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Introduction: Yunnan Xiaomila is a pepper variety whose flowers and fruits

become mature at the same time and multiple times a year. The distinction

between the fruits and the background is low and the background is complex.

The targets are small and difficult to identify.

Methods: This paper aims at the problem of target detection of Yunnan Xiaomila

under complex background environment, in order to reduce the impact caused

by the small color gradient changes between xiaomila and background and the

unclear feature information, an improved PAE-YOLO model is proposed, which

combines the EMA attention mechanism and DCNv3 deformable convolution is

integrated into the YOLOv8 model, which improves the model’s feature

extraction capability and inference speed for Xiaomila in complex

environments, and achieves a lightweight model. First, the EMA attention

mechanism is combined with the C2f module in the YOLOv8 network. The C2f

module can well extract local features from the input image, and the EMA

attention mechanism can control the global relationship. The two complement

each other, thereby enhancing the model’s expression ability; Meanwhile, in the

backbone network and head network, the DCNv3 convolution module is

introduced, which can adaptively adjust the sampling position according to the

input feature map, contributing to stronger feature capture capabilities for

targets of different scales and a lightweight network. It also uses a depth

camera to estimate the posture of Xiaomila, while analyzing and optimizing

different occlusion situations. The effectiveness of the proposed method was

verified through ablation experiments, model comparison experiments and

attitude estimation experiments.

Results: The experimental results indicated that the model obtained an average

mean accuracy (mAP) of 88.8%, which was 1.3% higher than that of the original

model. Its F1 score reached 83.2, and the GFLOPs andmodel sizes were 7.6G and

5.7MB respectively. The F1 score ranked the best among several networks, with

the model weight and gigabit floating-point operations per second (GFLOPs)

being the smallest, which are 6.2% and 8.1% lower than the original model. The

loss value was the lowest during training, and the convergence speed was the

fastest. Meanwhile, the attitude estimation results of 102 targets showed that the

orientation was correctly estimated exceed 85% of the cases, and the average

error angle was 15.91°. In the occlusion condition, 86.3% of the attitude
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estimation error angles were less than 40°, and the average error angle

was 23.19°.

Discussion: The results show that the improved detection model can accurately

identify Xiaomila targets fruits, has higher model accuracy, less computational

complexity, and can better estimate the target posture.
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1 Introduction

Pepper is one of the three major vegetable crops in the world. Its

fruit has rich polyphenols, flavonoids, vitamin C, and other natural

active ingredients, with high food value, economic value, and health

care value (Zhang, 2023). Currently, pepper-picking equipment

mainly consists of various forms of harvesters, such as rod and

comb harvesters, unfolding double helix harvesters, drum finger

harvesters, and strip comb harvesters (Fan et al., 2023). Xiaomila is

a smaller, lighter, crispy, and tender variety of pepper, and its

flowers and fruits have the same characteristics. Traditional picking

equipment is not only prone to damaging Xiaomila fruits but also

cannot adapt to the characteristics of Xiaomila flowers and fruits

that are contemporaneous.

In recent years, picking robots have gradually become popular

(Ye et al., 2023; Wang et al., 2023a; Tang et al., 2024), different from

traditional mechanical picking equipment, picking robots have the

capability of non-one-time picking and can reduce uncontrollable
02
damage caused by traditional mechanical equipment. This enables

the picking robot to adapt well to the characteristics of Xiaomila

flowers and fruits that are contemporaneous and easily damaged.

The spatial attitude estimation of Xiaomila objects is the to accurate

and collision-free picking, and Xiaomila grows in different

directions in the natural farmland environment, as illustrated by

the arrows in Figure 1.

Attitude estimation is to infer the three-dimensional translation

and rotation information of the target in the camera coordinate

system from images or videos (Guo et al., 2023). Traditional attitude

estimation methods have low applicability in weak texture target

detection and real-time detection, while deep learning methods

learn feature information in input images through deep neural

networks and have high robustness in real-time applications

(Lin et al., 2022a). Therefore, current research on target

attitude estimation during picking mainly focuses on deep

learning methods.

Methods based on RGB-D images generally collect image data

containing target depth information through a depth sensor and

extract corresponding features for posture regression. Luo et al.

obtained the grape cluster image mask and point cloud

information using a depth camera, constructed a region of

interest based on the mapping relationship between the two,

and utilized the LOWESS algorithm and geometric method to fit

the pedicel surface and estimate the posture of the pedicel. This

estimation method is highly sensitive to point cloud data

(Luo et al., 2022). Eizentals et al. obtained green pepper surface

point information through a laser rangefinder and obtained the

attitude information of the green pepper fruit in space through

model fitting, but the accuracy and success rate were not high

(Eizentals and Oka, 2016). Yin et al. obtained the grape mask by

using the Mask Region Convolutional Neural Network (Mask R-

CNN); meanwhile, they combined the RANSAC algorithm to fit

the point cloud into a cylindrical model, estimated the grape

posture with its axis, and estimated the posture of each bunch of

grapes. The approach took about 1.7s to complete the task

(Yin et al., 2021). Zhang et al. proposed a tomato bunch attitude

detection method for continuous tomato harvesting operations.

The method consists of a priori model, cascade network, and

three-dimensional reconstruction. It fully exploits the advantages
FIGURE 1

Xiaomila grows in different directions in the natural
farmland environment.
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of convolutional neural networks while avoiding complex point

cloud calculations, but it cannot make correct predictions for

fruits with heavy occlusion (Zhang et al., 2022). Lin et al. used

RGB-D sensors to obtain binary images of guava and branches

through a fully convolutional network, adopted Euclidean

clustering to separate different groups of point clouds, and used

the guava center and nearest branch information for attitude

estimation. However, the success rate and accuracy still need to

be improved (Lin et al., 2019). Wang et al. designed a geometric

perception network that uses point cloud information and RGB

images to detect, segment, and grasp targets. It can better perceive

targets, but changes in distance have a greater impact on the

estimation accuracy (Wang et al., 2022). Li et al. calculated the

local plane normal of each point in the point cloud, scored each

candidate plane, took the lowest-scoring plane as the symmetry

plane of the point cloud, and calculated the symmetry axis based

on this plane to realize attitude estimation of bell peppers.

However, the estimation effect is not good for occluded bell

peppers (Li et al., 2018).

The input data of the method based on RGB images does not

contain depth information, and the features of the image are

directly extracted for analysis. Sun et al. constructed a multi-task

learning model that locates the position of the citrus navel point and

predicts the rotation vector of the citrus by performing RGB image

analysis of citrus. However, for citrus whose navel point is invisible,

the model needs to be further improved (Sun et al., 2023). Zhang

et al. used 3D detection results to regress the 2D key point

coordinates of objects in the image. By using the perspective n-

point algorithm to estimate the pose of an object, this method

enhances the accuracy and efficiency of pose estimation

(Zhang et al., 2019). Kim et al. developed a deep learning

network for determining robot cutting poses during harvesting,

which can perform ripeness classification and pose estimation of

fruits and lateral stems. The study results indicate that this method

performs well in detecting tomatoes in a smart farm environment.

However, the detection effect in complex farmland environments

has not been verified (Kim et al., 2022). Based on the growth

characteristics of grapes, Wu et al. combined human pose

estimation, key point detection models, and target detection

algorithms to identify grape clusters and estimate poses. However,

this method is not effective for complex image processing (Wu et al.,

2023a). Lin et al. analyzed a single RGB image based on key points

and estimated the pose of the object by regressing the size of the

boundary cuboid, but the network was not sufficiently lightweight

(Lin et al., 2022b).

To sum up, the method of using RGB-D images or point cloud

data to estimate the pose of a target requires a large amount of

calculation and is not suitable for transplantation to mobile devices.

Additionally, objects to be identified in farmland are basically

occluded. The above methods are usually combined with the stems

of the identified objects to realize pose estimation. However, the

diameter of Xiaomila stems is very small (1–3 mm), and the

background is complex. Traditional stereo cameras and depth

sensors such as lidar have been proven to be unable to provide

reliable depth information (Coll-Ribes et al., 2023). To solve these

problems, this study mainly makes the following contributions:
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1) We propose a lightweight, multiscale detection model, called

PAE-YOLO, for Xiaomila target detection in complex farmland

environments. The EMA attention mechanism can effectively

enhance the feature extraction capability of the model, while

DCNv3 can significantly reduce the computational complexity of

the model and improve the portability of the model.

2) We used a depth camera to detect pepper skins and caps to

determine the posture of Xiaomi spicy. We also analyze and

optimize Xiaomi target detection and posture determination

under different occlusion situations.

3) We determined the effectiveness of the improved model

through ablation experiments and comparison experiments, and

determined the effectiveness of attitude detection through attitude

estimation experiments. Among several classic detection models,

our proposed model has higher accuracy, the smallest model size,

and the lowest computational effort than several classical models.
2 Materials and methods

2.1 Image acquisition

This study takes Xiaomila fruits in the green and mature stage of

farmland as the research object. All images used in the experiment

were taken in 2023 at a Xiaomila plantation in Qiubei County,

Wenshan City, Yunnan Province, China. The Intel realsense D435i

device was utilized to collect RGB images. During the image

collection process, the camera was placed about 15–30 cm away

from the Xiaomila plants and photographed directly above the

Xiaomila plants. The image resolution was 1920×1080 pixels, and a

total of 1060 images were collected.
2.2 Dataset construction and annotation

In the natural farmland environment, Xiaomila fruits have a

similar color to pepper leaves, with small individuals and complex

backgrounds. Considering the difference in images obtained under

actual changing lighting and occlusion conditions, the original images

are collected at different times, under varying lighting, and with

diverse occlusion levels. However, these images typically cannot

encompass all real-world conditions. Furthermore, they differ

somewhat from actual Xiaomila images. Hence, collected RGB

images underwent expansion through random rotation, brightness

adjustment, and noise addition to harmonize and mitigate these

disparities. In the real environment, the pepper’s orientation varies,

and random rotation and flipping primarily serve to diversify its

orientation, enhancing the model’s generalization ability. Random

clipping accounts for the impact of various occlusion scenarios,

ensuring data diversity. Noise addition and brightness adjustment

aim to mitigate factors such as brightness deviations among different

sensors (Akbar et al., 2022; Bosquet et al., 2023).

Of course, there will still be some differences between the

enhanced dataset and the actual changing lighting and occlusion

conditions. To minimize such differences, more factors from real

scenes can be incorporated when collecting data, such as weather
frontiersin.org
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changes, varying occlusion, etc. Additionally, ensuring a similar

distribution between training and test data reflects the actual scene

more accurately.

The expansion effect is demonstrated in Figure 2. The final

target detection data set consists of 2500 images, of which 1750 are

used as a training set and the remaining 750 are used as a

verification set. The labeling tool was used to label Xiaomi fruits

and convert the labeled xml file into the txt file required by

the model.
2.3 YOLOv8 network structure

The YOLO series algorithm is an efficient method with limited

computational parameters, making it a key research focus in target

detection (Wang et al., 2023b). Wu et al. proposed a segmentation

and counting algorithm for banana bunches based on YOLOv5-

Banana (Wu et al., 2023b). Song et al. introduced the YOLOv7-ECA

model, which offers fast detection speed, specifically designed for

the similar color and small size of young apple leaves (Song et al.,

2023). Yao et al. presented the SCR-YOLO model for detecting the

germination rate of wild rice (Yao et al., 2024). Ranjan et al. utilized

the YOLOv8 network to detect and adjust green apples in orchards

(Sapkota et al., 2024). YOLOv8 is the latest version of the YOLO

series network. According to the scaling coefficient, the network is

divided into five scales: n/s/m/l/x. The main updates of the YOLOv8

network lie in the C3 module, head network, and loss function.

Specifically, the C3 module is replaced by the C2f module, which

improves the backbone network’s ability to fuse the detailed

information and semantic information of feature maps at different
Frontiers in Plant Science 04
scales. The original coupling head is replaced with a decoupling

head, and the regression branch and prediction branch are

separated, leading to better recognition results. Regarding the loss

function, YOLOv8 adopts the task-aligned allocator positive sample

distribution strategy to optimize the calculation process of the loss

function. Figure 3 shows the overall structure of the

YOLOv8 network.
2.4 YOLOv8 model improvement strategy

Though YOLOv8 has strong capabilities in target detection, it

still has limitations in the detection of Xiaomila fruits. Compared

with other crop fruits, Xiaomila fruits exhibit irregular distribution,

there is little change in the color gradient between the fruit area and

the background, and it is more susceptible to interference from

background information. Considering the above limitations, this

study improves YOLOv8 in two aspects: attention mechanism and

convolutional neural network.

First, the EMA attention mechanism is combined with the C2f

module in the YOLOv8 network. The C2f module can well extract

local features from the input image, and the EMA attention

mechanism can control the global relationship. The two

complement each other, thereby enhancing the model’s

expression ability; Meanwhile, in the backbone network and head

network, the DCNv3 convolution module is introduced, which can

adaptively adjust the sampling position according to the input

feature map, contributing to stronger feature capture capabilities

for targets of different scales and a lightweight network. The test

results suggest that the improved model has better performance in
A B

D E F

C

FIGURE 2

Image expansion effect. (A) Original image, (B) random cropping, (C) flipping, (D) noise adding, (E) brightness adjustment, (F) random rotation.
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FIGURE 4

The architecture of the PAE-YOLO network.
FIGURE 3

YOLOv8 network architecture.
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identifying Xiaomila fruits. Since this model is established based on

YOLOv8, the improved model is called PAE-YOLO. Figure 4

demonstrates the entire network framework of PAE-YOLO.

2.4.1 EMA attention mechanism
The attention mechanism is employed to help the model

distinguish important channels and enhance the feature

information in the channels, thereby improving the model’s

perception and generalization ability of feature information.

Traditional attention mechanisms usually produce clear feature

information by reducing channel dimensions. However, the

reduction of channel dimensions may result in partial

information loss and increased errors.

EMA is a multiscale attention mechanism for calculating

attention weights (Ouyang et al., 2023). This mechanism

introduces the concept of exponential moving average, which

divides each channel of the input image into groups containing

multiple sub-features. In the process, the EMA attention

mechanism only requires one learning accumulation factor, and

the number of added parameters is small, which can guarantee that

the spatial semantic features are evenly distributed in each feature

group without changing the channel dimension. The specific

structure of the attention mechanism is shown in Figure 5.

2.4.2 Deformable convolutional network DCNv3
Deformable convolution is a non-fixed sampling convolution

network with stronger generalization ability and feature capture

ability than ordinary convolution networks. DCNv3 (Wang et al.,

2023c) introduces the concept of convolution separation to divide

the original convolution weight into two parts: the depth direction

and the point direction. The point direction part is taken as the

shared projection weight between sampling points to improve the

overall efficiency of the model. Meanwhile, DCNv3 divides the

process of spatial aggregation into multiple groups with
Frontiers in Plant Science 06
independent sampling offsets and modulation scales. All

modulation scalars between sampling points are normalized

through softmax, and their sum is constrained to 1, thereby

enhancing the training stability of the model. The specific

expression is given in Formula 1.

  y(p0) = o
F

f=1
o
H

h=1

wfmf hXf (p0 + ph + Dpf h) (1)

where, F denotes the total number of aggregated groups, H

represents the number of dimensions, wf represents the position

−independent projection weight of the current group, mfh

represents the h sampling points in the f group, Xf denotes a

slice of the input feature map, p0 denotes the current pixel, ph
represents the grid sampling position of the current group, and Dpfh
stands for the offset corresponding to ph.

Figure 6 compares different core operators. (a) shows the global

attention operator, which has high computational complexity and

memory cost. (b) shows a local attention operator. Although the

calculation amount is reduced, it cannot handle long-distance

dependencies. (c) shows a large kernel operator, but it cannot

adapt to spatial aggregation. (d) shows the dynamic sparse kernel

operator used in DCNv3 deformable convolution. It has low

computational cost and memory costs, has the capability to handle

long-distance dependencies, and can adapt to spatial aggregation.
2.5 Posture estimation for Xiaomila fruits

In the natural farmland environment, affected by leaves,

branches, and other fruits, the attitude of Xiaomila fruits has little

correlation with the fruit itself. Coupled with complex background

factors, it is difficult to directly estimate the posture of Xiaomila

fruits. This paper adopts the idea of mapping and uses the detection

network to identify all the peppers in the image and takes the single
FIGURE 5

The structure of the EMA attention mechanism.
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pepper image in the recognition frame as the region of interest

(RoI). Then, the data of the RoI is passed to the segmentation

network, which segments the area target and outputs a binary mask.

Next, based on the pixel information of the segmented individual

Xiaomila fruits, two-dimensional pose estimation is performed on

the Xiaomila fruits, and the pose estimation effect is mapped back to
Frontiers in Plant Science 07
the original image. Finally, combined with the depth information,

the spatial posture of Xiaomila fruits is obtained.

2.5.1 Xiaomila 2D fitting
Xiaomila fruits are very light. Unlike heavier crops such as

grapefruit and apples, the fruit stems are generally facing downward
FIGURE 7

Posture estimation of unoccluded Xiaomila fruits.
A B

DC

FIGURE 6

The schematic diagram of different core operators. (A) global attention operator, (B) local attention operator, (C) large kernel operator, (D) dynamic
sparse kernel operator.
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(Kang et al., 2020; Zeng et al., 2021). Meanwhile, the fruit stems of

Xiaomila are very thin and subject to greater interference. These

factors make it difficult to directly identify and fit the fruit stems like

tomatoes, grapes, lychees, etc (Zhong et al., 2021; Li et al., 2023;

Zhang et al., 2023).

There is an obvious gradient change in the color of the pepper

peel and the color of the pepper cap. Based on this characteristic,

this paper segments the pepper peel and the pepper cap respectively,

calculates the moments of the masks of these two parts, and then

takes the two-dimensional vector composed of these two moment

points as the two-dimensional image posture of Xiaomila fruits, as

shown in Figure 7.

In the farmland environment, part of the pepper caps are

blocked, and the moment points of the pepper caps cannot be

successfully obtained. Considering that the Xiaomila fruit is strip-

shaped, this paper employs the least squares method (de Jong, 1993)

to optimally fit the mask data of the Xiaomila fruit. The relevant

parameters and definitions of Xiaomila fruit fitting are given in

Formulas 2–4:

y = k̂ x + b̂ (2)

k̂ =  o
n
i=1(xi − �x)(yi − �y)

on
i=1(xi − �x)2

(3)

b̂ = �y − k̂�x (4)

where, xi is the x-direction coordinate of the mask outline pixel

in the Xiaomila image coordinate system, yi is the y-direction

coordinate of the mask outline pixel, n denotes the number of

mask outline pixel points, �x is the x coordinate of all outline pixels. �y

represents the mean of all y-coordinates of the contour pixel. k̂
Frontiers in Plant Science 08
denotes the slope of the mask profile fitting straight line, and b̂ is the

intercept of the straight line.

The final fitting effect is illustrated in Figure 8. Specifically,

(a) shows the original Xiaomila image; (b) shows the mask image of

Xiaomila; (c) shows the extracted mask contour binary image;

(d) shows a schematic diagram of contour fitting; (e) shows a

fitting effect diagram, where the green line represents the Xiaomila

contour line, the blue line AB represents the fitting straight line, and

the red dot indicates the estimated tip of Xiaomila; (f) shows the

posture effect.

Finally, by comparing the sum of the Euclidean distances

between the two end points of the contour and other points on

the contour to determine which end is the tip, two-dimensional

pose estimation of Xiaomila fruits with the pepper cap occluded

is realized.

2.5.2 Estimating space posture for Xiaomila fruits
The Xiaomila fruit fitting line is obtained based on a two-

dimensional image, and its description method is based on the

image pixel coordinate system. To obtain its posture in real space,

the points in the pixel coordinate system need to be converted to the

world coordinate system. The pixel coordinate system (o − uv) takes

the upper left corner of the image as the origin of the coordinate

system, and the unit is pixel; meanwhile, the image coordinate

system (o − xy) takes the center point of the image as the origin of

the coordinate system, and the unit is millimeter (mm);

additionally, the camera coordinate system (oc − xcyczc) takes the

optical center of the depth camera as the origin, and the unit is

meter (m); moreover, the world coordinate system coincides with

the camera coordinate system, as shown in Figure 9.

Before performing coordinate conversion, the Matlab-Camera

Calibrator toolbox is utilized to calibrate the depth camera to obtain
A B

D E F

C

FIGURE 8

Posture fitting of occluded pepper caps. (A) original Xiaomila image, (B) mask image of Xiaomila, (C) extracted mask contour binary image,
(D) schematic diagram of contour fitting, (E) fitting effect, (F) posture effect.
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the camera’s internal parameter matrix and external parameter

matrix. Then, the spatial point coordinates corresponding to the

pixel point coordinates are calculated through Equation 5.

Zc

u

v

1

2
664

3
775 = KP  

Xw

Yw

Zw

1

2
66664

3
77775

(5)

where, zc represents the axial distance of the camera in the Z-

axis, (u, v) is the pixel coordinate, K is the camera internal

parameter matrix, P is the camera external parameter matrix, and

(Xw ,Yw,Zw) is the point coordinate corresponding to the world

coordinate system.

After the depth camera coordinate system is determined, a 3×1

translation matrix can be used to locate any point in the camera

coordinate system. The conversion between the camera

coordinate system and the Xiaomila coordinate system is

represented by a 3×3 rotation matrix. Then, the position and

attitude of the Xiaomila fruit can be determined by combining the

translation matrix and rotation matrix. In this approach, the

spatial position and spatial vector of the Xiaomila fruit are now

known. Through inverse solution, the translation matrix and

rotation matrix are obtained, thereby obtaining the rotation

angle and translation distance of each joint. Finally, based on

the rotation angle and translation information, the end effector is

controlled to reach the designated position to complete the

picking task. The translation matrix and rotation matrix are

shown in Equations 6 and 7.

SP =

px

py

pz

2
664

3
775 (6)

S
LR =   (S X̂ L    

S Ŷ L    
S Ẑ L ) =  

r11     r12     r13

r21     r22     r23

r31     r32     r33

2
664

3
775 (7)

where, SP is the translation matrix, SLR is the rotation matrix, S

represents the depth camera coordinate system, and L represents the
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Xiaomila coordinate system; px , py , and pz are the center of gravity of

the Xiaomila fruit relative to the camera, respectively. SX̂ L,
SŶ L, and

 SẐ L respectively represent the distance information of the Xiaomila

coordinate system relative to the camera coordinate system along the

x, y, and z  axes.
2.6 Evaluation metrics

2.6.1 Evaluation of detection and segmentation
This paper takes detection precision (P), mean average

precision (mAP), recall rate (R), F1 score, gigabit floating point

operations per second (GFlops), and model weight file size as

evaluation indicators. Precision is the ratio of the actual number

of positives to the number of predicted positives. The higher the

precision, the lower the false detection rate. The mean average

precision is the mean of the average accuracy across all categories,

and it is used to evaluate the accuracy of the entire model. Recall

rate is used to evaluate the missed detection rate of the model. The

F1 score measures the impact of precision and recall and is used to

evaluate the stability of the model. GFlops represent the number of
FIGURE 9

Schematic diagram of the coordinate systems.
FIGURE 10

Diagram of error angle.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1421381
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1421381
floating-point operations performed per second, and it is used

to evaluate the computing performance of the model. The

calculation formulas for these evaluation indicators are shown

in Equations 8–11.

P =  
TP

TP + FP
(8)

mAP =  
1
no

n
i=1APi (9)

R =
TP

TP + FN
(10)

F =
2� P � R
P + R

(11)

where, TP represents the number of true positive values;  FP

represents the number of false positive values; FN represents the

number of false negative values; n represents the number of

categories of identified objects, and APi represents the average

accuracy for category i.

2.6.2 Evaluation of pose estimation
The error angle a is the angle between the actual space vector

and the predicted space vector of the Xiaomila fruit. It is used to

represent the error of the posture prediction algorithm, as shown in

Figure 10. The calculation formula of a is shown in Equation 12:

a =   arccos
nxmx + nymy + nzmzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2x + n2y + n2z
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x +m2
y +m2

z

q (12)

where, m =  (nx , ny , nz) is the spatial vector of the Xiaomila fruit

predicted by the attitude estimation algorithm, andm =  (mx ,my ,mz)
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is the actual spatial vector of the Xiaomila fruit. The smaller the error

angle a, the closer the predicted posture is to the real situation.
2.7 Software

The hardware platform used for the experiment is a computer

equipped with Intel Xeon W-2145 (16GB memory) and NVIDIA

GeForce RTX2080Ti (11 GB video memory) and running 64-bit

Windows 11 operating system. The Xiaomila target detection and

segmentation model is trained using CUDA 11.6, Opencv, Pytorch

framework, Python3.9 programming language, etc.
3 Results and discuss

3.1 Analysis of detection and segmentation

3.1.1 Ablation experiment
To evaluate the impacts of the EMA attention mechanism and

the DCNv3 convolution module on improving the detection

performance of Xiaomila fruits, these two structures were

introduced into the official YOLOv8 respectively. Table 1 presents

the impact of each module on the overall detection effect of the

algorithm. The model performance was evaluated in terms of

precision, recall, average precision, F1 score, floating point

operations (FLOPs), and model weight size.

As shown in Table 1, several improvement strategies are

effective in improving the model’s detection effect. Compared

with the original YOLOv8n model, the recall rate and average

precision of the model with the attention mechanism were

increased by 0.7% and 1.4%, respectively. Meanwhile, the model
TABLE 2 Recognition results of different models on Xiaomila images.

Model
P (%) R (%) mAP (%) F1 Score (%) GFLOPs Model

Size/MB

Mobilenetv3 85.0 76.7 85.4 80.6 11.2 10.5

YOLOv5s 88.8 75.3 85.0 81.5 15.8 14.4

YOLOv7-tiny 85.7 82.8 89.5 84.2 13.0 12.3

YOLOv8n 86.5 78.8 87.5 82.5 8.1 6.2

PAE-YOLO 87.2 79.5 88.8 83.2 7.6 5.7
TABLE 1 Ablation experiments of different modules of PAE-YOLO.

Model EMA DCNv3
P (%) R (%) mAP (%) F1 Score (%) GFLOPs Model

Size/MB

YOLOv8n × × 86.5 78.8 87.5 82.5 8.1 6.2

√ × 87.1 79.5 88.9 83.1 8.4 6.3

× √ 87.3 78.1 87.6 82.4 7.4 5.7

√ √ 87.2 79.5 88.8 83.2 7.6 5.7
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weight was slightly increased, and the FLOPs reached 8.4G. After

the convolution in the c2f module of the original model was

replaced, the recall rate and average precision of the model were

slightly improved compared to the original model, the model weight

decreased by 8.1%, and the FLOPs dropped to 7.4G. Compared with

the original YOLOv8n model, the average precision of the final

PAE-YOLO model increased by 1.3%, the recall rate increased by

0.7%, GFLOPs decreased by 6.2%, the model size decreased by 8.1%,

and the F1 score reached 83.2%.The results suggest that the EMA

attention mechanism can improve the feature extraction capability

of the model while adding a small number of parameters, and the
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DCNv3 convolution module enhances the portability and real-time

detection performance of the model.

By combining the EMA attention mechanism and the DCNv3

deformable convolution network, PAE-YOLO not only improved the

detection performance of Xiaomila fruits but also reduced the

model’s calculation amount from 8.4G to 7.6G, and the model

weight size dropped from 6.3M to 5.7M. Compared with the

original YOLOv8n model, the FLOPs of PAE-YOLO were reduced

by 6.2%, the model weight was reduced by 8.1%, the precision

reached 87.2%, the recall rate reached 79.5%, the average precision

reached 88.8%, and the F1 score was 83.2. Therefore, our method
FIGURE 11

mAP and loss curves.
A

B

FIGURE 12

PAE-YOLO detection and segmentation results. (A) detection results of the xiaomila object, (B) segmentation results of the pickable xiaomila object.
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improves the algorithm performance in various indicators and

reduces the algorithm’s computational complexity, which helps

integrate the algorithm into picking robots for real-time applications.

3.1.2 Comparative experiment
To verify the advantages of the model proposed in this paper in

detecting Xiaomila targets, this study selected five classic detection

models based on deep learning for performance comparison.

Table 2 shows the experimental results of Mobilenetv3, YOLOv5s,

YOLOv7-tiny, YOLOv8n, and PAE-YOLO.

As illustrated in Table 2 and Figure 11, compared with

Mobilenetv3 and YOLOv5s networks, the recall rate of the

PAE-YOLO model increased by 2.8% and 4.2% respectively, the

mAP value increased by 3.4% and 3.8% respectively, and the

model weight decreased by 45.7% and 60.4% respectively.

Compared with the YOLOv7-tiny model, although the PAE-

YOLO model had a slight decrease in precision and recall, the

GFLOPs and weight decreased by 41.5% and 53.7%, respectively.

The F1 score of PAE-YOLO ranked the best among the above-

mentioned series of networks, with the smallest model weight and

GFLOPs. Additionally, the PAE-YOLO model exhibited the

lowest loss value and the fastest convergence speed during the

training process.
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These test results suggest that the PAE-YOLO network has a

stronger overall performance in visual recognition of Xiaomila

fruits. Figure 12 shows the detection and segmentation results of

the PAE-YOLO model. Specifically, (a) shows the detection results

of the xiaomila object, in which the xiaomila with purple contour is

the pickable object; (b) shows the segmentation results of the

pickable xiaomila object.
3.2 Analysis of pose estimation effects

3.2.1 Error angle analysis
In the actual farmland picking environment, if the error angle of

Xiaomila’s attitude estimation falls within a certain range, the end

effector of the picking equipment can achieve accurate picking. This

study analyzes the error angles at different angles, as listed

in Table 3.

An example of the spatial pose estimated by the proposed pose

estimation method is demonstrated in Figure 13. In this figure, the

burgundy arrow represents the actual posture of the manually

annotated pepper, the dark purple arrow represents the

preliminary posture of the pepper estimated by the algorithm

based on the surface points of the pepper, and the blue arrow

represents the optimized posture of the pepper.

Figure 13A shows the spatial pose estimation of a Xiaomila fruit

without bending, while Figure 13B shows the spatial attitude

estimation of a Xiaomila fruit in a curved state. The posture of

the Xiaomila fruit with a small curvature estimated based on surface

points is basically consistent with the actual situation, while the

estimation of the Xiaomila fruit with a large curvature based on

surface points produces an error. This error may be ignored in

complex farmland environments, resulting in an inability to

correctly estimate the posture. This paper uses the two-
TABLE 3 Error angle analysis.

Limit
angle

Frequency Average
error

Standard
deviation

Unlimited 1 18.63 13.89

<30° 0.844 13.75 4.94

<20° 0.711 11.98 2.91

<15° 0.556 10.63 1.44
A B

FIGURE 13

Example of spatial pose estimation of Xiaomila fruits. (A) spatial pose estimation of a Xiaomila fruit without bending, (B) spatial attitude estimation of
a Xiaomila fruit in a curved state.
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dimensional Xiaomila fitting straight line as the symmetry axis to

calculate the radial pixels at both end points of the estimated

posture and then determines the inward offset distances h1 and

h2 through the depth camera, thereby performing spatial analysis

on the estimated posture.
3.2.2 Analysis of different occlusion situations
This paper discusses the pose estimation results under four

different occlusion situations: the pepper cap is not occluded (a), the

pepper cap is occluded but the occlusion does not produce a tip on
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the Xiaomila fruit (b), the pepper cap is occluded and the occlusion

produces a tip on the Xiaomila fruit (c), and the pepper cap and tip

are both occluded (d). In Figure 14, (1) shows the Xiaomila pose

estimation with the pepper cap not occluded. (2)(3)(4) show the

Xiaomila pose estimation with the pepper cap occluded. (3)(4) did

not correctly determine the direction of the Xiaomila fruit. This is

because (i) The pepper cap is occluded, and the tip angle formed by

the occluded on the pepper cap part is smaller than the pepper tip

angle. The attitude estimation algorithm makes an error when

judging the orientation of the Xiaomila fruit. (ii) Both the pepper

tip and pepper cap are occluded, and the algorithm cannot correctly

identify and predict the specific orientation of the Xiaomila fruit.

The attitude estimation error results under four different

occlusion situations are presented in Table 4. The attitude

estimation error when the pepper cap is not occluded is smaller

than the attitude estimation error when the pepper cap is occluded.

The average error angle is 23.19°. When the occluded cap is

occluded, the algorithm fails to correctly identify the specific

orientation of the pepper, thus affecting the attitude estimation

effect. Since there are fewer situations (c) and (d) in practice, these

two occlusion situations have less impact on the overall pose
FIGURE 14

Classification of Xiaomila fruits occlusion. (1) Xiaomila pose estimation with the pepper cap not occluded, (2) (3) (4) Xiaomila pose estimation with
the pepper cap occluded.
TABLE 4 Pose estimation error under different occlusion situations.

Occlusion
situation

Frequency Average
error

Standard
deviation

a 0.667 15.68 5.87

b 0.196 16.69 5.63

c 0.059 160.97 6.37

d 0.078 122.31 55.11
FIGURE 15

Attitude estimation renderings.
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estimation effect. The final attitude estimation effect is shown in

Figure 15, where end A represents the pepper tip, and end B

represents the pepper cap.
4 Conclusion and future work

To solve the problems due to complex background, similar fruit

color and background color, and different growth directions in the

natural farmland environment, this paper constructed a Xiaomila

target recognition data set, proposed an improved Xiaomila target

detection model, and the spatial posture and occlusion of Xiaomila

were analyzed. Specifically, the existing YOLOv8 target detection

algorithm has been improved. The addition of the EMA attention

mechanism can better capture the characteristic information of targets

of different scales, and the deformable convolution module makes the

model more lightweight. At the same time, the spatial position

information of the pepper was exploited to describe the translation

part of Xiaomila’s posture, and the transformation information of the

fitted Xiaomila spatial vector relative to the depth camera coordinate

system was utilized to describe the rotation part of Xiaomila’s posture.

The advantage of this work is that no complex annotation model and

calculations is required to obtain the expected estimation results, and

can be better transplanted to embedded devices. In experiments, the

mAP value of the improved PAE-YOLO model reached 88.8%, which

was 1.3% higher than the original model. The model weight and

GFLOPs were 7.6G and 5.7MB respectively, which are 6.2% and 8.1%

lower than the original model, the loss value was the lowest during

training, and the convergence speed was the fastest. Finally, an

experimental analysis was conducted on Xiaomila’s posture and

occlusion conditions. More than 85% of the cases where Xiaomila’s

orientation was correctly estimated, with an average error angle of

15.91°. Under occlusion situations, 86.3% of the attitude estimation

error angles were less than 40°, and the average error angle was 23.19°.

Therefore, the improved detection model can accurately identify

Xiaomila targets in complex environments, and can better estimate

the target posture, and is suitable for visual picking of Xiaomila fruits.

However, current detection models still have some limitations.

Some severely occluded Xiaomila targets cannot be correctly

identified and estimated. For example, the pepper cap and the

pepper peel are covered at the same time or the pepper cap is

covered and the covering splits the pepper in two. Meanwhile, it

remains to be seen whether the target recognition algorithm and

attitude estimation method proposed in this article are applicable to

other fruits. In future work, we will integrate the improved model

into the robot motion control system to realize the automatic

harvesting of Xiaomila in natural farmland environments.
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