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Crop breeding entails developing and selecting plant varieties with improved

agronomic traits. Modern molecular techniques, such as genome editing, enable

more efficient manipulation of plant phenotype by altering the expression of

particular regulatory or functional genes. Hence, it is essential to thoroughly

comprehend the transcriptional regulatory mechanisms that underpin these

traits. In the multi-omics era, a large amount of omics data has been

generated for diverse crop species, including genomics, epigenomics,

transcriptomics, proteomics, and single-cell omics. The abundant data

resources and the emergence of advanced computational tools offer

unprecedented opportunities for obtaining a holistic view and profound

understanding of the regulatory processes linked to desirable traits. This review

focuses on integrated network approaches that utilize multi-omics data to

investigate gene expression regulation. Various types of regulatory networks

and their inference methods are discussed, focusing on recent advancements in

crop plants. The integration ofmulti-omics data has been proven to be crucial for

the construction of high-confidence regulatory networks. With the refinement of

these methodologies, they will significantly enhance crop breeding efforts and

contribute to global food security.
KEYWORDS
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1 Introduction

Plant development and response to environmental stimuli rely on the precise

orchestration of gene expression (Zhong et al., 2023). The rich gene expression patterns

are governed by multiple regulatory mechanisms, such as gene transcription, mRNA

processing, translation, and protein modifications. While gene expression is fine-tuned at

different levels, transcriptional regulation is crucial and serves as the primary determinant

of the cellular transcriptome (Zhong et al., 2023).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1421503/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1421503/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1421503/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1421503&domain=pdf&date_stamp=2024-06-05
mailto:zeyangma@cau.edu.cn
https://doi.org/10.3389/fpls.2024.1421503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1421503
https://www.frontiersin.org/journals/plant-science


Huo et al. 10.3389/fpls.2024.1421503
At the transcriptional level, gene expression is controlled by

various factors, including transcription factors (TFs) and other

DNA-binding proteins. TFs bind to specific genomic binding

sites, known as cis-regulatory elements (CREs), within certain

chromatin contexts. They can either activate or repress the

expression of downstream target genes (Strader et al., 2022). TFs

often act in a combination manner, enabling a limited number of

TFs to regulate a larger set of target genes (Brkljacic and Grotewold,

2017). The coordinated action of interacting TFs (protein-protein

interactions), the interactions between TFs and the promoter DNA

of target genes (protein-DNA interactions), and the regulatory

relationships among TFs form complex regulatory networks.

Unraveling the transcriptional regulation landscape in plants is

important for improving our understanding of the regulatory

principles. It allows us to understand how plants respond to

internal signals and external environmental variations at the

molecular level and how these changes influence plant growth

and development. To implement precise genetic engineering

strategies in modern breeding, manipulating key transcriptional

regulators or their corresponding CREs through genetic engineering

can modulate the expression of a set of functional genes or entire

metabolic pathways (Grotewold, 2008). A comprehensive

understanding of the regulatory networks can help to predict and

mitigate potential unintended outcomes of gene editing, thereby

improving the yield, nutritional quality, and resistance to diseases

or environmental stresses of crop plants. For example, mutation of a

target binding site in the Ideal Plant Architecture 1 (IPA1) promoter

for an upstream TF has been reported to be able to overcome the

tradeoff between the number of grains per panicle and the number

of tillers in rice, leading to an increased yield (Song et al., 2022).

Significant advancements have been made in transcriptional

regulation studies over the past two decades. With the advent of

high-throughput DNA and protein profiling technologies, there is a

growing accumulation of multi-omics data. In parallel, developing

advanced computational algorithms has facilitated the integration

of large-scale datasets, such as transcriptomics, epigenomics, and

proteomics, enabling the reconstruction of complex regulatory

networks (Depuydt et al., 2023). We are now capable of

constructing more accurate network models, which contribute to

a deeper understanding of gene regulation. More recently, the

application of single-cell sequencing technologies has revealed the

heterogeneity of transcriptional profiles at the cellular level,

shedding light on the understanding of the dynamic nature of

gene regulation during development and stress responses at an

unprecedented resolution (Badia-i-Mompel et al., 2023).

In this review, we briefly summarize the characteristics of

commonly used molecular networks. We provide an update on

various transcriptional regulatory network inference approaches

with multi-omics datasets, highlighting recent advances and

limitations of each method. Furthermore, we outline the general

downstream analyses for the reconstructed networks. Additionally,

we highlight the cutting-edge progress of regulatory network studies

in crop plants, with a focus on cereals, such as maize and wheat.

Finally, the challenges and future directions in the field

are discussed.
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2 Understanding the transcriptional
regulation with network-
based approaches

In the post-genomic era, the accumulation of multi-omics data

and the rapid progress in developing computational algorithms

have empowered us to uncover the complexities of gene function

and regulatory programs at a system level. The reconstruction of

molecular networks, which are mainly composed of two

components (nodes representing biomolecules such as proteins

and nucleotides, and edges depicting the interactions between the

nodes), is a straightforward approach for visualizing complex

interactions and hunting for desirable genes. Most of the

currently adopted molecular networks can be classified as

protein-protein interaction (PPI) network (Xing et al., 2016), gene

co-expression network (GCN) (Rao and Dixon, 2019), and gene

regulatory network (GRN) (Van den Broeck et al., 2020) (Figure 1).
2.1 PPI network: depicting the interactome
of proteins

Proteins that share specific biological functions are expected to

be interconnected within a PPI network. Therefore, the primary

purpose of PPI networks is to unravel the functions of unidentified

proteins by using the annotations of known genes. In addition, the

network structure information can facilitate addressing biological

questions, including the identification of hub proteins, novel

pathways, and evolutionary analysis of proteins of interest (von

Mering et al., 2002). Noteworthy, the link between two proteins has

various implications, such as altering the kinetic properties of

enzymes, affecting the substrate binding affinity of effectors, and

modifying the regulatory effects of TFs on their downstream target

genes (Berggard et al., 2007). Given that transcription regulation

depends on both TFs and their associated cofactors, PPI networks

offer supplementary insights into transcription regulation

(Serebreni and Stark, 2021). This additional layer of information

is distinct from the link between TF and regulatory DNA elements.

Currently, only a limited number of experimental-based

proteomic networks have been established in plants (Consortium,

2011). Using a yeast-two-hybrid (Y2H) mapping workflow, a

comprehensive map of the phytohormone signaling network was

constructed, revealing the multifaceted functions of phytohormone

proteins in Arabidopsis (Altmann et al., 2020). Protein mass

spectrometry was also used to identify protein complexes in 13

plant species (McWhite et al., 2020). Recently, Han and colleagues

conducted a Y2H screening of 7,623 baits against 21,964 prey

proteins in maize, resulting in the identification of 56,243 high-

confidence PPIs by vigorous filtering (Han et al., 2023). Moreover,

there are computational algorithms have been developed for PPI

prediction (Zhang et al., 2016a). A support vector machine (SVM)

model has been trained to generate a Protein-Protein Interaction

Database for Maize (PPIM), covering ~ 2,700,000 interactions

among ~ 14,000 proteins (Zhu et al., 2016). Yang and coworkers
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have established a comprehensive database (PlaPPISite) for 13 plant

interactomes by collecting experimentally validated PPIs and

computational predictions (Yang et al., 2020).

Despite these significant advances, well-explored plant PPI

maps remain limited. Current data shows that the available PPI

datasets cover ~ 12,000 genes in Arabidopsis, ~ 40 genes in Soybean,

and ~ 300 genes in Rice based on the Biogrid database (accessed on

20 April 2024) (Oughtred et al., 2021). Therefore, it is important to

establish a larger quantity of high-quality PPI networks through

coordinated efforts by the research communities in the future.
2.2 GCN: a useful tool to predict
gene function

With the rapid accumulation of transcriptomics data, such as

gene expression microarrays and RNA-seq data, GCNs are

frequently employed to elucidate the connection between genes

and to cluster a large number of genes that exhibit similar

expression patterns (Stuart et al., 2003). GCNs represent indirect

connections without considering directionality. They are typically

generated by a weighted network construction approach followed

by hierarchical clustering to identify smaller co-expression modules

(Langfelder and Horvath, 2008). While we can use prior knowledge
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of TF-coding genes to assign the directionality from TFs to their

target genes, the directionality between two TFs always remains

unknown in the GCN. Despite the lack of causal regulatory links,

mounting evidence suggests that GCNs are efficient in predicting

the specific biological functions of unknown genes by the “guilt-by-

association” principle (Wolfe et al., 2005) and in identifying hub

genes that exhibit high connectivity with other genes and may have

important regulatory roles (Lin et al., 2019).

To pinpoint regulatory or functional genes involved in specific

biological processes, functional modules associated with various

pathways or traits are partitioned from large GCNs and annotated

by Gene Ontology (GO) terms enrichment analysis. For example, a

GCN was constructed and divided into 25 modules in wheat. These

modules were annotated and connected to the spatiotemporal

progression during wheat endosperm development (Pfeifer et al.,

2014); Co-expression modules were also identified for secondary

biosynthetic pathways in tea plants (Tai et al., 2018).

As GCNs inherently lack information regarding regulatory

relationships among co-expressed genes, it is necessary to

combine co-expression analysis with additional complementary

data sources, such as cis-regulatory data. Integration approaches

can enhance the reliability of GCNs for capturing true biological

relevance from network connections. By integration of co-

expression data, cis-regulatory elements, and conserved DNA

motifs, Vandepoele and coworkers were able to accurately link
B

C

A

FIGURE 1

Simple diagrams of different molecular networks. (A) protein-protein interaction network; (B) Gene co-expression network; (C) Gene regulatory
network at transcriptional level and post-transcriptional level.
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many unknown genes to specific biological functions, such as the

E2F pathway in Arabidopsis (Vandepoele et al., 2009).
2.3 GRN: a primary approach for
investigating regulatory codes

In plants and other organisms, TFs regulate structural genes

and TF-coding genes with high context specificity (Badia-i-Mompel

et al., 2023). GRN analysis serves as a robust tool for delineating the

regulatory relationships between a single or a set of TFs with

distinct functions and their downstream target genes in specific

cellular and environmental conditions. It has also shown its value in

identifying key regulator TFs, regulatory connections between genes

and pathways, and in formulating testable functional and regulatory

hypotheses (Van den Broeck et al., 2020).

GRNs can be classified into two groups based on their

objectives: context-dependent GRNs and comprehensive

untargeted GRNs (Depuydt et al., 2023). The majority of GRN

studies have been designed to elucidate the network wiring that

underlies specific developmental processes or responses to

particular environmental conditions. For example, a Bayesian-

based network analysis was used to identify multiple genes

associated with the SHOOT MERISTEMLESS TF gene and to

predict their roles in shoot apical meristem development (Scofield

et al., 2018). Borrill and colleagues integrated time-series data in

wheat and identified several hub genes, including the well-known

senescence regulator NAM-A1, which regulates the expression of

senescence-related genes within the network (Borrill et al., 2019).

Zander and coworkers generated a GRNmodel to predict the cross-

talk in the jasmonic acid (JA) signaling pathway and to discover

novel components involved in the JA regulatory mechanism

(Zander et al., 2020). Furthermore, known and novel candidate

TFs were identified associated with water-deficit responses and

xylem development plasticity using integrative network analysis in

rice (Reynoso et al., 2022).

While context-dependent GRN studies often provide high-

resolution information on the specific biological process under

investigation, untargeted GRN approaches, despite having lower

resolution, are able to capture a broader range of biological

processes under various conditions. Untargeted GRNs are

typically generated using extensive datasets without focusing on

only one specific biological question. Instead, they have been used

to establish a database resource or test novel algorithms. For

example, Zhou and colleagues collected extensive transcriptome

datasets to create coexpression-based GRNs in maize (Zhou et al.,

2020). Recently, several resource articles have been published, such

as MaizeNetome (Feng et al., 2023), Wheat-RegNet (Tang et al.,

2023), and wGRN (Chen et al., 2023b). To introduce more different

context-specificities, it is common to incorporate a lot of

complementary datasets from various tissues, treatments, and

developmental stages. Moreover, the integration of additional

omics layers, such as trait-association results, can provide further

evidence for the hypotheses drawn from the transcriptome and

identify more accurate candidates for the following experimental
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validation (Kim et al., 2023). Nevertheless, although these GRNs are

very large, containing millions of edges, they are not saturated yet.
2.4 Inference of gene network in the
single-cell era

Single-cell omics technologies, particularly single-cell RNA

sequencing (scRNA-seq), provide comprehensive insights into the

transcription landscape of diverse plant tissues, surpassing

conventional bulk sequencing methods (Rhee et al., 2019). As

gene regulation principally takes place in individual cells,

inferring regulatory networks based on single-cell data is more

effective than using bulk data. It predicts interactions based on

expression within the same cells rather than averages (Chen et al.,

2019). Moreover, the increased resolution of single-cell omics data

allows to capture the cell type- or state-specific GRNs (Aibar

et al., 2017).

Current single-cell assays are limited in their ability to detect all

transcripts in every cell, often capturing fewer than 5,000 genes per

cell. Therefore, specialized tools have been developed to handle this

data sparsity (Hao et al., 2024). Common network inference

methods designed for scRNA-seq data include SCODE

(Matsumoto et al., 2017), PID (Chan et al., 2017), Inferelator

(Jackson et al., 2020), and SCENIC/SCENIC+ (Aibar et al., 2017;

Van de Sande et al., 2020; Bravo Gonzalez-Blas et al., 2023). These

methods vary in their underlying models for linking regulator TFs

to target genes. SCENIC first identifies regulatory relationships

based on co-expressed genes using GENIE3 (Huynh-Thu et al.,

2010) or GRNBoost2 (Moerman et al., 2019), and then refines the

connections by considering TF binding motifs on promoter regions.

The defined “regulons” consist of co-expressed genes enriched for

the CREs to which the regulatory TF binds. Finally, the workflow

identifies cells where these regulons are active (Aibar et al., 2017).

However, the lack of validated and formatted TF-DNA binding data

for most plant species hinders the application of these methods with

plant scRNA-seq data.

Single-cell technologies now allow for the quantification of

many other modalities, such as scATAC-seq (Buenrostro et al.,

2013). GRN methods have been developed to combine the data

from multiple modalities (Jiang et al., 2022a; Alanis-Lobato et al.,

2024), or alternatively, networks can be constructed separately with

each modality and then integrated together (Jansen et al., 2019).

Nevertheless, unlike bulk sequencing technologies, which capture a

higher number of transcripts, the sparsity inherent in single-cell

data may result in biased estimations of gene expression

correlations (van Dijk et al., 2018). We expect these challenges to

be addressed through enhanced sequencing depths and more

sophisticated bioinformatics methodologies to effectively manage

data with limited counts (Sekula et al., 2020; Song et al., 2023).

Currently, compared to PPI network and GCN, GRN has

emerged as a favored tool for predicting essential regulators and

gene expression alterations in response to environmental stimuli

and intrinsic signals (Gupta et al., 2022). In some articles, broadly

defined GRNs can be formed by the connections between regulatory

elements that regulate the transcriptional and translational
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processes. Such elements, including TFs, splicing factors, and

microRNAs, could be incorporated into the modeling of GRNs

(Lai et al., 2016; Carthew, 2021) (Figure 1). In the following sections,

we will use the term “GRN” to refer to the network that abstracts the

directed relationships between TFs and their target genes in the

context of transcriptional regulation and emphasize studies related

to GRNs.
3 Reconstruction of transcriptional
regulatory networks with multi-
omics data

GRNs describe the relationship between target genes and their

upstream regulator TFs. Various approaches are used to predict the

regulatory edges. These methods can be classified to gene- or TF-

centered approaches (Yang et al., 2016) or categorized as
Frontiers in Plant Science 05
experimental techniques and computational inference methods

(van der Sande et al., 2023). Here, we adopt a classification based

on the source data types of the regulatory link, dividing the

networks into three categories: physical, functional, and

integrative regulatory networks (Figure 2) (Marbach et al.,

2012b). The selection of methods for constructing regulatory

networks depends on the specific research goals and the

availability of relevant data.
3.1 Construction of physical GRN

The edges in a physical network represent interactions between

a TF and the specific CREs of the target genes it regulates (Schmitz

et al., 2022). It is important to note that the physical interaction

edges do not imply a functional alteration in gene expression.

Instead, they represent a regulation potential that contributes to

the complex transcription process.
B

C

A

FIGURE 2

Overview of methodologies for constructing regulatory networks. (A) Inference of physical regulatory networks. Two types of methods are
employed to construct physical networks: wet-lab experiments (light blue) and computational approaches (purple); (B) Inference of functional
regulatory networks. Functional networks are inferred using two types of methods: wet-lab experiments (light blue) and computational approaches
(purple); (C) Inference of integrative regulatory networks. Three types of methods are utilized to infer integrated gene regulatory networks:
Unsupervised Network Inference (left): An integrative network is constructed by aggregating evidence from each input feature with equal weighting.
Supervised Network Inference (middle): Input features are given to a classification model that predicts the presence or absence of a regulatory
interaction for every TF-target pair. Multi-omics integration network (right): This approach identifies regulatory relationships using multi-omics data
and merges them into a comprehensive network.
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TFs bind to the genomic TF binding sites (TFBSs) through their

DNA binding domains (DBDs). DBDs typically recognize short

DNA motifs. Both experimental and computational approaches

have been used to identify TFBS and DNA motifs recognized by

specific DBDs. Large amount of TFBS and motif datasets have been

collected and deposited in public databases, such as TRANSFAC

(Matys et al., 2003), CIS-BP (Weirauch et al., 2014), JASPAR

(Rauluseviciute et al., 2024), UniPROBE (Hume et al., 2015),

PlantPAN (Chow et al., 2024), and ChIP-Hub (Fu et al., 2022).

3.1.1 Identification of TF-DNA interactions using
experimental approaches

In addition to the yeast-one-hybrid (Y1H), chromatin

immunoprecipitation followed by deep sequencing (ChIP-seq) is

a classical technique to identify TF-DNA interactions in vivo

(Johnson et al., 2007; Gaudinier et al., 2011; Ferraz et al., 2021).

New approaches have been developed to address the intrinsic

limitations of ChIP-seq, such as its low resolution, low signal-to-

noise ratio of detected peaks, and potential enrichment of non-

targeted transcription factors (Worsley Hunt and Wasserman,

2014). For example, ChIP-exo and ChIP-nexus can improve the

resolution of the detected peaks (He et al., 2015; Rossi et al., 2018).

Techniques like CUT&RUN, CUT&Tag, and DamID can eliminate

the need for crosslinking and significantly improve the sensitivity of

detection (Meers et al., 2019; Alvarez et al., 2020; Tao et al., 2020).

However, these methods are still costly and have even more

technical complexity, limiting their applications.

Recently, new in vivo methods have been developed for large-

scale experiments, utilizing tagged TFs transiently expressed in

plant protoplasts. These modified ChIP-seq techniques can profile

genome-wide TFBSs in an easier and relatively low-cost manner

(Lee et al., 2017a; Tu et al., 2020). To further decrease the cost and

improve detection sensitivity, Wu and coworkers introduced a

transient and simplified CUT&Tag (tsCUT&Tag) method that

involves the transient expression of tagged TFs in protoplasts

combined with an improved CUT&Tag approach (Wu et al.,

2022). This method promises to profile TFBSs more efficiently

and cost-effectively across different plant species. Nevertheless,

these protoplast-based methods restrict the obtained TF-DNA

binding information to the specific tissue source of the

protoplasts, such as leaves.

In contrast to in vivomethods, in vitro approaches eliminate the

prerequisite for preparing antibodies specific to TFs or generating

transgenic lines containing tagged TFs of interest. Therefore, they

can be easily applied in a high-throughput manner (Ferraz et al.,

2021). In protein binding microarrays (PBM) and systematic

evolution of ligands by exponential enrichment-sequencing

(SELEX-seq) methods (Berger and Bulyk, 2006; Smaczniak et al.,

2017), TFs or TFs complexes, along with either immobilized DNA

oligonucleotides or a random DNA library, are used in these tests.

One limitation of PBM is that it may overlook longer TFBSs because

it relies on short DNA oligos (10–12 base pairs). Similarly, DNA

substrates in SELEX assays are not derived from genomic sequences

and cannot be mapped to the genome. To address these limitations,

DAP-seq is a recently developed method that utilizes fragmented
Frontiers in Plant Science 06
genomic DNA. In this way, DAP-seq captures more native genomic

features, such as DNA methylation and the flanking sequences of

core motifs (Bartlett et al., 2017). Nonetheless, DAP-seq method

does not fully capture chromatin state information or the cofactors

of TFs that can influence TF-DNA binding in vivo. To solve these

issues, modified methods such as sequential DAP-seq (seq-DAP-

seq) and double DAP-seq (dDAP-seq) techniques have been

developed (Lai et al., 2020; Li et al., 2023a). In seq-DAP-seq, a

sequential purification based on multiple tags was used. Lai and

colleagues determined the genome-wide binding of the SEP3

homomeric complex using this method (Lai et al., 2020); dDAP-

seq was used to elucidate the DNA binding and specificity of bZIP

TF heterodimers and homodimers in Arabidopsis. This study

demonstrates that heterodimerization of C/S1 family bZIP TFs

expands their DNA binding preferences (Li et al., 2023a). To

better reflect in vivo TF binding events, the DAP-seq data can be

combined with accessible chromatin regions (ACRs) identified by

ATAC-seq, DNase-seq, and MNase-seq. The results filtered by

tissue- or cell-type-specific ACRs provide more accurate TFBSs

by considering in vivo chromatin states.
3.1.2 Computational approaches used to predict
the TF-DNA interactions

Taking advantage of the extensive experimentally determined

TF-DNA interaction data, computational methods have been

developed to make de novo prediction of TFBS for a given TF.

Quantitative models of DNA motifs, such as the Position Weight

Matrix (PWM), are required to depict the TF-DNA binding affinity

and predicting new DNA binding sites (Jayaram et al., 2016).

PWM-based motifs are often built using tools implemented in the

HOMER (Heinz et al., 2010) and MEME Suite (Bailey et al., 2015)

software collections. These motif discovery algorithms utilize a

collection of TFBSs derived from ChIP-Seq, ATAC-seq data, or

promoter analyses . Although PWMs provide a good

approximation, this conventional model could be further

improved by integrating sequence dependencies and DNA shape

features (Lai et al., 2019).

Generally, two types of in silico approaches can be used to

predict the TF binding to the genomic TFBSs: one relies on simple

sequence pattern matching, and the other utilizes machine learning

algorithms. The pattern matching-based algorithms follow the

principle that candidate DNA binding sites possess sequence

similarity with known DNA binding motifs of a TF. Several motif

search algorithms, such as FIMO, MOODs, and PWMScan, are

frequently adopted for this purpose (Grant et al., 2011; Korhonen

et al., 2017; Ambrosini et al., 2018). Recent research indicates that

pattern-matching-based methodology can be effectively applied

across a diverse range of organisms (Puig et al., 2021; Chow et al.,

2024). In plant species, PlantRegMap, which now incorporates

PlantTFDB V5.0, is a major source for the inferred TF-DNA

interactions. It now covers 165 species across the main lineages of

green plants (Jin et al., 2017; Tian et al., 2020). However, due to the

availability of known DNA motifs, most of the TF-DNA

interactions have been identified in Arabidopsis.
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Machine learning-based approaches establish predictive criteria

by learning from documented TF-TFBS data using diverse

computational strategies. For instance, Lee and coworkers

introduced a SVM model incorporating various features of TFs

and TFBSs, achieving approximately 82% prediction accuracy (Lee

et al., 2017c). A recent study achieved a remarkable 99% accuracy in

model prediction by integrating the chemical properties of TF

proteins, along with the structural conformation and bonding

capabilities of both TFs and DNA (Khamis et al., 2018). In plants,

a SVM model was constructed to identify potential TFBSs for auxin

response factor TFs in Arabidopsis (Cui et al., 2014). The TSPTFBS

(v2.0) employed deep learning to model a total of 389 plant TFs

with their binding sequences and achieved better performance than

other standard methods (Cheng et al., 2023). Ruengsrichaiya and

colleagues developed another machine-learning based predictor

(Plant-DTI). This tool leverages a large number of experimental

TF-TFBS interactions from plant species with a novel feature

construction, resulting in a pronounced high predictive

performance compared to other state-of-the-art methods

(Ruengsrichaiya et al., 2022).

3.1.3 Connecting TF and target genes with
chromatin accessibility and conformation data

Epigenetic modifications and chromatin states are essential

factors in regulating gene expression. In vivo, most TFs bind to

their target CREs within ACRs (Schmitz et al., 2022). Therefore, the

identification of ACRs is an important aspect in the study of

transcriptional regulation. Optimized genome-wide assays, such

as DNase-seq (Boyle et al., 2008), MNase-seq (Mieczkowski et al.,

2016), ATAC-seq (Buenrostro et al., 2013), and FAIRE-seq (Simon

et al., 2012), have enabled the profiling of chromatin accessibility in

numerous species and tissues. Currently, ATAC-seq has emerged as

a prominent technique owing to its requirement of a reduced

amount of nuclei input and the simplicity of its protocol

(Buenrostro et al., 2013). Single-cell ATAC-seq (scATAC-seq)

protocols have also been developed and optimized to allow the

detection of open chromatin in individual plant cells (Buenrostro

et al., 2015; Marand et al., 2021).

In addition to supporting and refining other regulatory

networks (Duren et al., 2017), ACR datasets could be directly

used in linking TFs to their target genes. This type of network

inference pipeline consists of two main steps. Firstly, motif matcher

algorithms, provided with TF binding motif data, are used to

determine the interactions of TFs with accessible CREs. While

scanning TF motifs in ACRs is the routine way, more and more

advanced deep learning-based methods are employed to predict the

TF binding sites directly from ATAC-seq data (Cazares et al., 2023).

Then, these CREs are linked to genes based on a simple distance

cutoff or a more refined assignment. These association relationships

are combined to obtain “TF-CRE-gene” links and simplified to TF-

gene pairs. The GRN inference based on ATAC-seq data can be

accomplished with several software packages, such as ATAC2GRN

(Pranzatelli et al., 2018), LISA (Qin et al., 2020), SPIDER (Sonawane

et al., 2021), and MINI-AC (Manosalva Perez et al., 2024).
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Although CREs bound by regulator TFs are often assigned to

target genes based on closest genomic proximity, this simplistic

approach may miss crucial distal interactions that have regulation

effects. Accurately linking CREs to genes can be a challenge task,

especially in large genomes that have many distantly located

regulatory sequences (Ricci et al., 2019; Joly-Lopez et al., 2020).

Chromatin is highly organized to form a three-dimensional (3D)

structure. Techniques for measuring chromatin conformation, such

as Hi-C and ChIA-PET, were used to capture the long-range

chromatin interactions (Lieberman-Aiden et al., 2009; Ouyang

et al., 2020). DNA conformation data has been successfully

integrated with both ATAC-seq and RNA-seq data to construct

GRNs (Jiang et al., 2022b). The characterization of gene regulatory

systems based on 3D proximity can be achieved using methods such

as DC3 (De-Convolution and Coupled-Clustering) (Zeng

et al., 2019).
3.2 Inference of functional GRN

A functional regulatory network is characterized by TF-target

edges that are supported by changes in the expression patterns of

the target genes. These connections, whether direct or indirect, can

reflect the functional impact of the regulator’s actions on their

targets. From bulk RNA-seq data to single-cell transcriptomics,

advanced inference methods have been developed, demonstrating

enhanced accuracy and computational efficiency (Marbach et al.,

2012a; Pratapa et al., 2020). Several approaches, which utilize time-

series data or pseudo-temporal single-cell transcriptomics, were

designed to gain more precise insights into the regulatory

interactions between genes (Huynh-Thu and Geurts, 2018;

Aubin-Frankowski and Vert, 2020).

Several statistical approaches are used for the transcriptome-

based gene network analysis. The underlying principles of these

methods include correlation, supervised learning, probabilistic

models, dynamical-systems modeling, and deep learning (Li et al.,

2015; Kim et al., 2023).

3.2.1 Correlation-based approaches
Co-expressed genes are believed to be functionally relevant or

co-regulated. A regulatory link between TF and its target may be

assumed by the co-expression pattern. The Pearson correlation

coefficient (PCC), Spearman’s rank correlation coefficient (SCC),

and mutual information (MI) coefficient are popular measures of

gene’s co-expression patterns.

PCC is suitable for detecting linear correlations, whereas SCC is

more robust to nonlinear relationships. Compared to linear

correlation, nonlinear correlation is capable of detecting more

complex relationships, which may better reflect the in vivo

regulatory interactions (Zuin et al., 2022). The MI coefficient is a

method based on information theory. It quantifies the

interdependence between two variables and can detect nonlinear

relationships (Song et al., 2012). However, co-expression analysis is

unable to distinguish direct and indirect connections. There may be
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two ways to solve this issue. One involves the computation of partial

correlation coefficients among genes (de la Fuente et al., 2004); the

other entails incorporating additional evidence from other data

sources, including TF-DNA bindings and ATAC-seq.

3.2.2 Supervised learning methods
Supervised learning methods, such as linear regression,

nonlinear regression, and tree-based approaches, are widely used

for regulatory network construction.

The linear regression approach first collects expression data for

a set of genes as the predictor variables and then regress on the

expression levels of designated regulator TFs (response variable).

The limitations of regression models include the risk of overfitting

due to a large number of predictors (which is a common case in

biological systems), and the challenges associated with high-

dimensional data. These factors collectively impede the accurate

inference of gene regulatory networks (Kim et al., 2023).

In contrast to linear regression, tree-based techniques like

random forests have the ability to capture complex non-linear

associations among genes (Huynh-Thu et al., 2010). These

methods recursively divide the data into smaller subsets based on

the predictor variables, creating a tree-like structure of decision

rules. Each tree branch represents a distinct combination of

predictor values, leading to a predicted value for the target gene

at the leaf nodes. Notably, in the DREAM5 challenge (Marbach

et al., 2012a), inference tools employing the random forest

algorithm achieved the superior overall performance. However,

these non-parametric approaches are often less interpretable than

linear models. Additionally, they can be computationally intensive,

especially when dealing with high-dimensional datasets.

3.2.3 Probabilistic models
Probabilistic models combine principles from probability

theory and graph theory to construct networks. These methods

capture the dependence between variables, such as transcription

factors and their target genes, by modeling the presence and

strength of regulatory relationships. Bayesian and Markov are two

main types of probabilistic models.

In a Bayesian network, the target gene expression levels are

assumed to follow a normal distribution conditioned on the

expression levels of TF (Friedman, 2004). Bayesian networks are

directed graphs that represent causal relationships between TFs and

targets. However, they are unable to reflect feedback regulation

relationships, as they do not have loops in the graph structure.

3.2.4 Dynamical-systems modeling
Dynamical systems-based approaches estimate the temporal

expression patterns of genes. The regulatory influences of TFs,

basal transcription, and inherent stochasticity can be modeled as

parameters in differential equations (Hecker et al., 2009). Unlike

regression and probabilistic-based approaches, dynamical-systems

not only account for the diverse factors that regulate gene

expression but also incorporate stochasticity. For example, the
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observed expression variation among individual cells is biologically

meaningful in single-cell RNA-seq data. Dictys method has been

developed to utilize the influencing factors through an empirical

linear stochastic differential equation (Wang et al., 2023a). It can

capture changes in regulatory activity that are not solely dependent

on gene expression levels, making it well-suited for studying

continuous processes like cell differentiation (Wang et al., 2023a).

3.2.5 Deep learning models
Deep learning models, based on artificial neural networks, offer

versatile architectures capable of performing various tasks (Min

et al., 2017). Unlike other methods, deep learning models show

increasingly improved performance as the size of the training

dataset increases. Additionally, the feature extraction process is

automatic, whereas other machine learning models require

manual configuration.

Deep learning models excel in processing large datasets and

approximating continuous relationships within the data, making

them highly suitable for handling single-cell data to infer functional

GRNs. A notable application is the use of autoencoders for

dimension reduction and identifying potential regulatory

relationships from various types of single-cell omics input data

(Liu et al., 2023a). Additionally, many innovative approaches have

emerged to utilize the matched scRNA-seq and scATAC-seq data

(Ma et al., 2023a; Yuan and Duren, 2024). For example, Song and

colleagues have introduced the multi-task-based MTLRank

framework, which incorporates RNA velocity and scATAC-seq to

obtain more accurate tissue-specific regulatory networks (Song

et al., 2023). However, the application of these novel methods

remains limited in plant species (Guo et al., 2024).

While deep learning models demonstrate their flexibility and

ability to capture complex patterns, they often require large training

datasets and substantial computational resources due to the vast

number of parameters involved. Moreover, the models can be less

interpretable than traditional models (Ma and Xu, 2022).

It is noteworthy that each model has its pros and cons (Marbach

et al., 2012a). For example, correlation coefficient methods are more

reliable for loop connections, whereas regression methods are

suitable for linear regulatory relationships. Thus, the combination

of multiple methods is expected to outperform individual methods

(Vignes et al., 2011; Slawek and Arodz, 2013; Zhong et al., 2014).
3.3 Integrative GRN construction

In line with the concept of combining different methods in

predicting functional GRN, combining physical and functional

interactions datasets is also essential to construct comprehensive

and high-confidence regulatory networks. The integration process

can be achieved by simply using the ChIP-seq data for a TF along

with the matched RNA-seq data in the mutant or by employing

more advanced algorithms to merge the information from various

multi-omics datasets.
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3.3.1 Innovative approaches for aggregating TF-
binding and gene expression datasets

The process of identifying direct and functional targets of a TF

can be achieved by intersecting the TF-binding derived targets with

differentially expressed genes identified from perturbations such as

overexpression or knock-out of the TF. This method is considered

state-of-the-art in TF target identification. However, it is important

to note that these two evidence sources rarely converge on a

common set of target genes. Despite being widely used as the

gold standard, even the bound and differentially expressed genes

may not be the validated functional targets (Kang et al., 2020).

To improve the prediction performance of TF-target

relationships, a few advanced strategies have been proposed. Kang

and coworkers introduced a method called Dual Threshold

Optimization (DTO). This method improves the accuracy of

identifying direct functional targets by combining data from TF

binding sites and TF perturbation responses. The DTO method

enhances the convergence of two data types by optimizing the

significance thresholds for binding and responsive data (Kang et al.,

2020). Morin and colleagues built upon two existing strategies (Tang

et al., 2011; Wang et al., 2013) to create a framework to identify and

rank TF-target interactions, and identified potential orthologous

interactions between humans and mice. This workflow can be

scaled to other TFs and offered experimental-level gene summaries

evaluated against independent literature evidence (Morin et al., 2023).

3.3.2 Machine-learning based
integration framework

To integrate more layers of physical and functional input data,

more sophisticated machine-learning methods have been developed

for integrative network inference (Mahood et al., 2020). The

machine-learning-based methods can be grouped as unsupervised

and supervised approaches.

The supervised approach utilizes a regression classifier, which is

trained on known regulatory interactions to predict whether an

edge (regulatory interaction) exists between TFs and target genes. In

contrast, the unsupervised method averages the evidence across

different feature-specific networks to generate a comprehensive

regulatory network without requiring prior knowledge of

regulatory interactions (Marbach et al., 2012b). Both the

supervised and unsupervised integrative networks show high

coverage. Recently, De Clercq and coworkers applied a supervised

learning approach to integrate information about TF-binding,

chromatin accessibility, and expression-based regulatory

interactions in Arabidopsis. The resulting integrated GRN

demonstrated high predictive power, facilitating the discovery of

previously unidentified regulators (De Clercq et al., 2021).
4 Evaluation and downstream
analyses of GRNs

After constructing a GRN, evaluating its accuracy and coverage

is an essential task. And subsequent downstream analyses can be

conducted to extract more biological insights.
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4.1 Network evaluation

One should bear in mind that the connections in a GRN are

hypothetical and require vigorous evaluation of their accuracy.

Several common practices have been established to evaluate the

biological relevance of the inferred connections (Li et al., 2015).

The most common evaluation method involves comparing the

inferred GRN with a “gold standard” network, which is often

derived from experimentally verified results, such as loss and gain

of function experiments. These wet-lab approaches generate

confident regulatory connections by observing the impact of a

regulator’s expression changes on its target gene (Kim et al.,

2023). When performing the comparison, one may calculate the

average accuracy according to the detection ratio of the verified

edges, which is probably flawed due to the sparsity of GRNs. In

other words, an algorithm that always predicts the absence of edges

could incorrectly achieve high accuracy. Thus, a better approach is

to assess the proportion of correctly identified positives relative to

all positives (sensitivity or recall) and the proportion of correctly

identified positives out of all identified positives (precision or

positive predictive value) (Huynh-Thu and Sanguinetti, 2019).

When experimentally validated “gold standard” or any well-

accepted high-confidence networks are unavailable, alternative

approaches for evaluating gene networks may include cross-

validation tests and functional coherent module assessment.

Cross-validation tests the accuracy of the reconstructed network

by predicting gene functions based on the known functions of

network neighbors. Additionally, high-quality networks are

expected to exhibit coherent modules of interacting and co-

regulated genes. The functional coherence of these modules can

be evaluated through enrichment tests of gene function and

probabilistic models to predict gene expression within the module

(Li et al., 2015).
4.2 Downstream analysis

In addition to connecting TFs and their target genes, GRNs can

provide further insights into gene functions and associated

biological processes through downstream analysis.

4.2.1 Network topological analysis
GRNs often consist of large number of nodes and connections,

which renders direct interpretation. Topological analysis has

emerged as a useful method for examining the structural

properties of these networks, such as node degree distribution,

clustering coefficients, and community structures, to detect

important patterns and anomalies within the network. In addition

to uncovering the underlying structure of the graph, network

topological analysis can also assist in identifying influential nodes

or edges within the network. For instance, node centrality measures

like degree centrality, betweenness centrality, and eigenvector

centrality can highlight the most critical nodes in terms of their

connectivity and impact on the network. Modularity is another

important property of GRN (Segal et al., 2003). Genes within the
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same module are often co-regulated and often share biological

functions. Module detection helps identify sets of genes associated

with specific biological processes. For example, Tu and colleagues

partitioned a GRN of maize leaves into seven modules. Subsequent

analyses using GO terms and MapMan revealed the enrichment of

specific functions in each module (Tu et al., 2020).

4.2.2 Comparative gene network analysis
Comparative analysis of GRNs can be used to compare different

species, cell types, and treatment conditions. This approach

provides more insight than directly comparing sequences or genes

(Movahedi et al., 2011; Weston et al., 2011). During interspecific

comparisons, it is important to conclusively define gene orthology

and to ensure that comparable tissues are being examined.

Previous comparative GRN analysis methods involved pairwise

subtraction of TF-gene interactions between GRNs (Thompson

et al., 2015; Duren et al., 2021). However, due to the sparse and

noisy nature of GRNs, a direct comparison of TF-gene interactions

is not good enough. New strategies, such as topic modeling, have

been employed to generate dense, low-dimensional representations

that filter out the noise in the GRN and more robustly depict the

differences in regulatory relationships (Lou et al., 2020).

4.2.3 Prioritizing functional candidate regulators
Pinpointing the key regulatory TF in a network is of great

interest in GRN downstream analyses. One approach to identifying

these key TFs is to infer TF activities in a specific context using

enrichment methods. These methods integrate gene expression with

the topological information of GRNs, thereby extracting insights

regarding the roles of TFs in particular biological contexts.

Commonly used methods for enrichment analysis include Gene

Set Enrichment Analysis (GSEA) and Analysis of Upstream

Regulators (AUCell) (Subramanian et al., 2005; Van de Sande et al.,

2020). These techniques allow for a thorough analysis that integrates

gene expression patterns with the structures of connections. For

instance, Yuan and colleagues have utilized the AUCell enrichment

method to discover high-activity TFs for each distinct cell type in a

maize endosperm single-cell RNA-seq study (Yuan et al., 2024).

Moreover, the application of more sophisticated machine

learning models has further advanced the prioritization of TFs.

With the known-function genes as training data, these models are

capable of identifying the TFs most significantly associated with

specific biological processes. For example, NeuralNet algorithm was

used to prioritize tassel branch number-related candidate genes

(Wang et al., 2023b). Han and coworkers used a similar approach to

generate a prediction model based on an integrative map, and

predicted which genes are associated with the flowering time

pathway (Han et al., 2023).
5 Recent advances in regulatory
network studies of crop species

In network-related literatures, some focus on developing new

inference methods or serving as database resources (Table 1); others
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are dedicated to solving specific biological questions. Many studies

with advanced concepts have been conducted in the model plant

Arabidopsis (Table 2).

For example, Hickman and colleagues conducted a time-series

experiment to study the regulation of JA response in Arabidopsis.

They used RNA-seq data from 14-time points on MeJA (methylated

ester of JA) treated leaf and constructed a dynamic model of the JA

GRN. This study offers significant advances in our understanding of

how plants dynamically regulate the JA signaling pathway in

response to environmental cues and lays an foundation for

further investigating the complex transcriptional programs

underlying plant stress responses and developmental processes

(Hickman et al., 2017). Zender and coworkers combined time-

series transcriptome, proteome, and phosphoproteome data to

reconstruct GRNs, predict new components involved in the JA

signaling pathway, and validate these new genes through genetic

mutants. This work demonstrates the power of integrative multi-

omics approach to provide fundamental biological insights into

plant hormone responses (Zander et al., 2020). De Clercq and

colleagues have combined networks based on DNA motifs, open

chromatin, transcription factor (TF) binding, and expression-based

interactions through a supervised learning approach. The integrated

GRN outperforms the individual input networks in predicting

known regulatory interactions. They also experimentally validated

many TFs involved in reactive oxygen species (ROS) stress

regulation, including 13 novel ROS regulators (De Clercq

et al., 2021).

Researchers also construct many regulatory networks in crop

species, particularly in cereals such as maize and wheat. We

have endeavored to summarize these works with a focus on

presenting the cutting-edge findings rather than aiming for

comprehensiveness. We highlight a selection of literatures from

the last decade (Table 3).
5.1 GCN studies in crops

Early-stage studies often relied solely on bulk gene expression

data, typically obtained from specific plant tissues or organs, to

construct functional GCNs.

For example, Pfeifer and colleagues analyzed gene expression in

developing wheat grains and constructed a co-expression network

comprising 25 modules. These modules displayed unique

spatiotemporal characteristics that can be distinguished based on

grain cell types or developmental stages (Pfeifer et al., 2014). To

provide insights into the coordination of individual homoeologs

underlying various traits in wheat, the coexpression networks were

constructed from nonstress tissue-specific and stress-related RNA-

seq samples. These networks highlight the extensive coordination of

homoeologs throughout development and in response to various

stresses and offer a platform to identify candidate genes for

agronomic traits (Ramıŕez-González et al., 2018). Huang and

coworkers evaluated various parameters for data normalization

and different inference methods for constructing a large GCN in

maize using RNA-Seq data. The analysis revealed that increasing

sample size positively impacts network performance, emphasizing
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the importance of sample size for the construction of accurate

GCNs (Huang et al., 2017). To extend the knowledge of salt

response in soybean, Hu and colleagues clustered differentially

expressed genes between a salt-tolerant and a salt-hypersensitive
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cultivar. They constructed undirected networks representing their

co-expression patterns based on Pearson’s correlation coefficients.

The network analysis unveiled several candidate pathways critical in

salt responses, including phytohormone signaling, oxidoreduction,

phenylpropanoid biosynthesis, and others (Hu et al., 2022).

While GCNs cannot directly define the regulatory relationships

between TFs and their downstream targets, the connectivity results

are widely used to refine the findings from genome-wide association

studies (GWAS) and quantitative trait locus (QTL) analyses. This

integration enables the effective prediction of novel candidate genes.

For example, a weighted GCN analysis was used to identify

connected genes associated with Fusarium head blight (FHB)

resistance and pinpointed candidate hub genes within the interval

of three previously reported FHB resistance QTL in wheat (Sari

et al., 2019). Yao and coworkers combined GWAS and co-

expression network analyses to uncover candidate genes involved

in the accumulation of oleic acid content in rapeseed (Yao et al.,

2020). GCN analysis and genome-wide association studies (GWAS)

were combined to elucidate the regulatory pathways and identify

candidate genes responsible for pre-harvest sprouting and seed

dormancy traits in maize (Ma et al., 2023b).
5.2 Networks based on TF-DNA binding
in crops

Establishing direct physical interactions between TF and DNA

has been a major research focus. In addition to TFBSs obtained

from experimental techniques such as ChIP-seq, many TFBSs have

been predicted by computational algorithms. For example, Yu et al.

collected transcriptomics data from developing maize leaves and

used co-expression data along with enrichment analysis to predict

overrepresented motifs in the promoter sequences and the potential

TFBSs of key TFs (Yu et al., 2015).

A few databases and newly developed inference methods have

significantly expanded the available information on TF-DNA binding

interactions. PlantPAN, which has collected a comprehensive set of

public ChIP-seq datasets, is a valuable resource for plant TF-TFBS

interactions. It offers the most complete plant PWMs for analyzing

TFBSs and effective tools for predicting TFBSs in conserved regions

of a given promoter. The latest version, PlantPAN 4.0, provides a

non-redundant set of 3,428 matrices for 18,305 TFs of 115 plant

species (Chow et al., 2024). Another valuable resource is ChIP-Hub, a

comprehensive and standardized platform for exploring the regulome

of plants. It collects over 10,000 datasets from 41 plant species and

processes them based on ENCODE standards. As an application

example, an extensive survey was performed to examine the co-

associations among various regulators, enabling the construction of a

hierarchical regulatory network spanning a broad developmental

context (Fu et al., 2022).

Meanwhile, wet-lab approaches persist in being actively

employed to extend experimental TF-DNA binding in plants. In

wheat, Zhang and colleagues have successfully obtained high-quality

DNA binding profiles for 53 environmentally responsive TFs using

DAP-seq. Interestingly, the study found that 85% of the in vitro

identified TFBSs were located within transposable elements and
TABLE 1 Database resources of regulatory network from the
past decade.

Species
Database
Name

References

Multiple species ATTED-II (v11) (Obayashi et al., 2022)

Multiple species ATTED-II (Obayashi et al., 2018)

Multiple species PlantTFDB (v3.0) (Jin et al., 2014)

Multiple species PlantTFDB (v4.0) (Jin et al., 2017)

Multiple species PlantRegMap (Tian et al., 2020)

Multiple species PlantPAN (v2.0) (Chow et al., 2016)

Multiple species PlantPAN (v3.0) (Chow et al., 2019)

Multiple species PlantPAN (v4.0) (Chow et al., 2024)

Multiple species ChIP-Hub (Fu et al., 2022)

Multiple species KnockTF (Feng et al., 2024)

Multiple species Plant-DTI
(Ruengsrichaiya
et al., 2022)

Multiple species PlaPPISite (Yang et al., 2020)

Arabidopsis/
Animal species

UniBind (Puig et al., 2021)

Arabidopsis/Maize/Rice ConnecTF (Brooks et al., 2021)

Soybean SoyNet (Kim et al., 2017a)

Tomato TomatoNet (Kim et al., 2017b)

Arabidopsis TF2Network (Kulkarni et al., 2018)

Arabidopsis Cistrome (O'Malley et al., 2016)

Arabidopsis AraNet (v2) (Lee et al., 2015b)

Arabidopsis AraPPINet (Zhao et al., 2019)

Arabidopsis AGRIS (Yilmaz et al., 2011)

Rice RicePPINet (Liu et al., 2017)

Rice RiceENCODE (Xie et al., 2021)

Rice NetREx (Sircar et al., 2022)

Rice RiceTFtarget (Zhang et al., 2023a)

Rice RiceNet (v2) (Lee et al., 2015a)

Maize MaizeNetome (Feng et al., 2023)

Maize CORNET (v2.0) (De Bodt et al., 2012)

Maize MaizeNet (Lee et al., 2019)

Wheat WheatNet (Lee et al., 2017b)

Wheat WheatOmics (Ma et al., 2021)

Wheat wGRN (Chen et al., 2023b)

Wheat Wheat-RegNet (Tang et al., 2023)

Wheat WheatCENet (Li et al., 2023b)
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associated with regulatory sequences specific to the wheat lineage

(Zhang et al., 2021). In a subsequent study by the same group,

genomic binding profiles were generated for a larger set of TFs,

enabling the assembly of a wheat GRN encompassing connections

among 189 TFs and 3,714,431 regulatory elements (Zhang et al.,

2022b). These results provide valuable insights into the

transcriptional regulatory mechanisms in wheat. Several remarkable

advances were also made in maize. Ricci and coworkers performed

DAP-seq on 32 TFs, indicating that the distal accessible chromatin

regions were enriched for TFBS (Ricci et al., 2019). Additionally,

interaction maps were generated for 14 maize TFs from the ARF
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family, revealing both specific and redundant binding events of ARF

TFs (Galli et al., 2018). Furthermore, 104 maize TFBS datasets were

yield by ChIP-seq with transient expressed proteins to construct the

leaf regulatory network (Tu et al., 2020).
5.3 Inference of GRN using expression data
in crops

GRNs derived from gene expression profiles are not limited by the

availability of TF-DNA binding data and are widely used in various
TABLE 2 Selected network-related studies in Arabidopsis from the past decade.

Species Research Objective Brief Description References

Arabidopsis Methodology MICRAT (Yang et al., 2018)

Arabidopsis Biology question PPI network (Nietzsche et al., 2016)

Arabidopsis Biology question GRN of root (Santuari et al., 2016)

Arabidopsis Biology question GRN of root stem cell (de Luis Balaguer et al., 2017)

Arabidopsis Biology question JA signal pathway (GRN) (Hickman et al., 2017)

Arabidopsis Methodology CoReg package (Song and Li, 2023)

Arabidopsis Biology question Metabolic Pathways (Wisecaver et al., 2017)

Arabidopsis Biology question Flower development (GRN) (Chen et al., 2018)

Arabidopsis Methodology Protein binding microarrays (PBM) (Franco-Zorrilla et al., 2014)

Arabidopsis Biology question Nitrogen metabolism (Gaudinier et al., 2018)

Arabidopsis Methodology Chromatin accessibility (Sullivan et al., 2014)

Arabidopsis Biology question Single and combined stresses (Barah et al., 2016)

Arabidopsis Biology question Nitrogen signaling (Varala et al., 2018)

Arabidopsis Biology question Response to elevated CO2 (Cassan et al., 2023)

Arabidopsis Biology question NLP7 regulon (Alvarez et al., 2020)

Arabidopsis Biology question Nitrogen signaling (Brooks et al., 2019)

Arabidopsis Methodology EXPLICIT (Geng et al., 2021)

Arabidopsis Methodology EXPLICIT-Kinase (Peng et al., 2022)

Arabidopsis/Rice/Maize Methodology TSPTFBS 2.0 (Cheng et al., 2023)

Arabidopsis Methodology ConSReg (Song et al., 2019)

Arabidopsis/Rice Methodology Comparative analysis of GRN (Wang et al., 2020b)

Arabidopsis Biology question Response to JA (Zander et al., 2020)

Arabidopsis Biology question ROS signaling (De Clercq et al., 2021)

Arabidopsis Methodology Annotation of unknown gene (Depuydt and Vandepoele, 2021)

Arabidopsis Biology question scATAC-seq of root (Dorrity et al., 2021)

Arabidopsis/Rice/Maize Methodology MINI-EX (Ferrari et al., 2022)

Arabidopsis/Rice/Maize
/Tomato

Methodology MINI-EX V2.0 (Jasper et al., 2023)

Arabidopsis/maize Methodology MINI-AC (Manosalva Perez et al., 2024)

Arabidopsis Biology question scRNA-seq of BR root (Nolan et al., 2023)

Arabidopsis/Maize Biology question Nitrogen responsive GRN (Cheng et al., 2021)
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TABLE 3 Selected network-related studies in crops from the past decade.

Species Research Objective Descriptions References

Rice Biology question Pollen development (Lin et al., 2017)

Rice Biology question Response to Cadmium stress (Wang et al., 2020a)

Rice Methodology Improvement of PBM (Kim et al., 2021a)

Rice Biology question Gene editing promoter of IPA1 (Song et al., 2022)

Rice Biology question Phosphate starvation response (Shi et al., 2021)

Rice Biology question Biotic stress response (Lee et al., 2011)

Rice Biology question scRNA-seq GRN (Xie et al., 2020)

Rice Biology question Agronomic traits (Zhang et al., 2022a)

Rice Biology question Low temperature response (Wang et al., 2022a)

Maize Biology question Leaf development (Yu et al., 2015)

Maize Biology question Leaf development (Tu et al., 2020)

Maize Biology question Seed development (Zhan et al., 2015)

Maize Biology question Seed development (Liu et al., 2016)

Maize Biology question Seed development (Yi et al., 2019)

Maize Biology question Seed development (Xiong et al., 2017)

Maize Biology question Seed development (He et al., 2024)

Maize Biology question Inositol phosphate metabolism (Zhang et al., 2016b)

Maize Biology question Developmental atlas (Walley et al., 2016)

Maize Biology question Gene network of grey leaf spot (Christie et al., 2017)

Maize Methodology Optimize GCN construction (Huang et al., 2017)

Maize Biology question Phenolic compound biosynthesis (Yang et al., 2017)

Maize Biology question TFBS of ARF family (Galli et al., 2018)

Maize Biology question Tissue-specific GRN (Huang et al., 2018)

Maize Biology question Inflorescence development (Parvathaneni et al., 2020)

Maize Biology question Meta GRNs using RNA-seq data (Zhou et al., 2020)

Maize Biology question scATAC-seq of 6 tissues (Marand et al., 2021)

Maize Biology question scRNA-seq of ear (Xu et al., 2021)

Maize Biology question scRNA-seq of leaf (Tao et al., 2022)

Maize Biology question Spatial transcriptomics of seed (Fu et al., 2023)

Maize Biology question scRNA-seq of endosperm (Yuan et al., 2024)

Maize Biology question Multi-omics integrative network (Han et al., 2023)

Maize Biology question Early shade avoidance response (Wang et al., 2016)

Maize Biology question Translatome-transcriptome GRN (Zhu et al., 2023b)

Maize Biology question Prioritizing Metabolic GRN (Gomez-Cano et al., 2024)

Maize Biology question Lipid metabolism (de Abreu et al., 2018)

Maize Biology question UV-B stress response (Gupta et al., 2018)

Maize Biology question Seed dormancy (Ma et al., 2023b)

Maize Biology question
Development, nutrients utilization, metabolism, and

stress response
(Ma et al., 2017)

(Continued)
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biological contexts. A GRN was inferred by modeling 78 maize seed

transcriptome to identify key genes involved in seed development. The

network analysis unraveled highly interwoven communities and

identified key genes and regulatory modules associated with nutrient

transport and imprinting patterns, which are crucial for maize seed

development (Xiong et al., 2017). Utilizing the GENIE3 software

package with a number of RNA-Seq data, Huang and colleagues

constructed four tissue-specific GRNs in maize. They further

predicted key TFs for each specific tissue (Huang et al., 2018).

Zhou and colleagues present a standardized pipeline using

machine learning algorithms along with transcriptomic data to

predict GRNs (Zhou et al., 2020). They analyzed a large collection

of transcriptome datasets, resulting in 45 GRNs. The networks

exhibited significant enrichment for biologically relevant
Frontiers in Plant Science 14
interactions, with each GRN capturing diverse biological processes.

This uniform pipeline can be applied to other species with available

expression data (Zhou et al., 2020). To comprehensively elucidate the

chloroplast biogenesis process, Loudya and colleagues present a

biologically informed GRN. The network prediction suggests that

the regulators of chloroplast genes are differentially involved across

various leaf developmental stages in wheat (Loudya et al., 2021).

Similar to GCN, GRN can also be combined with QTL and

GWAS results to predict candidate genes for specific traits. For

example, Zhao and colleagues designed an integrative analysis

combining eQTL, GWAS, and GRN to characterize the genetic

basis of cotton yield. Several high-ranking causal genes identified

from the GRN were validated for their functional impacts on cotton

seed development (Zhao et al., 2023).
TABLE 3 Continued

Species Research Objective Descriptions References

Maize Biology question Responses to Puccinia sorghi (Kim et al., 2021b)

Maize Biology question Bundle sheath and mesophyll cells network (Dai et al., 2022)

Maize Biology question WGCNA of bundle sheath and mesophyll cells (Tao and Zhang, 2022)

Maize Methodology ChIA-PET (Peng et al., 2019)

Wheat Biology question Grain transcriptome (Pfeifer et al., 2014)

Wheat Biology question The transcriptional landscape of polyploid wheat (Ramıŕez-González et al., 2018)

Wheat Biology question Regulating Senescence (Borrill et al., 2019)

Wheat Biology question Fusarium head blight resistance (Sari et al., 2019)

Wheat Biology question Embryogenesis and grain development (Xiang et al., 2019)

Wheat Biology question Chloroplast biogenesis (Loudya et al., 2021)

Wheat Biology question
Evolutionary rewiring of the wheat transcriptional

regulatory network
(Zhang et al., 2021)

Wheat Biology question Construction of GRN with DAP-seq data (Zhang et al., 2022b)

Wheat Biology question Spike architecture (Wang et al., 2017)

Wheat Biology question Biologically-Relevant (Harrington et al., 2020)

Wheat Biology question Integrate gene regulatory network and genetic variation (Ai et al., 2024)

Wheat Biology question Spike development (Lin et al., 2024)

Wheat Biology question Regeneration (Liu et al., 2023b)

Wheat Biology question scRNA-seq of root (Zhang et al., 2023b)

Sorghum Biology question Bioenergy stems (Fu et al., 2024)

Cotton Biology question Oil accumulation (Ma et al., 2024)

Cotton Biology question Low light intensity (Zhao et al., 2024)

Cotton Biology question Seed yield (Zhao et al., 2023)

Rapeseed Biology question Oleic acid content (Yao et al., 2020)

Soybean Biology question Salt stress (Yang et al., 2019)

Tomato Biology question Drought-responsive (Chowdhury et al., 2023)

Sweet potato Biology question Chlorogenic acid biosynthesis (Xu et al., 2022a)

Banana Biology question Fruit ripening (Kuang et al., 2021)

Multiple species Methodology cisDynet software (Zhu et al., 2023a)
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5.4 Integrative network construction with
multi-omics data in crops

Genomics and functional genomics studies on rice have been at

the forefront among crop plants. Rice also serves as a leading model

in integration network studies. The RiceNet (v2) web resource,

launched in 2014, provides an integrative network for rice. This

network combined co-functional links based on genomic context

similarity, connections inferred from co-expression patterns, and

protein-protein interactions. Its utility in prioritizing candidate

genes involved in rice biotic stress responses has been

demonstrated (Lee et al., 2015a). Another significant pioneering

study created a comprehensive developmental atlas of maize with

multi-omics data. Integrative GRNs were constructed based on

mRNA, protein, and phosphor-protein data, resulting in improved

predictive power. This work enhanced our understanding of the

complex regulatory mechanisms in maize (Walley et al., 2016).

The integration of multi-omics data has become increasingly

prevalent in studies using network-based approaches. Han and

colleagues have successfully constructed a large-scale PPI network

in maize. An integrated map was constructed incorporating data

from four different layers: three-dimensional genomics,

transcriptomics, proteomics, and protein-protein interactions.

Leveraging this multi-omics network and machine learning-based

prediction approaches, novel candidate key genes involved in

various regulatory pathways, such as flowering time, have been

predicted and genetically validated (Han et al., 2023). Gomez-Cano

and coworkers analyzed ~4.6M interactions, including co-

expression networks, TF-DNA interaction experiments, and

expression quantitative trait loci (eQTL) to construct GRNs and

pinpointed key regulators associated with hormone, metabolic, and

developmental processes (Gomez-Cano et al., 2024). Additionally,

several studies integrate a large amount of omics data, including

both physical interactions and functional regulation relationships,

in wheat (Chen et al., 2023; Tang et al., 2023). Similar integrated

analysis has also been conducted in cotton (Zhao et al., 2024).

The integration of network and genetic mapping data, such as

GWAS, further enhances the predictive power for identifying

significant genes. Lin and colleagues thoroughly examined the

transcriptome and epigenome profiles of the developing spike in

an elite wheat cultivar. Through the integration of regulatory

networks with GWAS, key genes affecting the spike architecture

were pinpointed (Lin et al., 2024).
5.5 Regulatory networks at a high spatial
resolution in crops

Regulatory networks relying on bulk data have several

limitations. These models typically only capture generalized

connection patterns, which obscure distinct regulatory

interactions unique to certain cell types. Furthermore, bulk data

often fails to differentiate the cellular states, which can significantly

impact gene regulation. In contrast, approaches such as

microdissection and single-cell technologies enable the discovery

of regulatory networks at greater spatial resolution.
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Zhan and coworkers used laser-capture microdissection with

RNA-Seq to profile gene expression in each dissected cell

compartment of the maize kernel (Zhan et al., 2015). They

constructed an unbiased GCN and detected sub-network modules

containing genes predominantly expressed in a single compartment

or ubiquitously expressed across multiple compartments. These

results offer a high-resolution gene expression atlas of maize kernel

and contribute to uncovering regulatory interactions associated

with the differentiation of major endosperm cell types (Zhan

et al., 2015).

With the advent of sing-cell omics, Marand and colleagues

generated a cis-regulatory atlas using single-cell ATAC-seq in

maize. They profiled over 72,000 nuclei across six maize organs

and identified TFs coordinated with chromatin interactions by

analyzing patterns of co-accessible CREs. This comprehensive cis-

regulatory atlas at single-cell resolution is a valuable resource to

study the gene regulation in maize (Marand et al., 2021). The

researchers from Vandepoele ’s group have developed

computational methods named MINI-EX and MINI-AC to

explore cell type-specific regulatory interactions. MINI-EX utilizes

expression-based GRNs derived from single-cell RNA-seq data and

TF binding motifs to predict cell type-specific regulons. On the

other hand, MINI-AC combines accessible chromatin (AC) data

from either bulk or single-cell experiments with TF binding motifs

to construct GRNs (Ferrari et al., 2022; Manosalva Perez et al.,

2024). The application of MINI-EX has successfully identified

regulons (groups of genes co-regulated by a shared TF) across

major cell types in Arabidopsis, rice, and maize. Moreover, this

method effectively prioritized established key regulons based on

their network characteristics, such as connectivity and centrality,

and unveiled several previously unidentified transcriptional

regulators (Ferrari et al., 2022). Similarly, MINI-AC has also

demonstrated superior performance compared to other

techniques in accurately identifying TFBS. Maize has a complex

genome and abundant distal AC regions. MINI-AC successfully

inferred leaf GRNs containing experimentally confirmed

interactions between TFs and target genes from both proximal

and distal regions in maize. It is also a robust tool for pinpointing

both known and novel candidate regulators (Manosalva Perez

et al., 2024).

Recently, Yuan and coworkers focused on the differentiation

stage of maize endosperm. They performed single-cell RNA-seq

combined with TFBS profiling using ampDAP-seq to construct a

high-confidence GRN and identified key regulators in five distinct

cell types (Yuan et al., 2024). Fu and colleagues utilized the

endosperm spatial transcriptome data during the grain-filling

stage. They successfully predicted and identified the function of

the candidate sucrose transporter genes (SUTs) in endosperm

transfer cells facilitated by GCN analysis (Fu et al., 2023).
5.6 Utilizing clues from networks to
answer biological questions in crops

Unlike traditional forward genetics, a new research paradigm is

emerging for gene function studies, wherein candidate genes are
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determined through hints from networks. Y1H is an easy approach

used to identify the direct binding between TFs and the promoters

of their targets. These direct regulatory relationships have great

value in guiding the select ion of key regulators for

functional characterization.

For instance, Gaudinier and colleagues used enhanced Y1H

assays to screen for Arabidopsis TFs binding to the promoters of

genes associated with nitrogen metabolism and signaling, resulting

in a network comprising 1,660 interactions. This network unveiled a

hierarchical regulation of these TFs. Mutants of 17 prioritized key

TFs exhibited significant alterations in at least one root architecture

trait. The identification of regulatory TFs in the nitrogen-regulatory

framework holds promise for enhancing agricultural productivity

(Gaudinier et al., 2018). Similarly, Shi and coworkers uncovered

TFs that regulate genes related to mycorrhizal symbiosis using Y1H.

They screened more than 1500 rice TFs for binding to 51 selected

promoters, and constructed a highly interconnected network.

Interestingly, many of the TF in this network are involved in the

conserved P-sensing pathway. With functional analyses of selected

genes, this study elucidates the extensive regulation of mycorrhizal

symbiosis by both endogenous and exogenous signals (Shi

et al., 2021).

Ji and colleagues constructed a co-expression network to

identify regulatory factors during the grain-filling stage of maize

endosperm, and identified hundreds of candidate TFs using 32

storage reserve-related genes as guides. In addition to known

regulators of storage proteins and starch, the study uncovered

novel TFs, such as GRAS11, involved in endosperm development.

They further characterized the function ofGRAS11 through detailed

functional analysis (Ji et al., 2022). High-temporal-resolution RNA

sequencing was conducted on the basal and upper regions of maize

kernels. Weighted gene co-expression network analyses were

performed, identifying numerous hub regulators that are worthy

of subsequent functional characterization (He et al., 2024).

Collectively, these studies have provided significant insights

into transcriptional regulation programs and rich data resources.

GCN analyses have identified modules and candidate genes

associated with various traits. Experimental determination of

TFBSs, aided by computational predictions, has enabled the

construction of regulatory networks, revealing novel regulators.

Integration of multi-omics data has improved the predictive

power of GRNs. High-resolution spatial techniques have

uncovered cell-type-specific regulatory interactions, providing a

more nuanced understanding of gene regulation. Overall, the

advancements in regulatory network studies of crop species have

substantially enhanced our understanding of the complex

transcriptional programs governing plant growth, development,

and responses to biotic and abiotic stresses.
6 Challenges and future perspectives

The precise manipulation of gene expression can be used to

breed crops with desirable traits. The inference and analysis of

regulatory networks will assist in crop improvement efforts. Despite

the significant breakthroughs in regulatory network studies in
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recent years, there is still potential for enhancing the confidence

of the inferred interactions.
6.1 Network validation is a
complicated task

The validation of regulatory networks is crucial to ensure that

these networks accurately reflect the biological processes of interest.

GRN evaluation commonly requires a thorough comparison of

predicted interactions with the “gold standard” derived from wet-

lab experiments, such as independently generated TF-DNA binding

data and perturbation tests on the regulator TFs, as discussed in

Section 4.1. However, the experimental “gold standard” is often

unavailable or inadequate. Noteworthy, even if TF binding to a

target is confirmed by in vivo ChIP assay, it does not necessarily

imply that this TF can activate or repress the target gene. An

alternative approach to test whether a TF regulates a particular gene

is to perturb the TF expression and check how this perturbation

affects the expression of target genes. While this approach shows

promise due to its inherent causality, perturbation experiments are

time consuming and costly. Noteworthy, they are likely not to work

well as hindered by the widely existed compensatory mechanisms in

crop plants. Due to different validation methods have their own

limitations, utilizing diverse assessment strategies to evaluate a

given GRN may be a smart way.
6.2 Increasing spatiotemporal resolution
of networks

Regulation of gene expression is a dynamic process. High-

temporal resolution studies have revealed fluctuations in gene

expression levels in maize kernels within a small time window (Yi

et al., 2019). From the perspective of network inference, there may

be lack of expression correlation between target genes and their

regulatory TFs because of the temporal lag between TF binding and

the accumulation of mRNA transcripts. Thus, improving the

spatiotemporal resolution of gene expression profiles and TF-

DNA binding data is imperative for network construction.

Although new technologies have been developed to more

efficiently acquire multi-omics data from a single plant cell (Xu

et al., 2022b), the primary challenge arises from technical difficulties

in the preparation of high-quality protoplasts in plants. Recently, to

address challenges in protoplasting experiments, several optimized

enzymatic cell wall digestion protocols have been developed for

various species (Ye et al., 2022; Wang et al., 2022b; Chen et al.,

2023a). Wang and colleagues introduced a new method that involves

two consecutive digestion processes with different enzymatic buffers,

significantly enhancing the efficiency and viability of protoplast

preparation across diverse plant tissues (Wang et al., 2022b).

However, the conversion of cells into protoplasts is still not feasible

for many types of plant tissues. Alternatively, recent single-nucleus

techniques offer broader applicability across different tissues.

Nevertheless, it’s important to note that nuclear RNA and

cytoplasmic RNA should not be considered equivalent.
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6.3 Hurdles in linking GRN to
agronomic traits

There is still a large gap between the knowledge derived from

GRNs and their manifestation in agronomic traits. Firstly, GRNs

involve a complex interplay among thousands of genes and TFs that

underlie various biological processes. Deciphering how perturbations

in these regulatory networks impact gene expression remains a

challenge. Secondly, the relationship between gene expression levels

and traits is nonlinear and polygenic. Therefore, predicting

observable traits from changes in gene expression, especially

considering the influence of environmental factors, is difficult.

At the current stage, it is feasible to modulate specific metabolic

pathways based on network information. The activity of one or a few

TFs can regulate multiple steps of metabolic pathways. Thus,

manipulating the expression of TFs probably has a greater impact

on metabolism pathways than modifying cis-regulatory elements of

enzyme-coding genes. For example, flavonoids are considered

valuable compounds in plant metabolic engineering. Increasing

flavonoid levels can be achieved by manipulating their transcription

regulatory elements, resulting in the development of plants with high

anthocyanin content (Jiang et al., 2023). For the enhancement of oil

production, WRINKLED1 is a conserved transcription factor

involved in the regulation of fatty acid biosynthesis in diverse

angiosperms. Transgenic plants that overexpress the WRINKLED1

gene show promising outcomes in increasing the oil content of maize,

soybean, and rice. AsWRINKLED1 also modulates targets that affect

plant growth and development. It is important to consider the shared

regulatory network when utilizing it to engineer plant oil production

(Yang et al., 2022).

However, achieving the modulation of complex traits, such as

yield and quality, which are determined by multiple factors, remains

challenging. The regulatory mechanisms that directly impact these

processes have not been thoroughly characterized. And these

complex traits are often influenced by environmental factors and

are sensitive to the interplay between genotype and environment.
6.4 Future directions

In response to current challenges, there are several aspects in

future network-related research that need to be strengthened.
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Firstly, integrating more omics data can enhance the predictive

power of networks by merging diverse complementary information.

Secondly, improving spatiotemporal resolution relies on the

development of more sensitive, convenient, and cost-effective

technologies. Lastly, the application of deep learning models,

which can better integrate massive amounts of data and extract

reliable and useful information from them, provides an opportunity

to construct more accurate GRNs.
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