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A lightweight dual-attention
network for tomato leaf
disease identification
Enxu Zhang, Ning Zhang*, Fei Li and Cheng Lv

Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of
Shaanxi Province, Xijing University, Xi’an, China
Tomato disease image recognition plays a crucial role in agricultural production.

Today, while machine visionmethods based on deep learning have achieved some

success indiseaserecognition, theystill faceseveralchallenges.These include issues

such as imbalanced datasets, unclear disease features, small inter-class differences,

and large intra-class variations. To address these challenges, this paper proposes a

method for classifying and recognizing tomato leaf diseases based on machine

vision. First, to enhance the disease feature details in images, a piecewise linear

transformation method is used for image enhancement, and oversampling is

employed to expand the dataset, compensating for the imbalanced dataset. Next,

this paper introduces a convolutional block with a dual attentionmechanism called

DAC Block, which is used to construct a lightweight model named LDAMNet. The

DAC Block innovatively uses Hybrid Channel Attention (HCA) and Coordinate

Attention (CSA) to process channel information and spatial information of input

images respectively, enhancing the model’s feature extraction capabilities.

Additionally, this paper proposes a Robust Cross-Entropy (RCE) loss function that

is robust tonoisy labels,aimedat reducingthe impactofnoisy labelsontheLDAMNet

model during training. Experimental results show that this method achieves an

average recognition accuracy of 98.71% on the tomato disease dataset, effectively

retaining disease information in images and capturing disease areas. Furthermore,

the method also demonstrates strong recognition capabilities on rice crop disease

datasets, indicating good generalization performance and the ability to function

effectively in disease recognitionacross different crops. The researchfindings of this

paper provide new ideas and methods for the field of crop disease recognition.

However, future research needs to further optimize the model’s structure

and computational efficiency, and validate its application effects in more

practical scenarios.
KEYWORDS

tomato disease identification, machine vision, deep learning, lightweight models,
attention mechanisms
1 Introduction

Originating from the indigenous regions of South America, the tomato is a crop with a

short growth cycle, low environmental requirements, and rich nutritional value, and has

been widely cultivated around the world (Mitchell et al., 2007; Bhatkar et al., 2021). In

agricultural production, tomato plants are susceptible to a variety of pathogenic bacteria
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and environmental factors such as fungi, bacteria, and viruses,

resulting in the occurrence of white spot disease, early blight, mosaic

virus, leaf mold, and other diseases. These diseases are mainly

manifested in the leaves and affect their function, thus affecting the

yield and quality of tomatoes. Especially under conditions of frequent

rainfall or high humidity, tomato plants are more likely to be infected

withdiseases, resulting in seedling rot and stemand fruit rot (Vos et al.,

2014). However, the diversity and complexity of tomato diseases pose

great challenges to control. During the occurrence of these diseases,

early symptoms usually appear on tomato leaves, showing abnormal

characteristics thataredifferent fromthoseofhealthy leaves, asdetailed

in SupplementaryTable S2. Early and accurate disease identification in

agricultural production can effectively reduce the yield loss caused by

diseases. However, traditional manual methods of disease

identification are inefficient and often require specialized agricultural

expertise, hinderingwidespread and accurate identification of diseases

and resulting in wasted labor and medicines (Patil and Thorat, 2016).

Therefore, there is an urgent need for a convenient and rapid detection

method that can non-destructively identify plant developmental

abnormalities at an early stage to mitigate the impact of diseases on

agricultural production (Eli-Chukwu and Ogwugwam, 2019).

Nowadays, with the rise of precision agriculture and smart

agriculture concepts, it is important to use machine vision

technology to assist agricultural production, realize the accurate

identification of tomato diseases, take management measures and

prevention strategies in a timely manner, and improve crop yields

(Affonso et al., 2017).

Identifying plant leaf diseases falls under the field of agricultural

information technology. The rapid development and advancement

of machine vision technology provide new directions for crop

disease identification and combined with robotics technology, can

achieve more flexible agricultural production (Tang Y, et al., 2023;

Ye et al., 2023). Initially, machine learning algorithms were used to

extract image features and classify them. (Xie and He, 2016) used a

gray-level co-occurrence matrix to extract texture features and

classified them using the K-NN algorithm. (Akbarzadeh et al.,

2018) employed support vector machines to efficiently distinguish

weeds based on the morphological features of broadleaf and narrow

plants. However, using traditional machine learning algorithms for

disease identification typically relies on single global features such as

color, texture, and shape. This often requires researchers to

manually design image feature extraction methods based on

experience, resulting in a limited ability to identify various types

of diseases and insufficient recognition capability to meet the needs

of large-scale agricultural disease identification (Khan et al., 2018).

With the development of deep learning, it has shown significant

advantages in feature extraction and recognition tasks. Deep

learning-based disease image recognition has become an

important method in current research. Convolutional neural

network (CNN) models, by introducing operations such as local

connections and weight sharing, have made significant progress in

various crop disease identification tasks and are currently

considered one of the best algorithms for pattern recognition

tasks (Prathibha et al., 2017). To address the data imbalance

problem in cassava disease detection based on CNN models,

(Gnanasekaran and Opiyo, 2020) used methods such as class
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weights, SMOTE, and focal loss functions to enhance the model’s

recognition performance on imbalanced datasets. (Wu, 2021)

constructed a dual-channel convolutional neural network model

by integrating ResNet50 and VGG19 network models, thereby

improving the network model’s ability to extract disease features

and achieve high-precision recognition of maize diseases.

Additionally, to address the challenge of identifying grape

diseases in natural environments, (Cai et al., 2023) used an

improved MSR algorithm to process images and employed a

Siamese network structure to extract image features, achieving

model lightweighting. (Sanida et al., 2023) improved recognition

capability by combining VGG and Inception modules and using a

multi-scale approach to enhance the model. (Uddin et al., 2024)

integrated Inception V3 and DenseNet201 with the addition of the

attention mechanism VIT to obtain the E2ETCA network model for

rice disease identification. (Deng et al., 2023) used a combination of

ResNest and Ghost to obtain GR-ARNet, which separately

processed the depth feature information and channels of images,

achieving efficient identification of banana leaf diseases. In

agricultural production, to effectively prevent and control

diseases, (Kamal et al., 2019) proposed a MobileNet model

improved by deep separable convolution, which outperformed

VGG and GoogleNet models on the 55-class PlantVillage leaf

dataset. (Waheed et al., 2020) proposed an optimized DenseNet

model for identifying maize leaf diseases.

In neural network models, the attention mechanism is an

effective method to improve the model’s recognition performance.

Neural network models can use the attention mechanism to

compute the weights of input images, selectively emphasizing

areas of interest through feature weighting, thereby aiding feature

extraction. Currently, many achievements have been made, such as

SE-Net (Hu et al., 2018), ECA-Net (Wang et al., 2020), CBAM

(Woo et al., 2018), and Coordinate Attention (Hou et al., 2021).

Additionally, through the efforts of many researchers, the attention

mechanism can be applied to plant disease detection. For example,

(Zhao et al., 2022) embedded the CBAM attention mechanism into

the Inception network model, thereby enhancing the network

model’s ability to identify diseases in maize, potatoes, and tomatoes.

(Zeng and Li, 2020) proposed a self-attention convolutional neural

network (SACNN) and added it to the neural network, achieving good

recognition results on the MK-D2 agricultural disease dataset. (Chen

et al., 2021) proposed an attentionmodule (LSAM) forMobileNet V2,

effectively enhancing the network’s recognition capability for diseases.

(Liao et al., 2023) optimized the network by combining ResNet-50,

long short-term memory (LSTM) network, and SE-Net attention

mechanism. (Tang L. et al., 2023) proposed a ternary parallel

attention module based on the CBAM attention mechanism,

combined with a multi-scale hybrid model composed of Inception

modules and ResNext modules, achieving good results in the

identification of apple leaf diseases. Additionally, some scholars have

integrateddeep learningnetworkmodelswith robotics technology. For

instance, (Wang et al., 2023) integrated a visual system and a robotic

intelligent control system, enabling positioning for lychee harvesting

and obstacle recognition and avoidance.

In tomato disease identification, there are also numerous

research achievements. (Mokhtar et al., 2015) used Gabor wavelet
frontiersin.org
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transform to extract image features and then used support vector

machines to identify tomato leaf diseases. (Anandhakrishnan and

Jaisakthi, 2022) improved the LeNet5 network model architecture,

combining support vector machines (SVM) and multilayer

perceptron to detect tomato diseases. (Ullah et al., 2023) used a

hybrid network approach, combining EfficientNetB3 and

MobileNet into the EffiMob-Net multi-scale model to detect

tomato leaf diseases. (Zhou et al., 2021) introduced dense

network connections into the residual network model, forming a

hybrid network model that improved recognition accuracy while

achieving model lightweighting. (Zaki et al., 2020) used the PCBAM

attention mechanism and Dense Inception convolution blocks to

optimize the MobileNet model. (Zhang et al., 2023) proposed a

multi-channel automatic direction recursive attention network (M-

AORANet) to address noise issues in tomato disease images,

effectively achieving disease recognition, although some

difficulties remained with other crop diseases. (Chen et al., 2020)

combined the ResNet-50 network model with the proposed dual-

channel residual attention network model (B-ARNet) to enhance

the model’s recognition of tomato diseases from multiple scales.

(Zhao et al., 2021) optimized the ResNet50 model by using the SE-

Net attention mechanism and combining it with a multi-scale

feature extraction module to recognize tomato diseases.

Neural network models are effective for agricultural plant

disease identification, and many new and original network

structures have emerged in recent years. These network model

structures can improve the recognition effect of the model by

combining image enhancement algorithms, attention mechanisms

and fusion methods. However, due to the uneven spatial

distribution of the characteristics of agricultural diseases and the

influence of different stages of their onset, the problems of small

disease characteristics, large differences in similar characteristics,

and small differences in heterogeneous characteristics lead to the

difficulty of achieving high precision and lightweight of the model.

Therefore, the purpose of this paper is to propose a high-precision

detection method with limited computing resources, which can

meet the accuracy requirements and be suitable for mobile

deployment. The specific contributions of this article are as follows:

Image enhancement technology was used to enhance the

detailed features of leaf disease images. Initially, the piecewise

linear transformation method was used to remap the brightness

values of the image by setting thresholds for minimum and

maximum brightness, enhancing the detailed features, and

helping the neural network model extract abstract features

during training.

A lightweight CNN neural network model, LDAMNet, is

proposed, which is mainly composed of a double attention

convolution (DAC) block with mixed-channel attention (HCA)

and coordinate space attention (CSA) functions. Set the number of

blocks by pressing [1,1,3,1] in four different stages.

Considering the influence of noise labels in CNN model

training, the Cross-Entropy loss function is improved, and the

Robust Cross-Entropy Loss (RCE) loss function is derived by

introducing a weighted formula with two adjustable parameters,

a and b , which enhances the ability of the model to deal with label
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noise. In addition, by adjusting these two parameters, the loss value

in model training can be flexibly adjusted.

Finally, by comparing different CNN models, different blocks,

different normalization methods, as well as ablation experiments

and experiments using different datasets, the effectiveness of the

proposed method for identifying tomato leaf disease is proved with

limited computing resources, and the recognition ability is on par

with that of large-scale models, which has obvious advantages

compared with existing lightweight models.

The structure of this paper is summarized as follows: the second

part mainly introduces the methods used in this paper, including

LDAMNet, DAC block, HCA channel attention mechanism, CSA

spatial attention mechanism, and RCE loss function. Subsequently,

the third part is mainly used to test the detection method proposed

in this paper and evaluate the performance of the proposed

identification method in all aspects through five different

experiments. Finally, the fourth part mainly summarizes the work

and experimental conclusions of this paper.
2 Materials and methods

2.1 Image preprocessing

2.1.1 Sample
The tomato image dataset used in this study is derived from the

Plant Disease Classification Merged Dataset published on the Kaggle

platform (https://www.kaggle.com/datasets/alinedobrovsky/plant-

disease-classification-merged-dataset).

The dataset combines 14 existing agricultural imagery datasets

covering 88 disease categories affecting 23 different crops. In this

paper, the tomato leaf disease images were selected as the dataset for

the study, including ten disease images at different disease stages.

The image size in the dataset is 256×256, the leaf samples are shown

in Figure 1, and the disease characteristics are shown in

Supplementary Table S2.

2.1.2 Image processing
Training data plays a vital role in the performance of CNN

models, which directly affects the training effect of model training.

The process of image acquisition is usually affected by the image

acquisition equipment and environment, resulting in problems

such as inconsistent brightness and noise. These issues can

obscure image features, hinder the model’s ability to discriminate

features during training, and ultimately impair its ability to

recognize. In addition, due to the different number of disease

samples, there are large differences in the number of images of

different categories in the image dataset. This will cause the model

to tend to the category with a large number of images during the

training process, and the images of other categories cannot be

effectively recognized, resulting in overfitting (Kong et al., 2021).

To address the aforementioned issues, this paper proposes an

image processing method. In this method, images from the dataset

are first decomposed into red, green, and blue color channels. Then,

based on the set thresholds a and b, as well as the range 0-255, the
frontiersin.org
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pixels in each channel are divided into three intervals. The pixel

values in different intervals are processed according to Equation 1 to

obtain the processed pixel value F(x). Finally, the three processed

color channels are recombined to obtain enhanced disease image

samples. Moreover, data imbalance is a crucial factor affecting the

training effectiveness of deep learning network models. Network

models tend to overly learn features from categories with more
Frontiers in Plant Science 04
samples and struggle to effectively classify categories with fewer

samples. To address this, this paper uses oversampling to balance

the samples in the image dataset. The effects of image enhancement

and oversampling are shown in Figure 2 The enhanced image

dataset is divided into training and test sets at an 8:2 ratio, with

15975 images for training and 3994 for testing. Table 1 shows the

sample distribution before and after data augmentation.
FIGURE 2

Image-enhanced sample display. Original represents the images in the original dataset, and enchanced and mirror represent enhanced and
oversampled image samples, respectively.
B C D E

F G H I J

A

FIGURE 1

Different categories of leaf images in the tomato dataset. From (A–J), it includes 10 types of disease and healthy leaf image samples.
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F(x) =

0     x < a
255

(b−a)(x−a)   a < x < b

255    x > b

8>><
>>:

(1)
2.2 LDAMNet model

The LDAMNet model proposed in this paper is used for tomato

leaf disease identification and is composed of DN block, DAC block,

D block, and Classifier. In model training, the DN block and D

block are used to downsample the input image, the DAC block

extracts the features of the input image, and finally, the Classifier

implements the classification of the image. The DN block is

composed of a convolutional layer with a convolutional kernel of
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4×4 and GN, which mainly processes the input image to reduce the

size of the image and extracts features in a large range by using the

convolutional kernel of 4×4. The D block is composed of a

convolutional layer with GN and a convolutional kernel of 2×2,

which is smaller than the DN block, which makes the network

model pay more attention to the local features of the image. The

DAC module allocates the number of blocks in four stages

according to the quantities 1, 1, 3, 1, and its structure is shown in

Figure 3 and Table 2.
2.3 Dual attention convolution block

To enhance the extraction of complex image features, this paper

improves the existing inverted bottleneck block and proposes a

Dual Attention Convolution (DAC) block. It consists of an Inverted

Bottleneck Attention (IBA) block and Coordinate Space Attention

(CSA), as shown in Figure 3 The IBA block mainly comprises two

pointwise convolution layers, a 3×3 depthwise convolution layer,

Hybrid Channel Attention (HCA), ReLU6, and two GroupNorm

layers. CSA is a lightweight coordinate space attention mechanism

proposed in this paper to locate regions of interest in images. As

shown in Figure 4C, the IBA module draws inspiration from the

inverted bottleneck module, ConvNeXt V2 module, and Channel

Attention module (CBAM), focusing primarily on processing input

image channels to enrich disease feature representation.

2.3.1 Inverted bottleneck attention block
The inverted bottleneck block, first applied in MobileNet V2,

serves as an optimization method for traditional convolution layers,

effectively reducing the computational and parameter requirements

for model training. In the inverted bottleneck block, the number of

image channels and image size remain unchanged, allowing for
TABLE 1 Tomato leaf disease dataset sample size.

Categories Before After train test

Bacterial spot 1612 1969 1575 394

Early blight 1000 2000 1600 400

Healthy 1251 2000 1600 400

Late blight 1209 2000 1600 400

Leaf mold 952 2000 1600 400

Septoria leaf spot 1379 2000 1600 400

Spider mites 1257 2000 1600 400

Target spot 988 2000 1600 400

Mosaic 373 2000 1600 400

Yellow leaf curl 1849 2000 1600 400
FIGURE 3

The structure of the LDAMNet model. b, s, and dim represent the number of IBA blocks, the stride of deep convolution, and the multiple of IBA
block expansion image channels, respectively.
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effective information extraction while reducing model size. The

ConvNeXt V2 block improves upon the inverted bottleneck block

by adding a 7×7 convolution layer before the first pointwise

convolution to capture broader spatial features and mitigate the

impact of complex backgrounds on model recognition

performance. Additionally, it uses Global Response Normalization

(GRN) instead of depthwise convolution between the two pointwise

convolution layers.

This paper improves the inverted bottleneck block by placing

the depthwise convolution after two pointwise convolution layers,

adding an HCA module and ReLU6 activation function to enhance

the model’s expressiveness, and introducing GroupNorm to replace
Frontiers in Plant Science 06
BatchNorm, reducing the model’s dependence on training batch

sizes. As shown in Figure 4C, after the input image passes through

the first pointwise convolution and ReLU6 activation function, the

input image channels are expanded according to the size of the

parameter ‘dim’ and undergo nonlinear transformation. Then,

the HCA channel attention mechanism obtains weights for the

expanded channels and applies weighting. After weighing, the

channels pass through a second pointwise convolution, preserving

channels with rich feature expressions. Finally, a 3×3 depthwise

convolution organizes the spatial information of the retained

channels, facilitating subsequent CSA extraction of regions of

interest in the image.
2.3.2 Hybrid channel attention
EfficientNet and ConvNeXt V2 use SE-Net and Global

Response Normalization (GRN), respectively, to help models

expand and integrate image dimensions and extract important

image channels. This paper proposes a lightweight channel

attention mechanism called Hybrid Channel Attention (HCA).

This attention mechanism calculates weights for different

channels in the image and applies weighting to image channels to

preserve important ones during channel integration. In this paper,

the HCA attention mechanism mainly consists of Nam and ECA

modules. As shown in Figure 5, the input image is fed into both

modules to calculate channel weights, and the resulting two channel

weights are applied to the input image channels.

The Nam module uses input normalization to obtain weights

for different dimensions in the image (Liu et al., 2021). This paper

uses GroupNorm for calculation, as shown in Equation 2.

GroupNorm is a method that groups input data based on channel

dimensions and then normalize within each group. In the Nam

module, mean and variance are calculated for each group and

normalized to obtain Wg .

GN(x) = g
x�mxffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
x + e

p + b (2)
TABLE 2 Architectures for LDAMNet.

output size layer name LDAMNet

56×56

DN block
Conv(4×4, 32)

GroupNorm(channel = 32)

DAC block
IBA block × 1
CSA block × 1

28×28

D block
GroupNorm(channel = 32)

Conv (2×2, 64)

DAC block
IBA block × 1
CSA block × 1

14×14

D block
GroupNorm(channel = 64)

Conv (2×2, 128)

DAC block
IBA block × 3
CSA block × 1

7×7

D block
GroupNorm(channel = 128)

Conv (2×2, 256)

DAC block
IBA block × 1
CSA block × 1

1×1 Classifier
GroupNorm(channel = 256)

Linear(256, 10)
The IBA block is shown in Figure 4B, CSA in Figure 5. The DN block and D block have strides
of 4 and 2, respectively.
B CA

FIGURE 4

Different inverted bottleneck block structures. (A) is the convolution block in MobileNetV2, (B) is the convolution block in ConvNextV2, and (C) is the
IBA Block.
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Wg =
gi

oj=0gj
(3)

Wnam = sigmoid(Wg(GN(x))) (4)

where mx and sx are the mean and variance in each specified

grouping, respectively, and the g and b are trainable affine

transformations. The parameters, Wg , are composed of the

scaling factor g of each channel and are calculated according to

Equation 3.Wnam is the channel attention weight obtained from the

Nam module, as shown in Equation 4.

The ECA module first applies global average pooling to the

input image, then processes the image through a one-dimensional

convolution with an adaptively adjustable kernel to generate

channel weights (Wang et al., 2020). In the formula, the size of

the convolution kernel k is determined by the mapping of the

channel dimension. The calculation formula is as follows.

Weca = sigmoid(C1Dk(x)) (5)

k = y(C) =
log2 (C)

d
+
b
d

����
����
odd

(6)

In Equation 5, C1D represents the 1-dimensional convolution

processing; in Equation 6, C is the given channel dimension, k is the

adaptive convolution kernel size, d, and b are set to 2 and 1,

respectively, and tj jodd represents the odd number closest to t.

After obtaining the channel attention weights of the Nam

module and the ECA module, the channel attention weights W

are obtained by combining them, and the calculation process is

shown in Equation 7. Finally, the image is weighted using the

resulting weight W input.

W = sigmoid(Wg (GN(x)))� sigmoid(C1Dk(x)) (7)
Frontiers in Plant Science 07
2.3.3 Coordinate-space attention
In this paper, Coordinate Space Attention (CSA) is a spatial

attention mechanism that mainly utilizes spatial position

information to obtain weights for different regions in the image.

As shown in Figure 6, the CSA attention mechanism first applies

average pooling to the input image to generate horizontal and

vertical feature vectors. Then, the obtained feature vectors are

concatenated to form a feature map of the input image.

Subsequently, dilated convolution, GroupNorm, and ReLU6 are

used to enrich the feature map’s expression and determine whether

regions of interest exist in both directions.

The CSA module uses average pooling to obtain horizontal and

vertical spatial information of the image, using two spatial pooling

kernels (H, 1) and (1,W) to encode each channel of the input x

along the horizontal and vertical coordinate directions. The height h

obtained in channel c can be represented as Equation 8.

zhc (h) =
1
W o

0≤i<W
xc(h;i) (8)

Similarly, the width w obtained in the c-channel can be

expressed as Equation 9.

zwc (w) =
1
H o

0≤i<h

xc(h,w) (9)

where zc represents the encoded results of h in the horizontal

direction w and vertical direction of the c-channel using average

pooling, and xc represents the eigenvalues of the c-channel in the

feature map at the positions of height h and width w.

Through the calculation Formula 9, the eigenvalues along the

abscissa and the ordinate can be obtained. Then, it was re-stitched

to obtain a new feature image, and the feature map was processed by

using a dilated convolution with a convolution kernel of 3×3. By

using dilated convolutions with an expansion rate of 2, it is possible
BA

FIGURE 5

Hybrid channel attention structure. (A) is the HCA structure diagram and (B) is the NAM and ECAmodel structure diagram.
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to increase the receptive field without increasing the computational

cost of the model. The calculation is shown in Equation 10.

f = d (Fd
3�3(½zh,zw�)) (10)

where ½·  ,   ·� Represents a concatenated operation along a spatial
dimension. Where F3�3 is the convolutional transformation

function, d is the expansion rate, d represents the nonlinear

activation function, and f ∈ RC�(H+W) is the intermediate feature

map that encodes spatial information in the horizontal and vertical

directions. Then, the feature map is divided into two independent

tensors along the spatial dimension to obtain f h ∈ RC�H and f w ∈
RC�H . In addition, the attention weights of the tensors f h and f w

were obtained by using the sigmoid mapping, respectively, and the

calculation formula is shown in Equations 11 and 12.

gh = sigmoid(Fh(f
h)) (11)

gw = sigmoid(Fw(f
w)) (12)

Finally, the weights gh and gw are used to weight the input

image, and the final result is shown in Equation 13.

y(i,j) = xc(i,j)� ghc (i,j)� gwc (i,j) (13)

where y is the final output of CSA, inspired by Coordinate

attention, CSA obtains eigenvalues from the horizontal and vertical

aspects of the image and processes them. It can help the model to

locate the disease location of the leaf in detail. In addition,

compared with Coordinate attention, CSA has a smaller number

of parameters.
2.4 Robust cross-entropy loss

In CNN model training, dataset samples play a crucial role in

the training of network model recognition capabilities. However,

due to the constraints of environment, equipment, and other

factors, the collected plant disease images may contain some data

that are difficult to classify, outlier data, and mislabeled data, which

will seriously affect the training effect of the model. The Cross-
Frontiers in Plant Science 08
Entropy loss function is a loss function commonly used in

classification problems to measure the difference between the

model input and the actual label, and for classification problems

of M categories, it can be defined as Equation 14.

CE(p,y) = −o
M

c=1
y(o,c)log(po,c) (14)

where M is the total number of categories, C is the index of the

category or class, O is the index of a particular sample in the dataset

in the calculation, and when the loss is calculated for a particular

sample, c iterates through all possible categories, from 1 to M. yo,c
represents the true label of category C in sample O, while the model

predicts the probability of category C for sample O when po,c. If only

one category is considered per sample, the y(o,c) can be treated as 1,

and the O index is omitted, the CE loss function can be defined as

Equation 15.

CE(y) = −o
M

c=1
log(pc) (15)

As shown in Figure 7, when the CE loss function is trained,

when the accuracy is low, the loss function will give a large loss

value to help the model quickly adapt to the image data. This can

effectively promote the training of the network model for the dataset

with correct labeling, but it will cause the network model to learn

wrong data when facing the dataset with noise labels, which will not

only lead to the decline of the model’s recognition ability but also

make the model over-adapt to the wrong labels, thereby reducing

the generalization ability of the model.

To solve this problem, (Zhang and Sabuncu, 2018) proposed

Generalized Cross-Entropy Loss (GCE). By introducing the

parameter q, the GCE loss function can reduce the penalty by

reducing the loss value when the noise is wrong, thereby increasing

the tolerance of the model. When q is close to 0, the contribution of

the noise label to the total loss is also limited to a small range,

reducing the impact on model training. The formula is shown in

Equation 16.

GCE(p,y) =
1 − pqy
q

(16)
FIGURE 6

Coordinate space attention mechanism.
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Although the GCE loss function can reduce the impact of

noise labels on the recognition ability of the model, it gives a

small loss value when the accuracy is high, which makes the

model unable to be further trained to improve the recognition

ability. In this paper, to help the network model be robust

to noise labels in training and improve the effect of model

training, a weighted formula with adjustable parameters a and b
is introduced to optimize the CE loss function, defined as

Equation 17.

RCE(y) =
1
Mo

M

c=1
((a � pc + b)� ( − log(pc))) (17)

In the formula, (a · pc + b) represents the added weighting

formula. In this weighting formula, a and b are two parameters.

Specifically, b serves as a scaling factor that directly influences the

overall loss magnitude during model training. When b is greater

than 1, the RCE loss function imposes larger penalties; when b is

less than 1, it imposes smaller penalties, with b   >   0. On the other

hand, parameter a can be used to adjust the magnitude of the loss

during model training, constrained by a   >  −b . A larger a assigns

larger losses during training, while a smaller a assigns smaller

losses, as depicted in Figure 7B.

In this paper, the parameters a and b of the RCE loss

function are set to 0.6, as shown in Figure 7A. When a and b
are 0.6, fewer loss values can be given when the model accuracy is

low, and no formal distribution of data is learned, so as to

reduce the penalty of the loss function on the noise label, help the

model focus on the label with higher confidence, and reduce the

influence of the noise label on the model training. When the

progress of the model is high, a larger loss value is given, and on

the basis of extracting abstract and useful information to a certain

extent, the model pays more attention to the samples that are

difficult to classify correctly and improves the recognition ability of

the model.
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2.5 Tomato disease identification
model process

The overall training flow of the LDAMNet model is illustrated

in Figure 8. In this study, a CNN-based deep learning method is

used to construct the recognition model, which heavily relies on the

training data. To address issues such as blurred disease features and

insufficient image samples in the dataset, this paper first resizes the

images and applies piecewise linear transformation to enhance

image detail features, as shown in Figure 8. After processing the

images in the dataset, they are divided into training and test sets at

an 8:2 ratio. Then, to improve the model’s generalization ability,

normalization is applied to the images in both training and test sets

to standardize pixel values across different channels. Finally, to

avoid issues caused by interrupted training, this paper saves model

parameter files at each training epoch to facilitate continued

training. Additionally, to achieve effective disease recognition, the

weights of the best-fitting model are saved during training based on

set evaluation parameters for subsequent use.
3 Experimental results and discussion

3.1 Experimental design

The computer used in this paper uses the Windows 11

operating system, uses a 12th Gen Intel(R) Core(TM) i7-12700

(2.10 GHz) processor, and uses a GPU for model training and

testing, and the GPU is NVIDIA GeForce RTX 3060(12G). The

software environment uses Python 3.9.13, PyTorch 1.13.1, and

Cuda 11.6 frameworks.

The experiment is divided into five parts. Namely, the

comparative test between different network models proposed in

this paper, the comparative test with the inverted bottleneck block,
BA

FIGURE 7

Comparison of loss function curves. (A) is the loss function curve of a and b 0.6 and (B) is the influence of different a values on the loss
function curve.
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the comparative test using different loss functions, the ablation

experiment, and the comparative test on different datasets.

In the training of the neural network model, the Adam stochastic

gradient descent method was used to optimize the network model.

The calculation of this algorithm is relatively simple, and it has strong

adaptability to the gradient. The learning rate is set to 0.0001, the

number of iterations is set to num_epochs = 100, and the number of

images per batch batch_size = 16. In addition, the AutoAugment

method is used to process the training set images, which can enhance

the network training effect.
3.2 Evaluation indicators

In order to effectively evaluate the trained neural network

model, precision, recall, accuracy, and F1 score were used to

measure the performance of the neural network model in the

identification of tomato leaf diseases. These parameters are

calculated as shown in Equations 18–21.

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

Accuray =
TP + TN

TP + FN + FP + TN
(20)

F1 =
2TP

2TP + FP + FN
(21)

In the formula, TP (True Positive) is the true example, which

indicates the number of positive samples predicted by the model;

TN (True Negative) is the true negative example, which indicates

the number of negative samples predicted by the model, FP (False

Positive) is a false positive example, which indicates the number of
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negative samples predicted by the model, and FN(False Negative) is

a false negative example, which indicates the number of positive

samples predicted by the model to be negative.

In this study, precision represents the proportion of samples

that are correctly judged to be positive by the network model. Recall

measures the proportion of positive class samples correctly

identified by the network model in actual positive class samples.

Precision represents the ratio of the total number of samples

correctly classified by the network model to the total number of

samples. The F1 value is a harmonic average of precision and recall,

taking into account precision and recall, and is balanced between

precision and recall.

In addition, two parameters, Flops (floating-point arithmetic)

and Params (number of parameters), are introduced to evaluate the

size of the network model. The larger the Flops, the more

computational resources the network model needs for training

and inference, and this parameter usually represents the Flops

computation in a single forward propagation. Params represent

the number of parameters in the model, including all weights and

biases that need to be learned, and larger Params mean that the

larger the network model, the more storage space is needed to hold

the model weights.
3.3 Experiments of different
network models

To test the performance of the LDAMNet network model, this

study compares it with ConvNeXtV2 (Woo et al., 2023),

Inception_Next (Yu et al., 2023), DenseNet121 (Huang et al., 2017),

ResNet18 (He et al., 2016), GhostNet (Han et al., 2020), EfficientNet

(Tan and Le, 2019), EfficientFormer (Li et al., 2023), MobileNet

(Sandler et al., 2018), MobileVitV2 (Mehta and Rastegari, 2022),

Swin Transformer V2 (Liu et al., 2022), Deit3 (Touvron et al.,

2022). The models participating in the experiment were evaluated
FIGURE 8

Overall flowchart of LDAMNet model training.
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using six parameters: precision, recall, accuracy, F1 score, Flops, and

Params. In the comparative experiment, to effectively detect the

recognition capabilities of LDAMNet and different network models,

these 11 networkmodels were divided into three categories: large-scale

CNN models, lightweight CNN models, and Vit models. The large-

scale CNN models include ConvNeXt, Inception_Next, DenseNet,

and ResNet; the lightweight CNN models include GhostNet,

EfficientNet , and MobileNet; the Vit models include

EfficientFormer, MobileVitV2, Swin Transformer V2, and Deit3.

The accuracy curve comparison of these three types of models with

LDAMNet is shown in Supplementary Figure S1. The networkmodels

used in this experiment are all from the Timm library, and the

experimental results are shown in Table 3.

As shown in Table 3, in the comparative experiment, the

average values of accuracy, precision, recall, and F1 score of the

LDAMNet model are the highest among the eight network models,

which are 98.71, 98.73, 98.69, and 98.71, respectively. In addition,

the Flops and Params parameters of the LDAMNet model are 0.142

and 0.91, respectively, which are the smallest among the 12 models,

indicating that this network model can achieve lightweight and

high-precision recognition of tomato diseases.

Furthermore, the experimental results show that on the

processed tomato dataset, the recognition ability of the LDAMNet

model is higher than that of the other 11 network models. The

recognition ability of the LDAMNet model is not significantly

different from the large models in this paper; according to the

evaluation parameters obtained in Table 3, the average accuracy of

LDAMNet, DenseNet121, Swin Transformer, and ResNet18 can all

reach more than 98%. However, the floating-point operations and

parameter counts required by the LDAMNet network model are

much smaller than those of the other three types of models, which

proves that the LDAMNet model, as a lightweight network model,

can achieve the recognition ability of large-scale CNN models or

mainstream Vit models, or even slightly better.
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In this experiment, the LDAMNet model was compared with

three mainstream lightweight models: GhostNet, EfficientNet, and

MobileNet. As shown in Supplementary Figure S1B, the recognition

ability of the LDAMNet model is better than that of these three

mainstream lightweight models, with the gap between the

EfficientNet model and the LDAMNet model being the largest,

with the four evaluation parameters being about 6.63%, 6.54%,

6.58%, and 6.56% higher, respectively.

Finally, to test the classification effects of the 12 models, a

confusion matrix was used to test the models. As shown in Figure 9,

BS, EB, H, LB, LM, SLS, SM, TS, M, and YLC represent ten types of

leaves in the tomato image dataset used in this paper. The test

dataset was obtained from the dataset in proportion, including 999

images in 10 categories. In all confusion matrix tests, only the

LDAMNet proposed in this paper achieved complete recognition of

the test dataset. The other 11 network models all produced a

certain number of misjudgments. Among them, ConvNext,

MobileNet, and MobileVit had the most misjudgments, with 8, 6,

and 6, respectively. EB was the main category of incorrect

recognition by the models. The main reason is the uncertain

regional distribution of tomato leaf data and the similar

characteristics of different types of leaf diseases. For example,

both EB and BS diseases produce black or brown spots in

appearance, with only slight differences in the shape and color of

the spots, leading to some network models being unable to

effectively extract features, causing misjudgment.
3.4 Experimental of inverted bottlenecks

In subsection 2.2.1, this paper proposes an improved inverted

bottleneck block DAC block by adding a channel attention

mechanism and a spatial attention mechanism, respectively. In

order to verify the improvement effect, the improved inverted
TABLE 3 Comparison table of evaluation parameters obtained from training of different network models.

Model Accuracy Precision Recall F1 score Flops(G) Params(M)

ConvNeXt V2_T 94.87 95.02 94.83 94.92 4.45 27.79

Inception_Next_T 97.15 97.30 97.16 97.23 4.2 28.04

DenseNet121 98.64 98.69 98.67 98.68 2.83 7.89

ResNet18 98.05 98.04 97.94 97.99 1.82 11.69

GhostNet V2 94.30 94.53 94.40 94.46 0.42 11.10

EfficientNet 92.08 92.19 92.11 92.15 0.38 5.24

EfficientFormerV2 96.49 96.57 96.50 96.48 1.23 12.63

MobileNetV2 94.19 94.33 94.23 94.28 0.3 3.47

MobileVitV2 95.15 95.25 95.16 95.14 1.41 4.87

Swin TransformerV2 98.22 98.28 98.22 98.22 4.51 28.33

Deit3 97.57 97.60 97.51 97.51 4.24 21.97

LDAMNet
(Proposed model)

98.71 98.73 98.69 98.71 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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bottleneck block (CIB block) in ConvNeXt V2 and the inverted

bottleneck block (IB block) used in MobileNet V2 were used for

experimental comparison in this experiment, and the three-block

structures are shown in Figure 4. Table 4 shows the parameters of

the LDAMNet model trained with three blocks, among which the

model with DAC block has the highest evaluation parameters,

which are 3.34, 3.33, 1.09 and 1.09 larger than the lowest CIB

block, respectively. In addition, among the three types of block,

most of the parameters required for training are made with the IB

block, followed by the CIB block, and finally, the DAC block. The

results show that compared with the IB block and CIB block, the

DAC block can achieve higher recognition ability with fewer

computing resources.
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CIB block, as an improved method of IB block, although the

parameters of IB block are effectively reduced by reducing the

normalization method and placing the convolutional layer in front

of the whole channel, it cannot effectively extract image features in the

face of tomato disease image dataset due to its use of 7×7 convolution

kernel. The reason is that some diseases in the tomato disease image

show small local regions, and although the 7×7 convolutional kernel

can obtain the association of regions in space through the receptive

field method, it will also lead to inaccurate information acquisition in

local regions, which leads to the inferior recognition ability of CIB

block in this dataset. However, the IB block and DAC block using the

3×3 convolutional kernel can fully extract the local features of the

image so that the recognition ability of the two blocks is similar.
TABLE 4 Parameters were evaluated using the IB, CIB, and DAC block.

Methods Accuracy Precision Recall F1 score Flops(G) Params(M)

IB block 97.57 97.64 97.60 97.62 0.288 1.836

CIB block 95.37 95.49 95.36 95.42 0.189 1.176

DAC block 98.71 98.73 98.69 98.71 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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FIGURE 9

Confusion matrix testing for different CNN models. Models from (A) to (L) are the models for comparative experiments in Table 4, respectively.
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Figure 10 shows the feature map of the LDAMNet model using

different blocks in four stages. In the first three stages, the CIB block

and IB block can better preserve the image outline than the DAC

block. However, in the fourth stage, the output feature map contains

fewer abstract features than the DAC block, and even some feature

maps do not contain image features. As a result, the classifier of the

LDAMNet model using CIB block and IB block cannot discriminate

the input graph with missing features, which affects the recognition

ability of the LDAMNet model.
3.5 Experiment of normalization methods

In this paper, in order to reduce the influence of different

batches in model training, the GN normalization method is used

instead of the BN normalization method commonly used in

convolutional neural networks. In addition, in order to verify the

optimization effect of the LDAMNet network using the GNmethod,

in this experiment, four normalization methods were used: (Wu

and He, 2020), BN (Ioffe and Szegedy, 2015), IN (Ulyanov et al.,

2016), and LN (Ba et al., 2016), respectively, in Batch size=8, Batch

size=16, and Batch size=32 cases to train the network model.

Supplementary Figure S2 shows the transformation of the

accuracy curve of the LDAMNet network model trained using

four normalization methods: GN, BN, LN, and IN. Among the

four normalization methods, the accuracy curves using the IN and

LN normalization methods fluctuated greatly with different batches.
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However, the accuracy curve using the GN and BN normalization

methods is more stable in the three cases. In addition, as shown in

Table 5, the GN normalization method can achieve the highest

accuracy in the three cases with different batch sizes, while the BN

normalization method is slightly lower. Among them, the

maximum accuracy difference between GN and BN is 1.05%

when Batch size = 16, and the minimum accuracy difference is

0.36% when Batch size = 32.
3.6 Ablation experiments

In this section, we conducted ablation experiments, comparison

experiments of different attentional mechanisms, and experiments

using different loss functions for training. As shown in

Supplementary Figure S3A, among the three improvements of

HCA, CSA, and DAC, the DAC block has the greatest

improvement in the recognition performance of the network,

followed by the HCA and CSA modules. As shown in Table 6,

the DAC block, which aggregates CSA and HCA in the lightweight

LDAMNet model, can effectively help the network model improve

the recognition accuracy of the disease, and its average accuracy can

reach 98.71%. The average recognition accuracy of the HCA block

and CSA block is 96.21% and 95.89% respectively, which indicates

that both of them can effectively improve the recognition ability of

the model in LDAMNet, with the attention effect of HCA being

slightly better.
FIGURE 10

Characteristic diagram of the LDAMNet network at different stages using three blocks.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1420584
Then, to examine the difference between the DAC block

proposed in this paper and mainstream attention mechanisms, CA

and CBAM were introduced for comparison experiments.

Supplementary Figure S3B shows the variation of the experimental

accuracy curves, in which the CA and CBAM attention mechanisms

have some fluctuations in their accuracy curves during the training

cycle, while the DAC accuracy curve is relatively smooth. The test

data, as shown in Table 6, show that there is no significant difference

among the three methods in terms of the amount of computation and

the number of parameters required, while the average accuracy of the

DAC block method is slightly higher than that of the two attention

mechanisms, CA and CBAM. Figure 11 shows the class activation

diagrams of the LDAMNet network model using different attention

mechanisms, and the input images are the four leaf disease images in

Figure 1. From the figure, it is clearly observed that the DAC block

effectively captures the leaf disease regions at different locations,

whereas HCA, CSA, CA, and CBAM attention mechanisms do not

capture the regions as accurately as the DAC block.

Finally, in this section, to validate the RCE loss function proposed

in this paper, the mainstream CE loss function is used for

comparison. Supplementary Figure S3C shows the comparison of
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the accuracy curves of LDAMNet using the RCE loss function and the

CE loss function, respectively. The LDAMNet model applying the

RCE loss function does not have the effect of too small loss values in

the pre-training period, which leads to slower convergence, and its

accuracy curve is more stable in the late training period.
3.7 Cross-dataset experiments

Through the above experiments, it can be proved that the model

proposed in this paper has a strong recognition ability in the tomato

dataset. However, it is unknown whether the model can have the

same advantages in the face of different leaf disease datasets.

Therefore, in this experiment, in order to test the recognition

ability of the LDAMNet network model in the face of different leaf

disease images, the model was trained and tested using Rice Leaf

Disease Images with complex backgrounds, and the samples of the

rice dataset are shown in Supplementary Figure S4, including

Bacterialbight, Blast, Brownsport, Tungro has a total of 5932

images (https://www.kaggle.com/datasets/nirmalsankalana/rice-leaf-

disease-image) in four categories.
TABLE 6 Comparative experiments of different structures and training methods of network models.

Settings Accuracy Precision Recall F1 score Flops(G) Param(M)

Baseline 95.19 95.31 95.18 95.24 0.1418 0.9057

+HCA 96.21 96.31 96.18 96.24 0.1425 0.9057

+CSA 95.89 95.97 95.88 95.92 0.1419 0.9105

+CA 97.98 98.03 97.92 97.97 0.1422 0.9385

+CBAM 97.34 97.41 97.31 97.36 0.1424 0.9279

+DAC(CE) 98.15 98.27 98.20 98.23 0.1426 0.9105

+DAC(RCE) 98.71 98.73 98.69 98.71 0.1426 0.9105
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
TABLE 5 Accuracy values of different normalization methods under different batch sizes.

Batch size Methods Accuracy Precision Recall F1 score

8

LN 96.69 96.84 96.67 96.75

IN 96.22 96.30 96.20 96.25

BN 97.68 97.81 97.65 97.73

GN 98.49 98.64 98.51 98.57

16

LN 96.28 96.48 96.34 96.41

IN 96.34 96.52 96.35 96.43

BN 97.66 97.75 97.63 97.69

GN 98.71 98.73 98.69 98.71

32

LN 96.66 96.87 96.63 96.75

IN 96.03 96.25 96.02 96.13

BN 97.88 97.94 97.89 97.91

GN 98.24 98.38 98.25 98.31
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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In order to detect the gap between the recognition ability of the

LDAMNet model in this dataset and the current mainstream

models, the seven models used in Part 3.3 were used in this

experiment. In the experiment, set the Batch Size to 16, the

training round epoch to 100, and the learning rate to 0.00001.

Table 7 lists the number of datasets. In addition, ConvNeXt,

Inception, DenseNet, ResNet, GhostNet, EfficientNet, and

MobileNet were trained using the CE loss function, and

LDAMNet was trained using the RCE loss function, and the

evaluation parameters obtained from the test are shown in

Table 8, and the change of the accuracy curve is shown in Figure 12.

The measured data are shown in Table 8, and the highest scores

of the Accuracy, Recall, and F1 scores of the model are 98.56, 98.58,

and 98.65, respectively, while the Precision parameter of the

ConvNeXt model achieves the highest value of 98.71, which is

slightly higher than the 98.70 of the LDAMNet model. The

measured data show that LDAMNet can still maintain the same

recognition ability as the existing mainstream large-scale models
Frontiers in Plant Science 15
after replacing it with the rice dataset and can also maintain certain

advantages compared with the lightweight model.

Figure 12 shows the accuracy curves of the different models in

the experiment. As shown in the figure, the recognition accuracy

convergence speed of the proposed model in the early stage of

training is relatively slow and fluctuates to a certain extent.

However, with further training of the model, the recognition

accuracy of the LDAMNet model can be stabilized in a high

region. The results show that the network model proposed in this

paper can still maintain high recognition performance in the face of

cross-dataset and has a certain generalization.
4 Conclusion

This paper addresses the issues of uneven distribution of disease

features in tomato leaf images, significant differences within similar

features, and small differences between dissimilar features. A high-
FIGURE 11

Category activation diagram using different attention mechanisms in the face of four different tomato diseases.
TABLE 7 Number of samples from the training and test sets of rice image datasets without data augmentation.

Categories Bacterial blight Blast Brownsport Tungro

Train 1268 1152 1280 1046

Test 316 288 320 262
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precision and lightweight leaf disease recognition method has been

designed. First, linear transformation is used to enhance the image,

augmenting the detail features of the disease and mitigating the

problems of significant differences within similar features and small

differences between dissimilar features. Then, DAC block, composed

of HCA, CSA, and IBA blocks, is used to build a lightweight network

model called LDAMNet. Additionally, the RCE loss function is

employed to train the model, increasing its robustness.

Comprehensive testing shows that this method can effectively

identify tomato leaf diseases, offering certain advantages over

mainstream large-scale and lightweight models, with maximum

accuracy, precision, recall, and F1 scores reaching 99.88, 99.88, and

99.87, respectively. This confirms that LDAMNet achieves high-

precision disease recognition while being a lightweight model.
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Moreover, to verify the generalization of this detection method,

a rice disease dataset was used for testing. Experimental results

indicate that the proposed method still maintains certain

advantages and can be used for cross-dataset disease recognition.

Although LDAMNet achieves high-precision disease recognition, it

still has potential for further exploration. Its average recognition

accuracy on the rice disease dataset has not reached the optimum

level. Further improvements are needed to address the issue of

uneven distribution of disease features in complex backgrounds.

In summary, this paper proposes a method for detecting

tomato leaf diseases and establishes a new lightweight

convolutional neural network model, LDAMNet. Tests have

shown that this model can effectively identify tomato leaf

diseases and maintain strong recognition capability even in the
frontiersin.o
BA

FIGURE 12

The accuracy curves of different models trained using rice datasets. (A) comparison of the accuracy curves of large-scale models (B) and
comparison of the accuracy curves of lightweight models.
TABLE 8 Comparison of evaluation parameters obtained by the model trained using the rice dataset.

Model Accuracy Precision Recall F1 score Flops(G) Params(M)

1 Connect V2_T 98.44 98.71 98.46 98.58 4.45 27.79

2 Inception_Next_T 96.10 96.35 96.20 96.27 4.2 28.04

3 DenseNet121 98.52 98.51 98.51 98.51 2.83 7.89

4 ResNet18 97.16 97.28 97.19 97.24 1.82 11.69

5 GhostNet V2 97.95 97.95 97.95 97.95 0.42 11.10

6 EfficientNet 95.56 95.47 95.53 95.50 0.38 5.24

7 MobileNetV2 90.44 90.40 90.59 90.49 0.3 3.47

8
LDAMNet

(Proposed model)
98.56 98.70 98.58 98.63 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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complex backgrounds of the rice disease dataset. The proposed

method can effectively identify agricultural leaf diseases, providing

a feasible approach for early identification and reasonable

treatment of agricultural diseases.
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