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Postharvest litchi is susceptible to browning that limits the development of litchi

industry. Hydrogen sulfide (H2S) is an important bioactive molecule that can

regulate many physiological processes. This study examined the effects of

exogenous H2S on pericarp browning and related physiological mechanisms in

postharvest litchi. The results exhibited that exogenous H2S treatment delayed

the browning of litchi pericarp and reduced the damage to cell membrane

integrity during storage. This treatment inhibited the energy losses of litchi fruit

by increasing the activities of H+-ATPase, Ca2+- ATPase, cytochrome C oxidase

(CCO) and succinate dehydrogenase (SDH) and regulating the expression of

energy metabolism-related genes, including LcAtpB, LcSnRK2, LcAAC1, LcAOX1

and LcUCP1. In addition, H2S treatment increased the levels of fructose, glucose,

sucrose, inositol, galactose and sorbose in litchi fruit, and promoted sucrose

synthesis by regulating the activities of sucrose phosphate synthase (SPS),

sucrose synthase (SS), acid invertase (AI) and neutral invertase (NI). Based on

the current findings, we suggest that exogenous H2S enhances the energy supply

and antioxidant activity of litchi by modulating energy and sugar metabolism,

thereby inhibiting fruit browning and senescence. These results indicated that

H2S treatment is an effective approach to maintaining the quality of litchi fruit and

extending its shelf life.
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1 Introduction

Litchi (Litchi chinensis Sonn.) is a typical tropical fruit crop with

high market acceptance because of its attractive red skin, sweet taste

and rich nutrition (Pareek, 2016). However, the rapid pericarp

browning after harvest seriously restricts the expansion of the litchi

industry (Jiang et al., 2006). Fruit senescence is a programmed

process involving multiple complex factors (Figueroa et al., 2021).

Previous studies have reported that the oxidative damage to cell

membrane is a key factor in causing litchi senescence and browning

(Jiang et al., 2004; Deshi et al., 2020). Adenosine triphosphate (ATP)

is a cellular “energy currency”, whose sufficient supply can enhance

the antioxidant activity in cells and maintain normal physiological

functions of cell membrane and cell wall in plants (Aghdam et al.,

2018). A variety of researches have been confirmed that delay of fruit

senescence and quality deterioration by various postharvest

treatments could be involved in the improvement of energy state

via regulation of energy metabolic enzymes and related genes, as

demonstrated in litchi, longan, mango and pear fruits (Zhang et al.,

2017; Wang et al., 2020a; Zhang et al., 2023a; Huang et al., 2024).

Sucrose, glucose and fructose are the foundational sources of

energy in plants. They are not only responsible for the energy

supply of fruit but also determine the flavor and nutritional value

(Fan et al., 2021). Moreover, soluble sugars, as an important

signaling molecules in plants, are also considered to be associated

with abiotic stress responses, which are involved in osmotic

adjustment and activation of antioxidant system (Saddhe et al.,

2021). Some reports suggest that higher contents of sucrose,

fructose, glucose due to 24-epibrassinolide and fibroin treatments

could contribute to the improvement of energy state and stress

resistance of fruit, hence aiding in the prevention of postharvest

senescence in peach and banana fruit (Liu et al., 2019; Hu et al.,

2023). Song et al. (2016) noted that chitosan/nano-silica treatment

resulted in more accumulation of glucose and fructose in loquat in

the low-temperature environment, which promoted the increase of

antioxidant activity, reduced membrane damage, alleviating chilling

injury of loquat fruit. For litchi, our recent research has confirmed

that the response of litchi fruit to energy deficiency was involved in

the modulation of sugar metabolic pathways (Zhao et al., 2024).

However, the role of sugars in maintaining the quality of litchi fruit

still requires further investigation.

Hydrogen sulfide (H2S), the third identified gaseous signaling

molecule after hydrogen peroxide (H2O2) and nitric oxide (NO) in

plants, plays undeniable roles in growth and development and

response to environmental stresses (Arif et al., 2021). Emerging

evidence indicates that H2S treatment at low concentration (mM)

elicits beneficial effects on storability in postharvest crops. For

example, exogenous H2S treatment (500 mM and 0.735 mM) was

deemed to be capable of delaying senescence and improving stress

resistance in postharvest fruits of banana and navel orange through

enhancing cellular energy state, augmenting antioxidant capacity or

regulating phenylpropanoid metabolism pathway (Li et al., 2016;

Huang et al., 2023b). Moreover, H2S treatment, as a potential

postharvest preservation technique, is attracting attention due to

its straightforward operation, low cost, and the capability to be

readily applied to large-scale fruit processing (Alhassan et al., 2022).
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Recent studies indicated that H2S treatment enhanced the activities

of antioxidant enzymes in litchi, which led to reduced oxidative

damage to the cell membrane and improved the fruit quality during

storage (Deshi et al., 2020; Siddiqui et al., 2021). However, the

influence of H2S treatment on postharvest litchi browning via

energy and sugar metabolisms and its possible mechanism remain

unclear. Therefore, this study aimed to elucidate the effects of

exogenous H2S on postharvest browning of litchi in relation to

membrane integrity, energy state, energy metabolism-related

enzyme activities and gene expression, sugars content, and

sucrose metabolism-related enzyme activities. The results might

offer fresh insights into regulatory mechanisms of H2S effecting

postharvest browning in litchi fruit.
2 Materials and methods

2.1 Fruit material and treatment

Litchi fruit (L. chinensis Sonn. cv. ‘A4 Wuhe’) with a

commercial maturity were harvested in the litchi garden situated

in Yongxing Town within Haikou, China. The picked fruit was

transported to the laboratory within 2 hours. The selection criteria

of litchi fruit for experiment were uniform size, color, and shape,

without pericarp damage or disease symptoms. All fruit were

treated with 0.1% (v/v) prochloraz for 3 min, washed with

deionized water, then were randomly divided into two groups

(576 fruit/group) after drying. The two groups of fruit were

soaked in distilled water (control group) and 1.0 mM sodium

hydrosulfide (H2S donor, experimental group) for 15 min,

respectively. After drying, all fruit were placed in plastic boxes

(without plastic covers), each group contained 48 boxes (12 fruit per

box), then stored at 25 ± 1°C and 85 ± 5% relative humidity. During

storage, samples were collected at 0, 12, 24, 48, 72, and 96 h. During

each sampling opportunity, eight boxes were randomly selected

from both the experimental and control groups, respectively, for the

physiological investigation of fresh samples. This included the

assessments of browning index (BI; 30 fruit defined as one

replicate), respiration rate (20 fruit defined as one replicate) and

membrane permeability (6 fruit defined as one replicate), with three

replications for each parameter. Furthermore, pericarp samples

from six litchi fruit were taken at each sampling point, frozen in

liquid N2 and stored at -80°C for subsequent analysis. Each

parameter underwent three measurements.
2.2 BI, respiration rate, membrane
permeability, and malonaldehyde content

Pericarp browning was categorized into five scales depending

on the proportion of browned area on the litchi surface (Wang et al.,

2020a). 0, no browning; 1, ≤ 1/4 browning; 2, 1/4 - 1/2 browning; 3,

1/2 - 3/4 browning; 4, ≥ 3/4 browning. The BI was calculated as

follows: BI = ∑(browning scale × number of fruit per class)/(total

number of fruit per replicate of each treatment × maximum

browning scale).
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Respiration rate was assessed following the protocol outlined by

Li et al. (2019). The litchi fruit were placed in a 4-L plastic containers

for 20 min at 20°C, then obtaining the CO2 concentration using an

infrared CO2 analyzer (CXH-3010E, Beijing, China). Respiration rate

is the quantity of carbon dioxide generated per kilogram fresh weight

(FW) every second (μmol kg−1 s−1).

The membrane permeability was reflected by relative electrolyte

leakage (Zhang et al., 2017). Thirty discs of the pericarp were

meticulously procured from each set of six fruit in every

experimental replication, with a cork borer (8 mm) as the

extraction tool. The discs were cleaned twice and incubated in 50

mL deionized water at 25°C for 30 min. The solution’s initial

electrolyte conductivity (Ei) was detected using a conductivity

meter. The total electrolyte value (Et) was determined after

boiling the solution with discs for 20 min and then cooling it to

25°C. Relative electrolyte leakage was calculated as follows:

Relative electrolyte leakage (%)  =  Ei=Et �  100%

MDA content was analyzed using 3 g pericarp tissues following

the procedure outlined by Li et al. (2019). MDA content was defined

as μmol kg−1 FW.
2.3 Measurements of adenosine
triphosphate, adenosine diphosphate
(ADP), adenosine monophosphate (AMP)
content and calculation of energy
charge (EC)

The contents of ATP, ADP, and AMP in litchi pericarp were

determined using the methodology outlined by Zhang et al. (2017).

EC  =  (ATP  +  1=2ADP)=(ATP  +  ADP  +  AMP)
2.4 Enzymes activities related to
energy metabolism

The activities of H+-ATPase, Ca2+-ATPase, cytochrome C

oxidase (CCO) and succinate dehydrogenase (SDH) were assessed

using the procedures outlined in Jin et al. (2013). Enzyme activities

were quantified as U kg-1.
2.5 Determination of gene
expression levels

Genes’ expression levels were assessed using real-time

quantitative PCR (RT-qPCR). 1.5 g pericarp tissues was taken

and used for the extract-purifying total RNA using Quick RNA

isolation Kit (0416-50 GK; Huayueyang Biotech, Beijing, China).

The cDNA fragment was obtained by reverse transcription through

FastQuant RT Kit (KR106; Tiangen Biotech, Beijing, China) using

the purified RNA template. The RT-qPCR primer sequences of

LcAtpB (ATP synthase b-subunit), LcAOX1 (alternative oxidase 1),
LcUCP1 (mitochondrial uncoupling protein 1), LcAAC1 (ADP/
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ATP carrier 1), and LcSnRK2 (sucrose non-fermenting-1-related

kinase 2) were referred to the report of Wang et al. (2013).

Fluorescence quantitative Kit uses SYBR® PremixEx Taq™ (Tli

RNaseH Plus; Takara Biotech, Dalian, China). RT-PCR uses Life

QuantStudio6 Flex with a 10 μL PCR reaction system (0.3 mL
forward primer; 0.3 mL reverse primer; 0.2 mL ROX Reference Dye

II; 1.0 mL cDNA; 8.2 mL ddH2O). The LcActin gene (GenBank ID:

DQ990337.1) was employed as a reference for quantitative

standardization during amplification. Gene expression levels were

quantified applying the 2 −△△CT method.
2.6 Components and contents of sugars

Sugars were obtained and determined utilizing the protocol of

Wu et al. (2016) with some changes. The litchi pericarp of 0.2 g was

cooked in a microwave at 100°C for 30 s to disable the enzyme. The

sample was homogenized in a mortar, extracted thrice with ethanol,

and then diluted to 9 mL. The mixture was centrifuged at 13000 g

for 15 min. The extraction solution was diluted 5-fold with

deionized water. The 0.5 ml extraction solution was transferred

into a 1.5 ml centrifuge tube and blow dry with nitrogen. A solution

of 30 μL methylammonium chloride in pyridine (20 g L−1) was

poured into the centrifuge tube and shaken at 650 rpm for 1.5 h at

37°C. The N, O-bis (trimethylsilyl) trifluoroacetamide with 1%

trimethylchlorosilane (70 μL) was added and shaken at 650 rpm

for one hour at 70°C. The supernatant (1 μL) was passed through

the Agilent HP-5MS (30 m × 0.25 mm × 0.25 μm) after standing for

30 min at ambient temperature. The sugars in litchi were detected

by gas chromatography using Agilent 7894A-5975C GC-MS

(Agilent Technology, Palo Alto, CA, USA). An external standard

solution was utilized to calculate the sugar concentration in litchi.
2.7 Activities of sucrose
metabolic enzymes

The enzymatic activities of sucrose phosphate synthase (SPS),

sucrose synthase synthesis (SS-s), sucrose synthase cleavage (SS-c),

acid invertase (AI) and neutral invertase (NI) were evaluated using

the methodologies specified in Sun et al. (2020). The enzymatic

activity for SS-c, AI, and NI was ascertained based on the volume of

enzyme that could yield 1 mg reducing sugar within a minute, with

the absorbance for SS-c measured at 540 nm, and for AI and NI, at

510 nm. Conversely, the activity of SS-s and SPS was gauged by the

amount required to synthesize 1 mg sucrose per minute, utilizing a

wavelength of 480 nm for these assays. Enzyme activity were

quantified as U kg-1.
2.8 Statistical analysis

The data is displayed as the mean ± standard error (SE). T-test

analysis was conducted to compare the difference between control

and experimental groups at the same day (*P < 0.05, **P < 0.01),

using SPSS 27.0.1.
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3 Results

3.1 Pericarp browning, respiration rate,
membrane permeability, and MDA content

The control fruit did not show browning symptoms in first 24 h

of storage, the BI sharply increased after 24 h and reached 0.83 ±

0.05 at 96 h of storage (Figures 1A, B). H2S treatment effectively

delayed pericarp browning, in which the BI was still at a low level

(0.34 ± 0.04) after storage for 96 h.

The MDA content in control fruit increased continuously during

storage with initial 13.8 ± 0.6 to final 24.5 ± 0.7 μmol kg−1 (Figure 1C).

The MDA content of litchi pericarp was consistently 15% lower on

average for the entire storage period due to H2S treatment, indicating

that H2S treatment inhibited the oxidative damage to cell membrane.

Figure 1D illustrates that the relative electrolyte leakage in the

control group gradually increased from 21.13% to 33.96% during

storage. Relative to the untreated specimens, the average values of

relative electrolyte leakage for fruit treated with H2S exhibited a

reduction of 12% during 24 to 96 h, indicating that H2S treatment

effectively maintained the integrity and functionality of the

cell membrane.

Figure 1E illustrates that the respiration rate of control fruit

remained relatively stable within the first 24 h, decreased rapidly in

24-48 h, then increased sharply in 72-96 h. The respiration rate of

fruit treated with H2S was inhibited during storage for 0-72 h.
3.2 Energy state

As shown in Figures 1F, G, ATP content and EC in litchi

pericarp decreased sharply as storage time increased in the control

fruit. H2S treatment prevented the reduction in ATP content and

EC, with significant variations observed between 48 to 96 h.
3.3 Enzymatic activity involved in
energy metabolism

Figures 2A, B showed that the activities of both H+- ATPase and

Ca2+-ATPase initially increased and subsequently gradually declined

over the storage period in the control group. CCO activity reduced

somewhat from 0 to 12 hours, then gradually climbed, reaching its

peak at 48 hours before decreasing (Figure 2C). SDH activity exhibited

a change with fluctuation during storage (Figure 2D). Generally, H2S

treatment increased the activities of H+- ATPase, Ca2+-ATPase, CCO

and SDH during storage (Figures 2A–D), but its effects on Ca2

+-ATPase and SDH were more profound (Figures 2B, D).
3.4 Expression of the energy
metabolism-related gene

Figure 3 displayed the effects of H2S treatment on the expression of

genes associated with energy metabolism pathways. Transcript

abundances of LcAtpB, LcAOX1 and LcUCP1 in control fruit peaked
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at 12 hours and then experienced an overall decline throughout the

remainder of the storage period (Figures 3A, C, E). H2S treatment

remarkably enhanced LcAtpB expression at 24 h, promoted LcUCP1

expression within 24 to 96 h, and inhibited LcAOX1 expression during

storage (Figures 3A, C, E). Expression of LcAAC1 in control fruit

increased by 5.6-fold within 48 hours, then declined until the end of

storage (Figure 3B). H2S treatment promoted LcAAC1 expression during

storage, except for the value at 48 h (Figure 3B). LcSnRK2 expression in

control fruit displayed a fluctuating changes, increased at 24 h and 72 h,

but decreased at 48 h and 96 h (Figure 3D). Comparatively, higher levels

of LcSnRK2 expression were detected in the litchi fruit treated with H2S

during storage, especially at 12 h and 72 h (Figure 3D).
3.5 Components and content of sugars

In the litchi pericarp, six types of sugars were detected, with

initial concentrations of 1263 mg kg−1 (fructose), 894 mg kg−1

(glucose), 611 mg kg−1 (sucrose), 58 mg kg−1 (inositol), 37 mg kg−1

(galactose), and 34 mg kg−1 (sorbose), respectively (Figure 4). The

content of fructose, glucose and sucrose in control fruit rapidly

decreased in the early stage of storage and reached the minimum at

48 h, followed by slight increases until the end of storage

(Figures 4A–C). The H2S treatment delayed decrease in fructose,

glucose and sucrose content, which reached the minimum after 72

h. The contents of inositol, galactose, and sorbose in litchi fruit of

control were low and remained relatively stable during storage.

However, a notable increase in the concentrations of these sugars

was observed in fruit subjected to H2S treatment when contrasted

with those that received no treatment (Figures 4D–F).
3.6 Enzymatic activity involved in
sucrose metabolism

Figure 5 illustrates that the SPS activity in control fruit rose during

the initial phase of storage, peaked at 48 h, and thereafter declined. AI

activity in control fruit decreased within 0-24 h, then increased within

24-48 h and dropped after 48 h. SS-s activity declined within 0-24 h,

then increased within 24-72 h and decreased again after 72 h. Contrary

to the change of SS-s activity, SS-c activity climbed from 0 to 48 h,

reduced within 48-72 h, then increased again. The activity of SS-s was

higher than that of SS-c at the same period, as seen in Figures 5B, C. NI

activity decreased after reaching the peak at 12 h, then continued to

decrease after slightly increasing from 24 to 48 h. H2S treatment

enhanced the activities of SPS and SS-s (0-48 h), while reduced the

activities of SS-c (24-96 h), AI (24-96 h) and NI during storage.
4 Discussion

4.1 Effect of H2S on pericarp browning in
litchi in relation to energy state

Rapid pericarp browning in harvested litchi fruit significantly

reduces shelf life and compromises fruit quality, which limits the
frontiersin.org
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development of the litchi industry (Huang et al., 2023a). Recently,

many alternative methods have been emerged to alleviate litchi

browning, including radiation processing, modified atmosphere

packaging, edible coating, organic acid treatment, and plant
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extracts treatment (Zhang et al., 2023a). In the present study, we

observed that the browning symptoms of litchi were alleviated

following treatment with H2S (Figure 1A). The results were

consistent with the reports on H2S delaying quality deterioration
FIGURE 2

H+-ATPase (A), Ca2+-ATPase (B), cytochrome C oxidase (CCO) (C) and succinate dehydrogenase (SDH) (D) activities in control and H2S treated fruit
during storage. Data are the mean ± standard error (n=3). The asterisk represents the significant difference (* P < 0.05, ** P < 0.01) between the
experimental and control groups.
FIGURE 1

Appearance (A) of control and H2S treated fruit during storage, as well as corresponding changes in browning index (BI) (B), malonaldehyde (MDA)
content (C), membrane permeability (D), respiration rate (E), adenosine triphosphate (ATP) (F), and energy charge (EC) (G). Data are the mean ±
standard error (n=3). The asterisk represents the significant difference (* P < 0.05, ** P < 0.01) between the experimental and control groups.
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in apples (Chen et al., 2021), bananas (Ge et al., 2017) and grapes

(Ni et al., 2016).

During storage of fruit, the reactive oxygen species (ROS) in

cells constantly accumulate, which leads to oxidative damage of

biomacromolecules (e.g., DNA, proteins and lipids), destroy the

function of membrane systems and organelles, thereby triggering

browning and senescence in fruit pericarp (Chen and Yang, 2020;

Xu et al., 2023). When sufficient energy is available in fruit, the

activities of enzymatic/non-enzymatic antioxidant systems can be

maintained, contributing to inhibition of ROS accumulation,
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maintenance of cell membrane integrity and delayed browning in

litchi fruit (Yi et al., 2010). Therefore, ensuring the energy

requirements of cells is of paramount importance for

safeguarding the normal physiological functions of the fruit and

improving its quality (Hu et al., 2023). The research on H2S

functions has confirmed that endogenous H2S as a regulatory

factor in the energy metabolism of eukaryotes, can facilitate the

cell’s energy production under adverse conditions and fulfill the

demands for normal growth and development (Fu et al., 2012).

Additionally, research has shown that H2S treatment actively
FIGURE 3

Relative expression of LcAtpB (A), LcAAC1 (B), LcAOX1 (C), LcSnRK2 (D) and LcUCP1 (E) in control and H2S treated litchi fruit during storage. Data are the
mean ± standard error (n=3). The asterisk represents the significant difference (* P < 0.05, ** P < 0.01) between the experimental and control groups.
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contributes to reducing oxidative damage to cell membranes and

enhancing the overall antioxidant capacity of litchi fruit (Deshi

et al., 2020). According to the outcomes of experiments, H2S

treatment maintained a higher energy state of litchi fruit and

alleviated the membrane integrity damage, as reflected by the

enhancement of ATP and EC levels, and the reduction of MDA

content and membrane permeability. The data above suggest that

H2S-delayed litchi pericarp browning may be associated with the

improvement of energy state, which is consistent with the report of

He et al. (2022).
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4.2 Effect of H2S on activities of energy
metabolic enzymes

Previous research studies demonstrated that energy state is

associated with the activities of energy metabolism-related

enzyme, mainly involving H+-ATPase, Ca2+-ATPase, CCO and

SDH (Ali et al., 2020). H+-ATPase and Ca2+-ATPase can catalyze

ATP decomposition to release energy and form ADP and free

phosphate ion (Wang et al., 2020a). SDH and CCO are both key

enzymes in the tricarboxylic acid (TCA) cycle and electron
FIGURE 4

Contents of sucrose (A), fructose (B), glucose (C), inositol (D), galactose (E) and sorbose (F) in control and H2S treated litchi fruit during storage. Data are
the mean ± standard error (n=3). The asterisk represents the significant difference (* P < 0.05, ** P < 0.01) between the experimental and control groups.
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transport chain (ETC). SDH facilitates the conversion of succinate

to fumarate in TCA cycle, while promoting the reduction of

ubiquinone to ubiquinol in the ETC. CCO as a terminal oxidase

in the ETC, provides energy for cells through coupling oxidative

phosphorylation (Wang et al., 2020a). Aghdam et al. (2018) found

that the reduction in the activities of energy metabolism-related

enzymes had a negative effect on mitochondrial function, which

could worsen fruit quality. For example, the reduction in H+-

ATPase activity disrupts cellular ionic and pH homeostasis,

exacerbating the senescence process of fruits (Zhang et al., 2017).

Similarly, the inhibition of Ca2+-ATPase activity increases the Ca2+

accumulation, which is also closely associated with the senescence

process of fruits (Zhang et al., 2017). Furthermore, CCO and SDH

play active roles in energy production (Li et al., 2016). Their

activities directly influence the energy state of fruits and are

crucial for maintaining their metabolic vitality. The results

showed that H2S treatment increased the activities of H+-ATPase,

Ca2+-ATPase, CCO and SDH during litchi storage, indicating that
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H2S might improve energy state by upregulating the catalytic

activity of energy-related enzymes, thereby inhibiting pericarp

browning. Consistent with this finding, H2S application to

bananas significantly enhanced the activities of H+-ATPase, Ca2

+-ATPase, CCO and SDH, therefore maintaining the energy charge,

which helped to improve fruit quality and extend the shelf life of

fruit (Li et al., 2016).
4.3 Effect of H2S on the expression of
energy metabolism-related genes

AtpB is one of the core components in F1Fo-ATP synthase and

the function significantly influences the process of oxidative

phosphorylation in respiration pathway (Brandt et al., 2013). In

addition, the role of AtpB extends beyond energy production, it is

also identified as a protein that induces apoptosis in response to

various stress signals, can trigger the cell programmed death
FIGURE 5

Sucrose phosphate synthase (SPS) (A), sucrose synthase synthesis (SS-s) (B), sucrose synthase cleavage (SS-c) (C), acid invertase (AI) (D) and neutral
invertase (NI) (E) activities in control and H2S treated fruit during storage. Data are the mean ± standard error (n=3). The asterisk represents the
significant difference (* P < 0.05, ** P < 0.01) between the experimental and control groups.
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(Chivasa et al., 2011). In the context of pericarp browning, litchi

fruit senescence has been associated with a fast increase in the

expression of the AtpB gene, as documented by Liu et al. (2015).

The results in this study revealed that the application of H2S can

delay the surge in LcAtpB expression while reducing the browning

index, suggesting that ability of H2S prolonging the shelf life of litchi

may be attributed to its regulation on LcAtpB expression.

As a cellular energy sensor, SnRK can perceive energy state of

the cell, and promote energy production and reduce energy

consumption when energy shortage occurs (Nietzsche et al.,

2014). Meanwhile, the activation of SnRK2 is thought to be in

concert with the expression of genes involved in energy metabolism,

which may cause an increase in ATP synthesis and a delay in fruit

senescence (Aghdam et al., 2018). The results showed that the

LcSnRK2 expression was upregulated in litchi during early storage,

which might be a response to the ATP deficiency; this is consistent

with findings by Zhang et al. (2017). The LcSnRK2 expression was

enhanced following H2S treatment, suggesting that this treatment

could modulate the energy supply of litchi by influencing the

expression of LcSnRK2.

As a vital mitochondrial carrier protein, the primary function of

AAC is to facilitate the exchange of ADP and ATP and meet the

energy needs of the cell (Klingenberg, 2008). Similar to the function

of AtpB, AAC also plays a significant role in the process of

programmed cell death (Huang et al., 2014). The research reveals

that the function dysfunction of AAC can lead to various diseases,

which are related to the disruption of mitochondrial energy

production (Clémençon et al., 2013). In the results of this study,

H2S treatment upregulated the LcAAC1 expression, which might

help maintain the energy state of litchi fruit and contribute to

delayed pericarp browning.

AOX and UCP are energy dissipation systems that are

universally present in plant mitochondria (Pu et al., 2015). In

the electron transfer chain, AOX can receive electrons and

transfer them to oxygen, bypassing complexes III and IV, and

reducing EC levels, while UCP can suppress ATP production

through dissipating the proton electrochemical gradient

produced by the ETC (Pu et al., 2015). Both AOX and UCP

serve crucial roles in defending cells from oxidative damage and

maintaining energy balance (Borecký et al., 2006). For example,

AOX and UCP have been shown to regulate the energy state and

ethylene release during the senescence of papaya fruit (Oliveira

et al., 2015). Li et al. (2020a) found that reducing the expression

of certain AOX and UCP genes can extend the shelf life of longan

fruit, which was attributed to decrease in the energy dissipation.

In this research, the expression of LcAOX1 and LcUCP1 in the

control litchi fruit decreased overall after 12 h, indicating that the

function of energy dissipation system could be inhibited when

energy state declined. In contrast to the effects on LcAOX1

expression, H2S treatment enhanced the LcUCP1 expression

during litchi storage for 24-96 h. In fruit, the functions of UCP

and AOX have been demonstrated to be complementary, with the

expression levels being jointly regulated by external stress and

cellular signaling (Li et al., 2020a). The upregulation of LcUCP1

expression suggested that it might participate in regulating the

fruit’s energy balance and mitigate oxidative damage as the major
Frontiers in Plant Science 09
energy dissipation system when energy state in litchi improved in

response to H2S.
4.4 Effect of H2S on the sugar metabolism

The content of soluble sugars is a key parameter for assessing

fruit quality, not only determining the sweetness of fruit but also

having a significant impact on the energy provision, cellular matrix

stability, and stress tolerance (Wang et al., 2020b). In litchi fruit, the

exceptional sweetness is a direct result of high sugar content, which

accounts for 15–20% of the fresh weight, primarily consisting of

sucrose, fructose, and glucose (Wang et al., 2006). In the present

study, the application of H2S effectively preserved the levels of six

sugars in the litchi fruit during postharvest storage, while reducing

the respiration rate. Previous research indicated that H2S treatment

could improve the ratio of pentose phosphate pathway in fruit,

while reducing the Embden-Meyerhof-Parnas-tricarboxylic acid

cycle in respiratory pathways. This regulation reduced the

respiration rate and the consumption of respiratory substrates,

ensuring energy supply, mitigating oxidative damage, and

maintaining the integrity of the cell membrane, thereby

enhancing the fruit’s resistance to stress (Wang et al., 2023).

Sucrose is an important form of sugar accumulation, closely

related to fruit quality, energy metabolism, osmotic regulation, and

stress resistance (Zhang et al., 2023b). Sucrose and hexose in cells

can maintain a dynamic equilibrium through mutual conversion

under the catalysis of multiple enzymes, which integrate sucrose

into key sugar metabolism pathways like the pentose phosphate

pathway and the TCA (Li et al., 2020b). It has been confirmed that

the enzymes such as SS-s and SPS are instrumental in catalyzing the

biosynthesis and storage of sucrose, whereas sucrose-consuming

enzymes, like SS-c, AI, and NI, are implicated in the hydrolytic

breakdown of sucrose into glucose and fructose (Cao et al., 2013).

The results demonstrated that H2S treatment enhanced the

enzymatic activities of SS-s and SPS in litchi fruit over the initial

48 hours, along with decrease in the activities of SS-c, AI, and NI.

This may be caused by the improvement of the energy state in the

fruit (Sun et al., 2020). The enzymatic modulation led to a higher

sucrose synthesis, which is maintained throughout the intermediate

and later phases of storage. Concurrent studies have also

corroborated the notion that sustaining elevated sucrose levels

can be advantageous in decelerating fruit senescence by securing

a robust energy supply and strengthening antioxidant defenses in

diverse fruit species, including peaches (Wang et al., 2023), apples

(Chen et al., 2019), and raspberries (Shi et al., 2019). In light of these

findings, the improvement of litchi browning by exogenous H2S

treatment may be partly attributed to sucrose synthesis through

regulating SPS, SS, AI and NI activities during storage.

Interestingly, as the essential substrates of respiratory

metabolism, the content of fructose, glucose, and sucrose in the

control fruit marginally increased after 48 h of storage,

accompanied by the energy deficit of fruit. Past researches have

demonstrated that under carbohydrate deficiency, alternative

respiratory substrates such as proteins and lipids will participate

in cellular respiration to regulate energy state (Araújo et al., 2011),
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which may lead to the maintenance or marginal increase of sugar

pools in the plant tissue (King and Morris, 1994). The application of

H2S has been observed to forestall the emergence of this metabolic

shift, potentially attributable to the role of H2S in mitigating the

depletion of sugar reserves in litchi. This observation suggests that

H2S may exert a protective effect on the energy metabolism of litchi

by preserving the endogenous sugar levels and reducing oxidative

damage to the cell membrane, thereby preventing the premature

decomposit ion of non-carbohydrate substrates in the

respiratory process.
5 Conclusion

In conclusion, H2S treatment successfully reduced the

postharvest pericarp browning in litchi fruit. H2S treatment

enhanced energy state by modulating the expression of LcAtpB,

LcAOX1, LcUCP1, LcAAC1 and LcSnRK2, and the activities of H+-

ATPase, Ca2+-ATPase, CCO and SDH. Moreover, H2S treatment

reduced soluble sugar consumption in litchi fruit, promoted sucrose

synthesis by controlling the activities of SPS, SS, AI and NI that are

associated with sucrose metabolism, ensuring the energy supply and

alleviating oxidative stress. These findings suggest that H2S

treatment can delay the pericarp browning by enhancing the

energy supply and antioxidant activity of litchi fruit. Further

research is needed to determine the effects of H2S on other

regulatory factors (e.g., signaling molecules and transcription

factors) associated with sugar and energy metabolisms. Our

results provide crucial insights into the mechanism of H2S

inhibiting postharvest pericarp browning of litchi, providing a

theoretical foundation for application of H2S in litchi preservation.
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