mj)
4P(i, j)
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3.3.2 RF algorithm
The RF algorithm is a non-parametric combinatorial algorithm

based on classification and regression decision trees (Su et al., 2020).

It can handle the complex non-linear relationship between forest

AGC and remote sensing variables (Samadianfard et al., 2022). At

the same time, it has a low sensitivity to noise present in the training

samples, can effectively deal with the accuracy reduction problem

caused by data missing, and can also identify the importance of

prediction variables (Cai et al., 2020). This model builds a series of

base learners through resampling, and finally outputs the prediction

results of these base learners through voting, thus taking into

account the ability to solve regression and classification problems

(Elbeltagi et al., 2023; Li X, et al., 2023; Zhang C, et al., 2023). This

study uses the Python Scikit-learn library to build the RF model to

estimate AGC, with the main hyperparameters considered

inc lud ing n_es t ima tor s , max_dep th , m in_sample s_

split, min_samples_leaf.

3.3.3 CatBoost algorithm
CatBoost is a gradient-boosting algorithm library and is one of

the mainstream models of gradient-boosting regression trees

(GBRT) (Joo et al., 2023). The advantage of the CatBoost

algorithm is that it overcomes gradient bias and effectively solves

the problem of prediction offset, improves the accuracy of the

algorithm, enhances generalization ability, and can prevent the

occurrence of overfitting (Zhang Y, et al., 2023). It employs

algorithm amalgamation with symmetric decision trees as

foundational learners. It utilizes identical features for bifurcation

at every layer during the operational process and computes the leaf

node value by minimizing the sample loss on the leaf nodes (Zhong

et al., 2023). This study uses the Python catboost to build the

CatBoost model, with the key hyperparameters including depth,

learning_rate, and l2_leaf_reg.

3.3.4 Parameter optimization of machine
learning algorithms

The parameters of an algorithm can influence the effectiveness

of the constructed model, so optimizing the parameters of each

algorithm is crucial. For different models, this study optimized their

key hyperparameters. The key hyperparameters and optimization
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configurations of each algorithm are shown in Table 3. The original

data is partitioned into a training dataset (70%) and a testing dataset

(30%). The GridSearchCV function, in conjunction with 5-fold

cross-validation (Hajihosseinlou et al., 2023), is employed for the

optimization of hyperparameters. The ideal combination of

hyperparameters for the AGC modeling algorithm is ascertained

based on the scoring criterion of the smallest value of the root mean

square error (RMSE). The training dataset is utilized to educate the

AGC model, while the testing dataset serves to validate its AGC

prediction performance. To guarantee that the outcomes of various

AGC modeling algorithms are not influenced by the partitioning of

the training and testing datasets, the procedure of AGC model

hyperparameter adjustment and model performance appraisal is

reiterated 1000 times for training (Zhang et al., 2020).
3.4 Model accuracy evaluation method

In this study, the accuracy of the model was evaluated using

three metrics: coefficient of determination (R2) and RMSE (Aslami

et al., 2019). Typically, elevated values of R2 coupled with

diminished values of RMSE signify superior model performance.

R2 = o
n
i=1(ŷ i − �yi)

2

on
i=1(yi − �yi)

2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s

In this context, yi, �yi and ŷ i represent the observed AGC, the

average AGC, and the AGC predicted by the model, respectively,

with n being the total number of samples. During the evaluation, an

R2 value closer to 1 indicates a better fit of the model; a smaller

RMSE value signifies a lesser degree of scatter between the actual

value and the value predicted by the model (Li H, et al., 2023).
3.5 Technical route

The workflow diagram for estimating the spatial-temporal

distribution of forest AGC by integrating land use classification
TABLE 3 Hyperparameters tuned and their configurations for each algorithm.

Algorithm Library
Hyperparameters

Tuned
Meaning Hyperparameters Configurations

BPNN Keras
alpha

max_iter
The parameter of learning rate.
Number of training epochs.

(0.0001, 0.0005, 0.001, 0.005, 0.01)
(100, 200, 300, 400, 500)

RF
Scikit-
learn

n_estimators
max_depth

min_samples_split

min_samples_leaf

The number of trees in the forest.
The maximum depth of the tree.
The minimum number of samples required to
partition an internal node.
The minimum number of samples required for
leaf nodes.

(100, 200, 300, 400, 500, 600, 700, 800, 900)
(1, 5, 10, 15)
(2, 4, 6, 8, 10)

(1, 2, 3, 4, 5)

CatBoost catboost
depth

learning_rate
l2_leaf_reg

Depth of a tree.
Boosting learning rate
The L2 regularization parameter

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
(0.005, 0.01, 0.05, 0.1)

(100, 200, 300, 400, 500, 600, 700, 800, 900)
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and machine learning algorithms in this study is illustrated in

Figure 2, primarily comprising three components: (1) Based on the

Landsat images from 1989–2019, the RF classifier is used to obtain

the land use classification map of Lishui City from 1989–2019.

(2) Combining the Landsat image feature variables from 1989–2019

and the continuous forest resource survey data of Zhejiang

Province, the Boruta algorithm is used for remote sensing

variable selection. This results in variables that are highly related

to forest AGC each year. (3) The filtered remote sensing parameters

are fed into the BPNN, RF, and CatBoost machine learning

algorithms for AGC estimation. The accuracy of the three models

is compared, and the optimal model is selected for regional

inversion. The corresponding land use classification map is used

for masking each year. The final result is the spatio-temporal

distribution map of forest AGC in Lishui City.
4 Results and analyses

4.1 Information on forest distribution in
Lishui City

Based on the GEE platform, the RF classifier is used to classify

the land use in Lishui City, the categorization outcomes from seven

intervals are displayed in Figure 3. Lishui City has rich forest

resources, and the proportion of forest area is large. Broad-leaved

forests are predominantly found in the southern, western, and

central-eastern areas of Lishui City. The western region primarily

hosts coniferous forests. Bamboo forests are typically found in
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proximity to coniferous forests and agricultural areas. Comparing

the seven-period classification map (Figure 3), it can be seen that

from 1989 to 2019, the area of broad-leaved forests in the

northwestern and eastern regions increased significantly, while

the area of coniferous forests and cultivated land decreased. The

area of cultivated land in the northeastern region decreased

significantly, urban land increased, and the expanses of broad-

leaved forests, coniferous forests, and bamboo forests have seen

growth. The area of bamboo forests and broad-leaved forests in the

southwestern region increased, while the area of cultivated land and

coniferous forests decreased.

The classification results are evaluated for accuracy through

forest resource inventory data and manual visual interpretation

(Table 4). The overall accuracy (OA) of the seven stages is all above

85%. The classification of broad-leaved forests, coniferous forests,

and bamboo forests all have a user accuracy (UA) and producer

accuracy (PA) exceeding 70%. This indicates that the classification

results of each year are relatively accurate. The spatiotemporal

distribution information of broad-leaved forests, coniferous

forests, and bamboo forests is extracted from it. They are

combined into the forest distribution information of seven

periods. It is used for the extraction of the forest AGC spatial

distribution mask in the later stage.
4.2 Variable selection results

Based on the Boruta algorithm, the best combination of remote

sensing feature variables selected for each year is shown in Table 5.
FIGURE 2

Research technology roadmap: (A) land use classification map, (B) extraction of remote sensing image information for feature variable selection,
(C) analyzing the three models, the optimal one was used for the inversion of forest AGC, resulting in a map depicting the spatial and temporal
distribution of AGC.
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Among them, 21 variables were selected in 1989, 26 variables in

1994, 41 variables in 2004, 47 variables in 2009, 37 variables in 2014,

and 45 variables in 2019.
4.3 AGC model construction and
prediction results

According to the three machine learning hyperparameter

configurations shown in Table 3, parameter optimization was

performed on the seven-period data (5 years per period) of the

three machine learning models respectively. The optimal
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hyperparameter combination for each AGC estimation model was

determined through a cross-validation grid search. Using the

minimum root mean square value as the scoring criterion, a total

of 1000 trainings were conducted (Table 6). After determining the

best hyperparameter combination, the forest AGC estimation

model was constructed.

This study employs three machine learning algorithms, namely

BPNN, RF, and CatBoost, to develop three predictive models for

forest AGC spanning the years 1989–2019. The correlation between

the AGC densities of each year estimated by the three models and

the measured AGC densities of the sample plots is shown in

Figure 4. During 1989–2019, the BPNN model training accuracy
FIGURE 3

Land use classification map of Lishui from 1989 to 2019.
TABLE 4 Evaluation of land use accuracy over 7 periods.

Year UL WB CL BLF NLF BF OA KC

1989
UA 99.63% 90.00% 85.10% 88.50% 94.26% 88.97%

89.81% 0.8641
PA 86.82% 100.00% 82.09% 83.78% 94.58% 82.20%

1994
UA 98.15% 90.97% 72.86% 93.66% 97.38% 88.43%

90.48% 0.7912
PA 91.72% 100.00% 89.25% 74.30% 95.93% 86.99%

1999
UA 82.29% 79.94% 92.31% 93.50% 97.14% 83.45%

90.91% 0.8797
PA 93.21% 100.00% 75.32% 82.34% 97.05% 96.80%

2004
UA 79.33% 85.07% 69.58% 98.90% 95.01% 87.21%

86.61% 0.8325
PA 67.92% 95.70% 73.57% 77.92% 97.38% 82.87%

2009
UA 80.88% 85.18% 72.49% 97.20% 94.84% 82.47%

86.68% 0.8338
PA 93.48% 100.00% 75.56% 70.10% 96.05% 81.94%

2014
UA 78.92% 86.52% 71.86% 99.72% 94.71% 87.65%

87.08% 0.7776
PA 94.71% 100.00% 74.07% 70.08% 98.56% 81.87%

2019
UA 80.88% 86.52% 87.27% 99.69% 83.88% 88.46%

86.74% 0.8367
PA 93.22% 98.77% 68.57% 71.97% 98.67% 86.61%
UL, urban land; WB, water body; CL, cultivated land; BLF, broad-leaved forest; NLF, needle-leaved forest; BF, bamboo forest; UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy;
KC, kappa coefficient.
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R2 ranged from 0.64–0.92 with a training RMSE of 1.97–7.42 Mg C

ha-1, and the testing accuracy R2 ranged from 0.55–0.67 with a

testing RMSE of 2.93–10.23 Mg C ha-1. The RF model training

accuracy R2 was between 0.85–0.95 and the training RMSE was
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1.36–3.59 Mg C ha-1, and the testing accuracy R2 was between 0.62–

0.76 and the RMSE was 2.27–6.77 Mg C ha-1. The CatBoost model

had a training accuracy R2 of between 0.82–0.95 a training phase

RMSE of 1.17–4.05 Mg C ha-1, and a testing accuracy R2 of between

0.64–0.79, and a testing phase RMSE of 2.32–6.73 Mg C ha-1.

Meanwhile, observing the extent to which the three model fit curves

deviate from the 1:1 line reveals that overestimation and

underestimation are not prominent when the AGC is in the 0–40

Mg C ha-1 range; underestimation generally occurs when the AGC

is greater than 40 Mg C ha-1. In addition, from 1989 onwards, the

AGC density in the sample site showed an increasing trend from

year to year.

Figure 5 shows the accuracy (R2) and error (RMSE) of the three

models in the training set and test set for each year. The comparison

revealed that the CatBoost model had the highest average accuracy

R2 (R2 = mean ± standard deviation) in the test set of all years. The

second highest is the RF model (R2 = mean ± standard deviation).

The average accuracy R2 (R2 = mean ± standard deviation) of the

BPNN model’s test set is the lowest. At the same time, the average

RMSE (RMSE=mean ± standard deviation) of the BPNN model’s

test set is the highest. The average RMSE of the CatBoost model

(RMSE=mean ± standard deviation) and the RF model

(RMSE=mean ± standard deviation) is much lower than the

average RMSE of BPNN. Therefore, the estimates of CatBoost

and RF are superior to BPNN in all years, and the estimates of

the CatBoost model are slightly superior to the RF model.

The training and testing results of all sample plots over the years

are evaluated, resulting in a scatter plot (Figure 6). It can be seen

that the training R2 of the RF model is the same as the training R2 of

the CatBoost model, which is 9.2% higher than BPNN. The test R2

of the CatBoost model is 2.5% higher than the test R2 of the RF

model, and 12.16% higher than the test R2 of the BPNN model.

Among the three models, the RMSE of the CatBoost model in the

testing phase is the lowest. It is 3.65% lower than the RF model and

25.96% lower than the BPNN model. The RMSE of the BPNN

model in the testing phase is the lowest, 3.65% lower than the RF

model, and 25.96% lower than the BPNN model. The range of

overestimation and underestimation of the BPNN model is greater

than that of the RF model and the CatBoost model.

In summary, the forest AGC predictive model built using the

CatBoost algorithm demonstrates superior accuracy and overall

performance. Therefore, this study will use the CatBoost model as

the best estimation model for the spatiotemporal distribution of the

forest AGC in Lishui City.
4.4 Spatiotemporal distribution of AGC in
Lishui City

The dispersion of forest AGC density in Lishui City over the

period from 1989 to 2019, estimated based on the CatBoost model,

is shown in Figure 7 From a spatial perspective, the AGC values in

the central and southwestern regions of Lishui City are relatively

high. Areas with high forest AGC values are distributed in the

southwestern part of Suichang County, the northwestern and

southeastern parts of Longquan County, the northern part of
TABLE 5 Characteristic variables were selected based on the
Boruta method.

Year

Number
of

Selected
Variables

Name of Selected Variables

1989 21

CVI, NDBI, NDII, NDMI, B1, B1CON, B1DIS,
B1PRO, B1VAR, B2, B3, W1B3PRO, W2B3PRO,

W1B3VAR, W2B3VAR, W3B3VAR, W1B4SHA, B5,
TCA, TCB, TCW

1994 26

NDVI, B1, W3B1DIS, W2B1VAR, B2, W1B2CON,
W3B2CON, W3B2DIS, B2IDM, W2B2PRO,

W3B2PRO, W4B2PRO, W3B2VAR, W4B2VAR, B3,
W2B3CON, W3B3CON, W4B3CON, W2B3DIS,
W2B3PRO, W3B3PRO, W4B3PRO, W3B3VAR,

W4B3VAR, W4B4CON, TCA

1999 30

CVI, MNDWI, NDBI, NDII, NDMI, NDVI, RVI, B1,
W4B1SHA, B2, W3B2IDM, W4B2IDM, B3,

W1B3ASM, W2B3ASM, W4B3ASM, W1B3ENT,
W2B3ENT, W4B3ENT, W3B3IDM, W4B3IDM, B4,

W4B4IDM, W4B4SHA, B5, B7, TCA, TCB,
TCW, TVI

2004 41

CVI, MNDWI, NDBI, NDII, NDMI, NDVI, RVI, B1,
W2B1DIS, W3B1DIS, W4B1DIS, W2B1PRO,

W3B1VAR, W4B1VAR, B2, B2CON, W1B2CON,
B2DIS, W1B2DIS, W2B2DIS, W3B2DIS, W4B2DIS,
W4B2PRO, W4B2VAR, B3, W3B3CON, W4B3CON,

W1B3DIS, W2B3DIS, W3B3DIS, W4B3DIS,
W3B3PRO, W1B3VAR, W2B3VAR, W3B3VAR,

W4B3VAR, B5, B7, TCA, TCB, TCW

2009 47

CVI, DVI, EVI, NDBI, NDII, NDMI, NDVI, RVI,
SAVI, B1, W4B1ASM, W4B1CON, W3B1DIS,
W4B1DIS, W4B1ENT, W4B1IDM, W1B1PRO,

W2B1PRO, W1B1VAR, W2B1VAR, B2, W3B2CON,
W3B2DIS, B3, W4B3ASM, W2B3CON, W3B3CON,

W4B3CON, W1B3DIS, W2B3DIS, W3B3DIS,
W4B3DIS, W4B3ENT, W3B3IDM, W4B3IDM,
W1B3PRO, W4B3PRO, W1B3VAR, W3B3VAR,
W4B3VAR, B5, B7, TCA, TCB, TCG, TCW, TVI

2014 37

CVI, EVI, NDVI, RVI, B2, W2B2CON, W3B2CON,
W4B2CON, W2B2DIS, W3B2DIS, W4B2DIS,
W4B2IDM, W2B2PRO, W3B2PRO, W4B2PRO,

W3B2VAR, W4B2VAR, B3, W4B3DIS, B4,
W2B4CON, W3B4CON, W4B4CON, W2B4DIS,
W3B4DIS, W4B4DIS, W4B4IDM, W2B4PRO,
W3B4PRO, W4B4PRO, W4B4SHA, W2B4VAR,

W3B4VAR, W4B4VAR, TCA, TCG, TVI

2019 45

CVI, NDBI, NDII, NDMI, B2, W2B2CON,
W3B2CON, W4B2CON, W2B2DIS, W4B2DIS,
W3B2IDM, W4B2IDM, W2B2PRO, W3B2PRO,

W2B2SHA, W3B2VAR, W4B2VAR, B3, W2B3DIS,
W4B3IDM, W4B3VAR, B4, W2B4CON, W3B4CON,

W4B4CON, W2B4DIS, W3B4DIS, W4B4DIS,
W2B4PRO, W3B4PRO, W4B4PRO, W2B4VAR,
W3B4VAR, W4B4VAR, W2B5CON, W3B5CON,
W4B5CON, W2B5DIS, W3B5DIS, W4B5DIS,

W3B5VAR, B6, B7, TCA, TCW
WiBjxx is the texture information for the jth band window size i of the image; xx refers to
MEA, VAR, SHA, CON, IDM, DIS, ENT, ASM, and PRO.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1421567
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2024.1421567
Qingyuan County, the southeastern part of Songyang County, the

northern and southeastern parts of Yunhe County, the northeastern

part of Jingning County, the northern and southeastern parts of

Jingde County, the southeastern part of Jinyun County, the

southwestern part of Qingtian County, and the southern part of

Liandu District. These areas have more mountains and a wide forest

coverage area, so the forest AGC values are higher. The forest AGC

values in areas near the city are generally lower, and the carbon

density is also lower. From a temporal perspective, the forest AGC

density in Lishui City shows an upward trend. It has changed from

being dominated by low AGC values in 1989 to being dominated by

high AGC values in 2019. During the period from 1989 to 2004, the

proportion of Lishui forests with AGC values of 0–24Mg C ha-1 was

higher. The highest percentage of 0–6 Mg C ha-1 was 45.71% in

1989, 6–12 Mg C ha-1 was 52.63% in 1994, 12–18 Mg C ha-1 was

40.44% in 1999 and 6–12 Mg C ha-1 was 29.41% in 2004. From 2009

to 2019, Lishui City saw a higher proportion of forest AGC values

ranging from 24–63 Mg C ha-1. In 2009, the 24–32 Mg C ha-1 range

had a peak percentage of 36.08%. In 2014, the highest percentage of

24.26% was in the 32–42 Mg C ha-1 range. By 2019, the 42–50 Mg C

ha-1 range had the highest percentage of 25.56%.

As shown in Figure 8, the average forest AGC in Lishui City

increased from 10.03 Mg C ha-1 in 1989 to 37.32 Mg C ha-1 in 2019,

an increase of 2.72 times. Among them, the growth rate was the

highest from 2009 to 2014, reaching 43.24%. The total storage of

forest AGC increased from 1.36×107 Mg C in 1989 to 6.16×107 Mg

C in 2019, an increase of 352.94%. This shows that the trend of

change in the total storage of forest AGC is consistent with the trend

of change in forest AGC density, showing a positive correlation.

From 1989 to 2019, the total amount of forest AGC in Lishui City

showed a continuous growth trend. Among them, the change in

forest AGC was relatively large and the growth was relatively fast

during the ten years from 2004 to 2014. The increase in forest AGC

was less rapid between 1989 to 2004 and 2014 to 2019.

Figure 9 illustrates the yearly variations in forest AGC and the

overall forest AGC storage across nine sectors: Songyang,

Longquan, Yunhe, Suichang, Jingning, Jinyun, Qingtian, Liandu,
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and Qingyuan. Over time, the forest AGC in each division has

increased year by year. In all sectors, the forest AGC reached its

minimum in 1989 and peaked in 2019. During the study period,

among the nine divisions, Longquan had the highest forest AGC,

Jinyun had the lowest, and the forest AGC distribution in the other

divisions was relatively uniform within the same year.
5 Discussion

5.1 Variable selection importance analysis

The construction of the forest AGC model is closely related to

the feature variables input into the model. The accuracy of the

model is significantly influenced by the input of various feature

variables. Therefore, this study uses the Boruta algorithm for

variable selection. This eliminates redundant or irrelevant

predictive features, thereby improving the performance of the

model. The Boruta algorithm is run 500 times in different years

to analyze the importance of each feature variable. Figure 10 shows

the results of the feature variable importance ranking. As depicted

in Figure 10, texture data has the most substantial effect on both the

development and precision of the model. In the seven model

periods from 1989 to 2019, texture features accounted for 48%,

81%, 43%, 63%, 58%, 73%, and 76% of the feature variables,

respectively. In the forest AGC model, the significance of

texture information surpasses that of the original bands,

vegetation indices, and cap transformation features. Texture

information is the most important feature parameter (Shen et al.,

2016). The next are the vegetation index and original bands, which

account for 14.86% and 13.14% of the total feature variables,

respectively. This suggests that surface texture information is the

primary element in constructing a forest AGC model, aligning with

Zhang’s research findings (Zhang et al., 2019). In addition, the

proportions of texture features in the 9 × 9 and 11 × 11 windows are

higher. They constitute 28.3% and 35.84% of the overall texture

features, respectively.
TABLE 6 Optimal values for each hyperparameter for each year.

Year 1989 1994 1999 2004 2009 2014 2019

BPNN

alpha 0.01 0.0001 0.0001 0.01 0.01 0.0001 0.005

max_iter 300 200 300 200 100 200 300

learning_rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RF

n_estimators 200 400 300 300 700 200 300

max_depth 10 10 15 10 10 10 15

min_samples_split 2 2 2 2 2 4 4

min_samples_leaf 2 2 2 2 1 1 1

CatBoost

depth 1 2 2 1 2 2 2

learning_rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1

l2_leaf_reg 100 100 100 200 200 200 100
fr
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FIGURE 4

(A–U) Accuracy assessment of three Landsat-based AGC prediction models per year.
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5.2 Model comparison analysis

This study applies three machine learning algorithms to

remotely sense and quantitatively estimate the forest AGC in

Lishui City from 1989 to 2019. The findings indicate that the

CatBoost model outperforms the BPNN and RF models in terms

of accuracy. BPNN can establish complex non-linear relationships.

Nonetheless, the BPNN model’s capacity to generalize is limited,

making it susceptible to overfitting (Yu et al., 2023). Moreover,

there are many parameters to adjust in BPNN, and the process

of selecting appropriate parameters is complex and lengthy

(Ren et al., 2022). While the RF model is capable of processing

high-dimensional data and exhibits strong resistance to noise, it

tends to overfit during the model construction phase (Georganos

and Kalogirou, 2022). CatBoost, as a relatively new machine

learning algorithm, has strong robustness to poor data quality

and can maintain good performance. This algorithm can

also automatically normalize or standardize features (Zhai et al.,

2023). Simultaneously, CatBoost incorporates an inherent

regularization feature, which can mitigate overfitting to some

degree and enhance the model’s predictive performance.

Therefore, the overall performance of the CatBoost model is

superior to the BPNN and RF models. In terms of forest AGC

estimation, the CatBoost algorithm can provide more stable and
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higher accuracy inversion results. This aligns with the findings from

Li’s research (Li H, et al., 2023).
5.3 AGC time series variation analysis

Research indicates that from 1989 to 2019, the total forest AGC

in Lishui City increased annually. The total forest carbon storage

increased from 1.36×107 Mg to 6.61×107 Mg, showing a continuous

growth trend. This finding is consistent with the trend identified in

Diao’s research (Diao, 2022). However, since Diao’s study centered

on better-managed plantation forests, the AGC data obtained from

our study are slightly lower than the figures reported by Diao (Diao,

2022). This is because plantation forests typically receive higher

levels of management and maintenance. Compared to natural

forests, this may lead to superior growing conditions and higher

carbon uptake efficiency, resulting in greater carbon storage

capacity. After 2000, the forest AGC in Lishui City increased

significantly. Firstly, since 1994, Zhejiang Province has

implemented projects aimed at cultivating young and middle-

aged forests, as well as transforming low-yield and inefficient

forests (Huang et al., 2023; Mao et al., 2022). By around 2000, the

young forests involved in these projects had matured into middle-

aged forests. This resulted in a substantial increase in carbon storage
FIGURE 5

Comparison of the accuracy of the three models. (A) the values of the R2 for three models. (B) the values of the RMSE for three models.
FIGURE 6

Evaluating the precision of AGC prediction models derived from Landsat: (A) BPNN machine learning model, (B) RF machine learning model,
(C) CatBoost machine learning model.
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per tree, leading to a notable rise in the overall carbon storage of

Lishui City. Secondly, following the invasion of natural secondary

pine forests in Zhejiang Province by the pine wood nematode, the

province adopted measures to convert coniferous forests into

broad-leaved forests (“conifer to broadleaf” conversion) (Diao

et al., 2022; Zhang et al., 2007). This gradual transformation

significantly increased the proportion of broad-leaved and mixed

coniferous-broadleaved forests within the forest landscape, thereby

substantially enhancing the forest carbon storage capacity. Thirdly,

the plot data used in this study originates from the continuous

inventory of forest resources in Zhejiang Province. After 2000, the

measured values from the inventory plots showed a significant

increase, consequently leading to a corresponding rise in the forest

carbon storage calculated through allometric equations.

Additionally, the afforestation of high-efficiency and long-term

carbon sink forests was promoted to comprehensively protect and
Frontiers in Plant Science 14
restore the mountains, water, forests, fields, lakes, grasses, and sands

at the source of the Oujiang River (Gu et al., 2023). Measures such

as optimizing forest structure, strengthening the supervision and

management of forest land use and harvesting, and controlling pine

wilt disease were implemented. These efforts have increased the

total forest AGC in Lishui City, expanded the forest area, and

improved the ecological benefits of the forest. At the same time,

Baishanzu National Geological Park is located in the central and

southern parts of Lishui City. The forest AGC in this area is at the

forefront of Lishui City and continues to rise. However, due to the

impact of natural disasters such as snow disasters and typhoons,

carbon storage in some areas of Lishui City has declined annually.

In 2019, Typhoon “Lekima” landed in Zhejiang, and the affected

forest area in Lishui City reached 610.81 km2 of forests (Zhang et al.,

2021). Compared with 2014, the forest AGC on the eastern

boundary of Lishui City has significantly decreased, and the

growth rate of forest AGC has slowed down.
5.4 Limitations and prospects

This study provides a methodological reference for accurately

monitoring forest carbon stocks. Moreover, the results of this study

will offer valuable data support for assessing forest quality through

monitoring. There are some limitations in this study. Due to some

factors not being fully considered, the study possesses certain

limitations. Firstly, the latest Landsat 8 remote sensing image has

a resolution of 30 meters and contains 7 original bands. However, as

research advances, there is an escalating demand for greater image

accuracy and the richness of information that images provide.

The problems of insufficient resolution of Landsat remote

sensing satellite images and single remote sensing information

are gradually emerging (Chen et al., 2021; Puliti et al., 2021).

Secondly, the cross-validation grid search method for

tuning hyperparameters is not well-suited for continuous
FIGURE 7

Spatial distribution of AGC on forested land in Lishui from 1989 to 2019.
FIGURE 8

Forest AGC and total forest AGC storage from 1989 to 2019.
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hyperparameters. For continuous hyperparameters, grid search

typically can only explore at fixed intervals. This can result in the

optimal solution being overlooked as it might lie between two grid

points. Thirdly, this study employs a single machine learning

model, which can lead to scenarios where there are errors in the

forest AGC estimation results (Zhai et al., 2023). In estimating

forest AGC, the CatBoost model tends to underpredict consistently.

Additionally, CatBoost is characterized by its complexity,

encompassing numerous parameters, and the training procedure

is notably time-consuming (Zhang et al., 2022).

In future research, emphasis should be placed on addressing the

aforementioned issues. Subsequent studies could attempt to utilize

high-resolution images, such as those from Sentinel-2A (Mallinis

et al., 2018). Sentinel-2A data features a resolution of 10 meters,

encompassing 13 original bands, particularly including the three

red edge bands (Zarco-Tejada et al., 2018). These red edge bands are

crucial for estimating forest biomass and AGC, significantly

contributing to enhanced data accuracy. Secondly, algorithms

such as random search and Bayesian optimization have

performed well in hyperparameter tuning, achieving relatively

precise results (Park et al., 2023). Simultaneously, in future

research, a combination of various model types can be employed

to estimate forest AGC. Spatial statistical models such as the

Geographically Weighted Regression (GWR) model and Co-

Kriging (COK) can effectively reflect spatial heterogeneity (Wang

et al., 2021). Integrating different types of models can offset the

errors caused by individual models, thereby enhancing the accuracy

of the estimation results.
Frontiers in Plant Science 15
6 Conclusion

This study used BPNN, RF, and CatBoost, three machine

learning methods, to remotely sense and quantitatively estimate

the forest AGC in Lishui City based on Landsat remote sensing

images. The results showed:
1. Texture information was a key parameter in constructing the

forest AGC model. The Boruta algorithm was used for

variable selection. The selection results indicated that

texture information had the greatest impact on the

construction of the forest AGC model for Lishui City.

Among them, the proportions of texture features in the

9×9 and 11×11 windows were the highest.

2. All three machine learning models developed in this research

were capable of predicting the forest AGC in Lishui City.

Nevertheless, the AGC model built with the CatBoost

algorithm demonstrated superior accuracy. When

compared to BPNN and RF, the test set accuracy R2 of the

CatBoost model saw an increase of 12.16% and 2.5%

respectively, while the RMSE experienced a reduction of

25.96% and 3.65% respectively.

3. From 1989 to 2019, the forest AGC in Lishui City increased

annually. The forest AGC density increased from 10.03 Mg

C ha-1 to 37.32 Mg C ha-1, and the total forest AGC

increased from 1.36 × 107 Mg to 6.16 × 107 Mg. This was

due to the protection policies and forest transformation

policies of Lishui City. However, at the same time,
FIGURE 9

(A) Variations in forest AGC across various regions over different years, (B) cumulative forest AGC in different regions over various years.
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Fron
uncontrollable factors such as economic development plans

and natural disasters also led to a decrease in forest resources

and forest carbon storage in some areas. Therefore, in the

future, while accelerating the process of urbanization, there

will also be a need to focus on enhancing the conservation of

forest resources.
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