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Heavymetal pollution has become a serious concern across the globe due to their

persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten

the stability of the environment and the health of all living beings. Heavymetals also

enter the human food chain by eating contaminated foods and cause toxic effects

on human health. Thus, remediation of HMs polluted soils is mandatory and it

needs to be addressed at higher priority. The use of microbes is considered as a

promising approach to combat the adverse impacts of HMs. Microbes aided in the

restoration of deteriorated environments to their natural condition, with long-term

environmental effects. Microbial remediation prevents the leaching and

mobilization of HMs and they also make the extraction of HMs simple.

Therefore, in this context recent technological advancement allowed to use of

bioremediation as an imperative approach to remediate polluted soils. Microbes

use different mechanisms including bio-sorption, bioaccumulation, bioleaching,

bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the

effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the

role of bacteria, fungi and algae in bioremediation of polluted soils. This review also

discusses the various approaches that can be used to improve the efficiency of

microbes to remediate HMs polluted soils. It also highlights different research gaps

that must be solved in future study programs to improve bioremediation efficency.
KEYWORDS

bio-sorption, genetic engineering, heavy metals, bioremediation, nano-particles
Introduction

The world’s population is continuously growing up with a corresponding increase in

food demands (Yaashikaa and Kumar, 2022). The recent increase in industrialization and

anthropogenic activities are a serious threat to crop production owing to the fact they

negatively soil fertility and productivity (Yaashikaa and Kumar, 2022). Various industries
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excrete toxic heavy metals (HMs) that enter into the soil and

negatively affect soil fertility, microbial activities, and crop

productivity and these HMs also induce serious effects on

humans (Table 1) by eating the contaminated foods (Asyakina

et al., 2021; Debonne et al., 2021; Nizamutdinov et al., 2022). Global

agricultural communities have serious concerns about

contamination of agricultural soils with HMs. These HMs are

very toxic and they can persist in the soils over a long time
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period. Different HMs including cadmium (Cd), lead (Pb), zinc

(Zn) and copper (Cu) enter into agricultural soils with organic and

inorganic fertilizers, while arsenic (As) and mercury (Hg) enter into

agricultural soils through nearby located industrial enterprises

(Uchimiya et al., 2020; Guan et al., 2022).

Heavy metals are known to accumulate in plants and they

negatively affect the plant’s physiological and biochemical processes

and consequently cause serious yield losses (Yan et al., 2020). HMs

reduce seed germination by negatively affecting the germination

related processes which in turn reduce the overall stand

establishment (Hassan et al., 2019). HMs also disturb the plant

water status, membrane stability and increase the losses of

important osmolytes through excessive production of

malondialdehyde (MDA) and hydrogen peroxide (H2O2).

Further, HMs also induce excessive reactive oxygen species (ROS)

production which damages the proteins, lipids and DNA (Hassan

et al., 2013).

Globally, different chemical, physical and biological methods

are being used to remove the HMs from soils. Physical methods like

thermal treatments, soil washing, vitri-fication, and chemical

methods like the application of lime, organic amendments and

phosphate compounds are being used to treat the HMs polluted

soils (Gong et al., 2018). The physical and chemical methods are

quick and efficient; however, they have major limitations. For

instance, they are expensive and laborious and they can cause

drastic changes in soil quality therefore, these methods offer no

optimal solution to treat HMs polluted soils (Gong et al., 2018).

Thus, in this context, biological methods offer an alternative

solution owing to environmental friendly nature and they are less

expensive. The biological methods involve the use of plants

(phytoremediation) and microorganisms (bioremediation) to treat

the HMs polluted soils (Khalid et al., 2017). The biological methods

are economical and environment friendly, and they have

appreciable applicability and efficiency as compared to physical

and chemical methods (Yan et al., 2020). However, these methods

also have some limitations like lengthy periods, environmental

sensitivity, and contaminant toxicity (Liu et al., 2023). The use of

microbes (bioremediation) got a great scientific attraction across the

globe in recent times. The microbes remove the HMs from soil

through different mechanisms including bio-sorption, bio-

accumulation, bio-volatilization, bio-mineralization, oxidation and

reduction, bio-leaching and production of bio-surfactants (Rahman

and Singh, 2020). Micro-organism can protect from the negative

effects of HMs; however, many HMs destroy membranes of

microbial cells. Thus, the ability of microbes to survive under the

effect of HMs is an area of decisive importance (Ayangbenro and

Babalola, 2017). It has been reported that HMs toxicity and mobility

is depend on the degree of oxidation of HMs (Haque et al., 2022).

Microbe use HMs pollutants as a food source and change their

redox potential (Faskhutdinova et al., 2021). Under HMs stress,

some microbes also secrete different substances including

polysaccharides, proteins, and lipids that can bind HMs ions and

therefore reduce their availability (Martis et al., 2021).

Microbes also reduce the concentration of HMs in soil; for

instance, Aspergillus niger showed an appreciable ability to for

bioaccumulation of Cd and Cr (Khan et al., 2019), similarly,
TABLE 1 Toxic effects of different heavy metals on human health.

Heavy
metals

Toxic
form

Health risks References

Cadmium Cd2+ Cd toxicity reduce cell vitality,
induce apoptosis, and damage the
kidney, liver and bones.

Wang
et al. (2021)

Cadmium Cd2+ High intake of Cd fractured the
bones, kidney damage and liver
infections along with
reproductive dysfunctions.

Kim
et al. (2019)

Arsenic As As toxicity developed dermal
lesions (hyperkeatosis and
pigment alterations) and lead to
skin cancer,

Muzaffar
et al. (2023)

Mercury Hg Hg toxicity enhanced heart rate,
headache, hypertension, insomnia,
alters nerve response, and impairs
cognitive function and resulted in
cardiac and renal dysfunctions

Eneh
et al. (2023)

Lead Pb Pb toxicity is lethal to heart,
kidney and nervous system. It
also affect brain development and
gastrointestinal tract of children.

Mishra
et al. (2022)

Iron Fe Iron toxicity caused dehydrated
condition that further develop
abdominal pain, Vomiting,
diarrhea and lethargy.

Singh
et al. (2023)

Cooper Cu Cu toxicity caused gastrointestinal
distress followed by abdominal
pain, vomiting, and hypotension
and it also affected the human
brain, liver and
kidney performances.

Leal
et al. (2023)

Chromium Cr3+ Cr3+ toxicity reduced cell vigor
and cause breast and liver cancer.

Chandra
et al. (2020)

Aluminium Al3+ Al damaged central nervous
system, kidney and liver
dysfunction, and cause pulmonary
fibrosis, osteomalacia and
lung infections.

Obani
et al. (2023)

Vanadium V Vanadium toxicity caused nausea
and throat injury, rashes and
blacken the teeth and tongue.

Briffa
et al. (2020)

Mercury Hg Hg toxicity disturbed nervous,
digestive, and immune systems
and dysfunction the lungs,
kidneys, skin, and eyes.

Demarco
et al. (2023)

Lead Pb Pb toxicity damaged fetus brain
and kidney along with circulatory
and nervous system.

DeOliveira
et al. (2023)
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Stenotrophomonas rhizophila also significantly removed Pb and Cu

by 76.9% and 83.4% (Sun et al., 2021). Due to small size microbes

also provide a large surface area to adsorb the HMs which reduces

the overall availability of HMs (Rajput et al., 2022). Further,

microbes also accelerate the bio-adsorption of toxic HMs which

makes them an excellent amendment to remediate HMs

contaminated soils (Srivastav et al., 2018). Microbes can also

multiply quickly; thus, the use of microbes could be an important

amendment to treat the HMs polluted soils (Singh et al., 2020). The

recent advancement in microbial bioremediation techniques has

shown promising results to remediate polluted soils. For instance,

different bioinformatics are being used to develop more effective

remediation technologies. These tools are using different databases

to explore the underlying mechanisms of degradation (Zheng et al.,

2018). Recently, bio-remediation also used genomics,

transcriptomics, metabolomics, and proteomics which is added to

the evaluation processes of in-situ bio-remediation (Villegas-Plazas

et al., 2019). Moreover, genomic studies have also allowed us to

analyze the genetic information of microbes within the cell which

ensures to development of better microbes for remediation

(Hakeem et al., 2020). Additionally, recent advancements in

synthetic biology also showed promising results and genetically

modified organisms (GMOs) have shown appreciable results in

removing pesticides, and xenobiotics from the environment (Bala

et al., 2022). There are many reviews available regarding the role of

microbes in remediating metals polluted soils. Nonetheless, there is

no comprehensive review available describing the role of microbes

in remediating the antimony, arsenic, cadmium, chromium,

mercury, lead, and nickel-contaminated soils. The aforementioned

metals/metalloids are highly toxic and their concentration is rapidly

increasing in the environment. Recently, bio-remediation got

appreciable attention across the globe, therefore, we have

discussed the role and mechanisms of microbes to remediate soils

polluted by these toxic metals. The current review also discusses the

different research gaps that must be filled besides the appreciable

progress in the field of bio-remediation. This review provides

insights to boost microbial functioning for the remediation of

polluted soils.
Sources of heavy metals entry
into soils

Recent industrialization is meeting population food demands

but also posing a severe hazard to the environment by excreting

poisonous compounds such as HMs (Aluko et al., 2021). These

toxic HMs enter into the human food chain by eating the

contaminated foods (Sayyed et al., 2019). Among HMs, As, Cr,

Cd, Pb and Hg got a serious attention across the globe because their

concentrations in many terrestrial, marine, and aerial systems

exceed the safety threshold (WHO 1990; Rahman and Singh,

2019). HMs have both natural and anthropogenic origins and

they can be found in the atmosphere, water, soil and biological

organisms (Yin et al., 2021). HMs generation from human sources

is permanent and constant while the generation of HMs from
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natural sources is also affected by natural sources (Armah et al.,

2014). The major human sources of HMs are agriculture, industries

and urbanization (Li et al., 2021). Textiles, tanneries, fertilizers,

galvanizing factories, metallurgic factories, varnishes,

pharmaceuticals and pesticide companies are major sources of

HMs pollution (Verasoundarapandian et al., 2022).

In the mining process, a significant amount of waste rocks is

produced which contains a low quantity of HMs. These HMs are

carried into ground and water areas by biological and chemical

leaching and are then enters into the human food chain (Li and Yu,

2015). Agriculture activities also add a significant amount of HMs

into soil owing to the continuous use of inorganic chemicals.

Natural phosphate contains impurities in the form of HMs, and

different HMs such as As, Cd, Ni, Cr, and Zn have been identified in

higher concentrations in over 200 phosphate fertilizers used

worldwide (Nziguheba and Smolders, 2008). Likewise, pesticides

also contained impurities in the form of HMs and it has been found

that different pesticides contained Hg, As, Cu and Pb as an active

elements. Different pesticides containing Hg (II) and Pb(II) has

been banned owing to their higher toxicity (Kothe et al., 2010). The

application of industrial and municipal wastewater is also common

practice and the constant application of these waste waters also

leads to the accumulation of HMs in soil (Ren et al., 2015; Li et al.,

2017b). Electronic waste also has a significant contribution in HMs

pollution. For instance, in China in electronic waste recycling site

has a significant amount of Cd and Cu greater than the threshold

levels (Wu et al., 2015). Heavy metals from natural sources include

mineral deposition, eruption of volcanic pathogenic processes, and

oceanic evaporation (Zhang et al., 2012). Mining is an important

source of HMs release (Acosta et al., 2011), and in China mining is

produces around 12 lakh ha of wasteland per year with an annual

increase of approximately 47,000 ha (Zhuang et al., 2009).
Effects of HMs on agro-ecosystem

Soil biology is crucial for maintaining soil quality, which is

critical for agricultural sustainability. Human activities are a major

source of HMs and they disturb soil microbes, soil fertility, and

productivity (Sharma et al., 2017). The survival of microbes is

negatively corrected with prolonged exposure of HMs like Pb (Yuan

et al., 2015). Similarly, coal mining activities also cause a decrease in

microbial abundance, biomass, and variability (Nayak et al., 2015).

Heavy metals also slow down the breakdown of litter resulting in

uneven deposition of litter on the soil (Marschner and Kalbitz,

2003). Furthermore, HMs have a deleterious impact on the

breakdown of stream litter (Hogsden and Harding, 2012; Ferreira

et al., 2016). Moreover, HMs also induce a negative effect on soil

microbes and a negative correlation has been reported between the

concentration of HMs and microbial respiration (Nwuche and

Ugoji, 2008). Depending on the soil parameters, substrate

concentration, and HM exposure, heavy metals can either

accelerate or inhibit N mineralization. The toxicity of HMs also

disrupts the N transformation pathways which consequently affect

the mineralization of HMs (Hamsa et al., 2017). Further, HM
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pollution also induces a negative effect on N mineralization and

nitrification and both these processes decrease with increasing the

amount of HMs pollutants. Further, nitrification is considered to be

more susceptible to HMs as compared to mineralization (Bewley and

Stotzky, 1983). Moreover, HMs also affect the soil enzymatic activities

andmicrobial abundance (Xian et al., 2015) and it has been found that

HMs reduce the soil enzymatic and microbial activities and soil

microbial abundance (Pan and Yu, 2011; Xian et al., 2015).

For instance, Li et al. (2020) documented that HMs reduced

bioactivity, richness, and microbial diversity. They found that heavy

metals (Cu, Cr, Ni, Pb, Zn, and Mn) showed total variations of

87.7%, 56.6%, 83.0%, and 55.1% a-diversity, and community

composition, predicted by PICRUSt. In another study, it was

documented that Pb stress altered the bacterial community

structure. These authors found that Pb 2.5% and 5% increased

Actinobacteria abundance by 118.56 and 147.25% while 5% Pb

stress Bacteroidota and Myxococcota increased abundance by

280.76 and 138.54%, respectively (Meng et al., 2023). In another

study, a significant change in microbial abundance and diversity

was observed in Cd-polluted soil. Cadmium toxicity (50 mg kg-1)

increased Bacteroidota and Proteobacteria by 2 and 0.3 folds while

Cd toxicity decreased the abundance of Acidobacteriota, Firmicutes,

Chloroflexi, Myxococcota, and Gemmatimonadota by 0.3, 0.5, 1.7,

2.2 and 2.4 folds (Bandara et al., 2022). The studies have

documented that long-term exposure to heavy metals negatively

affects soil health. For instance, Cheng et al. (2022) long-term Cd

toxicity decreased the soil organic matter, nitrogen, phosphorus,

and potassium availability. The other group of authors found that

long-term As toxicity showed a negative showed a negative impact

on soil enzymatic activities and soil properties. They found that As

toxicity reduced the urease and dehydrogenase activities and soil

nitrogen, SOM and clay were the main factors affecting the soil

enzyme activity (Nurzhan et al., 2022). Some studies also reported

that microbial species show resilience in response to HMs. For

instance, Philippot et al. (2008) found higher resilience of nitrate

reduction rates to Hg stress (100 mg kg-1). Brandt et al. (2010) noted

that soil bacterial communities showed structural and functional

resilience to Cd exposure (0, 40, 150, and 500 mg·kg−1). They found

that the observed increase in Cu tolerance against higher

concentrations of Cu was involved in the phenotypic adaption

and selection at the micro-diversity level. HMs-mediated disruption

in soil microbial activities also negatively soil properties and

microbial activities. For instance, soils contaminated with HMs

are associated with insufficient nutrients, organic matter, and water

retention capacity (Singh and Kalamdhad, 2011). The increase in

toxicity of heavy decreases the microbial abundance and diversity

and indirectly affects soil enzyme activities by changing microbial

community synthesizing enzymes (Singh and Kalamdhad, 2016).

Moreover, heavy metals also inhibit soil enzymatic activities and

reduce the mineralization of SOM and nutrient nutrient cycle

(Bakshi et al., 2018). Globally, different including physical,

synthetic, and natural remediation techniques (in situ and ex-situ)

are used to remediate polluted soils. The use of genetically modified

microbes has received appreciable attention to cleanup metal-

contaminated soils and improve stress tolerance (Narayanan and

Ma, 2023).
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Plant responses to heavy metals

Heavy metals seriously affect plants and the effects of HMs on

plants can be seen from germination to senescence (Table 2). Seed

germination is one of the most critical stages of plant life and a

mediated decrease in seed germination declines seedling growth

and subsequent stand establishment (Adrees et al., 2015). For

instance, in a study, it was found that combined Cu and Cd stress

reduce seed germination, growth of seedlings, and lateral growth

rate (Neelima and Reddy, 2003). The exact mechanism through

which HMs change seed physiology is not well understood, and

different authors reported that HMs inhibit the activities of various

enzymes that cause a reduction in seed germination (Figure 1). For

instance, Hg induced a decrease in seed germination owing to the

direct interaction of Hg with HS group proteins that leads to the

formation of an S-Hg-S bridge thus causing a loss in enzymatic

activities (Cui et al., 2014).

Apart from seed germinations, HMs also change the root

architecture and this effect has been reported in plants. In

particular, HMs decreased the root elongation (3-4 folds) and

enhanced the formation of lateral roots (2-3 folds) in the

presence of different HMs like Cu, Pb, Cr, Zn, and Cd (Sofo

et al., 2017). The formation of lateral roots is the initial symptom

of HMs toxicity which consequently impairs the uptake of nutrients

and water thereby reducing subsequent plant growth (Rucińska-

Sobkowiak, 2016). Along with root inhibition, HMS also causes a

reduction in plant growth. HMs transport from roots to aerial parts

and accumulates in plant cells which interfere with cellular

metabolism and thus cause a reduction in plant growth (Shanker

et al., 2005; Wang et al., 2020). As a result of their interactions with

the central atom (Mg) of the porphyrin ring, heavy metals also

break down the chlorophyll molecules, severely reducing

photosynthesis and ultimately impairing plant growth (Yadav

et al., 2014). Moreover, HMs like Cu also cause lignification of

both roots and shoots which reduces biomass production owing to

impaired cell development (Martins et al., 2020). Additionally, HMs

hurt the water relationships which in turn affects a variety of

physiological activities like photosynthesis and transpiration

(Alsokari and Aldesuquy, 2011). A recent study showed that Cd

stress (100 uM) decreased the plant height by 69% and 73% in

sorghum cultivars JS-2002 and Chakwal sorghum (Hassan et al.,

2019). Further, Cd toxicity also increased MDA concentration by

39% and 43% respectively in both cultivars (Hassan et al., 2019). In

another study, it was witnessed that Pb stress decreased the

photosynthetic rate, carbon dioxide concentration, transpiration

rate, and WUE by 50.5, 73.2, 48.6, and 148.8% respectively (Qin

et al., 2023). Heavy metal toxicity also negatively effect nutrient

uptake by plants. For instance, Fava bean plants’ Cd toxicity (150

mg/L) decreased the Ca and Mg concentration by 1.82 and 1.27

times while Cd toxicity (300 mg/L) decreased the Cd and Mg

concentration by 2.278 and 2.25 folds (Pirsělová and Ondrusǩová,

2021).In plants like Helianthus annuus and Vigna radiata, HMs

(As) increased the number of stomata followed by the development

of abnormal, arrested, and fused stomata (Gomes et al., 2011; Gupta

and Bhatnagar, 2015). Heavy metals also affect the xylem vessels’

parenchymatous and mesophyll cells and resultantly change the
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plant water relations and are considered to be responsible for the

decrease in leaf growth. Heavy metals also negatively affect the

photosynthetic machinery however, it depends on the

concentration of HMs. Moreover, HMs also negatively affect the

light-harvesting, transport of electrons, and RuBisCo activity which

in turn reduce the overall plant photosynthetic efficiency (Paunov

et al., 2018; Latif et al., 2020). Besides this HMs (Cd) also reduced

the photochemical efficiency (Fv/Fm), the effective quantum yield

of photosystem II (jPSII), and chlorophyll florescence thereby

leading to the inhibition of photosynthesis (Gao et al., 2020;

Yotsova et al., 2020).

Generally, HMs (Hg, Cu, Pb, Ni, Cd, and Zn) target the plant

chlorophyll in three different ways by increasing the activity of

chlorophyllase enzyme, causing oxidation of chlorophyll through

increased ROS production, and inhibiting biosynthesis of

chlorophyll biosynthesis (Gill et al., 2012; Shahzad et al., 2018;

Sharma et al., 2020). HMs not only affect the chlorophyll molecules

but also the membranes of the chloroplast and thylakoid cells. For

example, swelled thylakoids, degraded chloroplast membranes, and

loss of chloroplast membrane were noted in barley plants under Pb

stress (Wang et al., 2017). Moreover, HMs also inhibit the light

reactions by decreasing the efficiencies of PS-I and PS-II and they

also decrease the dark reactions owing to decreased activities of

enzymes linked with the Calvin cycle (Souri et al., 2019). Heavy

metals also induce overproduction of ROS that damage proteins,
Frontiers in Plant Science 05
DNA, and lipids and lead to the induction of oxidative stress (Foyer

and Noctor, 2016). However, plants also activate excellent deference

and they also accumulate various osmolytes to counter the toxic effects

ofHMs.For example,Chowardharaet al. (2020) found that activities of

CAT, GST, GR, APX, and POD and accumulation of proline and

ascorbic acid were increased in response to Cd toxicity in B. juncea. It

has been reported that HMs also decrease the uptake of water and

nutrient which in turn cause significant growth losses (Rucińska-

Sobkowiak, 2016; Wang et al., 2017). For instance, Cd toxicity

competes with calcium (Ca), iron (Fe), and magnesium (mg) which

caused a significant reduction in growth and biomass production

(Raza, 2022).

Under theharmful effects ofHMs,nitrogenmetabolism is essential

for plant growth and development. According to reports, HMs

decrease the nitrate and ammonia assimilation enzymes by

increasing protease activity. MicroRNAs play an imperative role in

HMs toxicity by regulating the plant antioxidant responses, chelations,

and auxin and cytokinin signaling (Ding et al., 2020). For instance,

Casarrubia et al. (2020) found thatmycorrhizal andmicroRNAplayed

a significant role in Cd tolerance in Vaccinium myrtillus. In another

study, it was found that MicroRNA expression significantly improved

the Cd and Al tolerance in tobacco (Cedillo-Jimenez et al., 2020).

Heavymetals also negatively affect the quality of crops and it has been

found that Cd toxicity in rice reduced the rice protein contents, and

milling degree and increased the kernel chalkiness (Imran et al., 2021).
TABLE 2 Toxic effects of different heavy metals on plants and soil health.

Heavy
metals

Concentration
of
heavy metals

Growth
media

Plant
species

Effect of plants and soil References

Chromium 120 mM Soil Grapevine Cr toxicity reduced the root and shoot growth, tissue nutrient concentration,
chlorophyll contents, leaf water status, quantum yield of photosystem II and soil
microbial activity.

Nikolaou
et al. (2022)

Lead 200 mg Kg−1 Soil Sunflower Pb intensity reduced the soil fertility and water uptake along with a significant
decrease in stem and root length, dry biomass and crop yield.

Alaboudi
et al. (2018).

Cadmium 2 mg kg−1 Soil Rice Cd stress increased ROS that destroyed the chloroplast and thus reduced the
photosynthetic efficiency of plants. Further, Cd toxicity altered nutrient
absorption by plant roots.

Li et al. (2023)

Copper 10 g L-1 Soil Barley Cu toxicity decreased the root and shoot length by affecting stomatal density,
conductance and PS II efficiency whereas high Cu reduced the organic matter
percentage and microbial population in soil.

Rajput
et al. (2018)

Lead 10 mL Soil M. sativa Pb toxicity decreased the antioxidant production while increased ROS that
reduced the plant growth and physiological functions.

Raklami
et al (2021)

Nickle 1000 mM Soil Guava Ni toxicity reduced plant growth and development, photosynthesis and
transpiration activities, leaf gas exchanges and K+ uptake and microbial growth.

Bazihizina
et al. (2015)

Nickle 400 mM soil Rice Ni toxicity reduced the fresh and dry weight along with shoot and root length
and increased ROS, lipid peroxidation and consequently protein denaturation.

Hassan
et al. (2019)

Lead 100 mM Soil Wheat Pb caused stunted growth, chlorosis and blackening of roots that reduced the soil
nutrient uptake mechanism.

Tripathi
et al. (2016)

Cadmium 4.8 mM Soil Wheat Nutrient availability reduced to plant under high Cd stress that resulted in
decreased root length and seedling growth, subsequently less fresh and dry
biomass and yield production.

de Souza
Guilherme et
al. (2015)

Chromium 300 mM Soil Wheat Cr affected the lamellar system of plant and disturbed the photosynthetic
machinery, and caused chlorosis, which impaired growth.

Mathur
et al. (2016)
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Microorganisms responsible
for bioremediation

Heavy metal pollution poses a severe threat to public health by

contaminating food supplies and drinking water on a global scale

(Huang et al., 2020). Microbial remediation is an imperative

approach and it has appreciable potential to improve crop

productivity, and human health and restore the ecosystem

(Narayanan and Ma, 2023). The microbial-mediated bio-

accumulation and bio-magnification are very successful in

removing the pollutant to ensure safe and sustainable crop

production (Manorma et al., 2023). Different microbes including,

algae, bacteria, and fungi are being used to clean up the HMs

contaminated soils (Table 3).
Bacteria

The interaction of microbes with HMs occurs through different

mechanism which depends on metal and microbe type and

surrounding environment. Different factors including

temperature, pH, nutrient source, and metal ions play an

important role in the mobility and bioavailability of HMs for
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microbial transformation. Bacteria’s small size, rapid growth, and

ease of cultivation allow them to thrive in a variety of environmental

situations. HMs often connect to functional groups including

amino, carboxyl, sulfate, and phosphate groups that are present

on the layers of bacterial cell walls (Yue et al., 2015). The potential

of bacteria for HMs uptake can vary from 1-500 mg/g. For instance,

Hg resistant pseudomonas aeruginosa strain absorbed the Hg

uptake 180 mg/g (Yin et al., 2016). Likewise, different microbes

like Bacillus sp. PZ-1 and Pseudomonas also absorb the Pb from

wastewater (Li et al., 2017a). On the other hand Arthrobacter

viscosus can absorb the Cr and it also has an excellent capacity to

transfer the Cr (VI) into Cr (III) (Hlihor et al., 2017).

Rhodobacter capsulatus also showed a maximum capacity of

164 mg/g to absorb the Zn (II) (Magnin et al., 2014) while Bacillus

ceres showed a maximum bio-sorption capacity of 31.95 mg/g and

24.01 mg for Cd (II) in dead and living cells (Huang et al., 2013).

Extracel lular polymeric substances (EPS) protect the

microorganism from the toxic effects of HMs by restricting entry

of HMs into the cell. It has been discovered that EPS has both anion

and cationic functional groups, which help to accumulate HM ions

like Cd, Hg, Cu, and cobalt (Fang et al., 2017). After adsorption

HMs are converted to diverse ionic states in bacterial cells that

reduce their toxicity. Pseudomonas putidais an important microbe

and it can absorb 100% Hg from the marine environment it also
FIGURE 1

Toxic effects of heavy metals on plants. Heavy metals are absorbed by plants roots and then they are moved to above ground plant by different
transporters and then accumulated in above ground parts. The accumulation of HMs in plant parts induce ROS production, necrosis, and decrease
nutrient and water uptake and caused protein degradation, cell detoxification thus reduce the plant growth and development.
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reduces the Hg(II) into Hg(0) (Sheng et al., 2018). The findings of

Zhang et al. (2012) showed that a new microbial strain

Acinetobacter sp. showed an excellent ability to detoxify the Cr.

In another; authors screened 72 acidothermophilicautotrophic

microbes for their ability to tolerate and bio-absorb the HMs and

these authors found that the ATh-14 strain showed an appreciable

potential and it showed absorption capacity of 85.82% for

solubilization of copper (Umrania, 2006). Bacteria are better bio-

sorbents as compared to other microbes due to their size, ubiquity

resilience, and ability to grow under a wide range of conditions

(Hlihor et al., 2017).
Fungi

Fungi also have an excellent ability to remediate the HMs

polluted soils. The presence of chitin, polysaccharides, phosphate,

and glucuronic acid in fungal cells is essential for the adsorption of

HMs (Purchase et al., 2009). Different functional groups and fungal

strains had a significant impact on the adsorption rate of HMs

(Iram et al., 2015). In a study, it was found that Termitomyces
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clypeatus detoxified the Cr(VI) by adsorbing Cr on its surface

through carboxyl, imidazole, hydroxyl, phosphate, and sulfhydryl

groups (Ramrakhiani et al., 2011). Further, Amirnia et al. (2015)

found that Saccharomyces cerevisiae eliminated the Cu(II) from

water sources, while Talukdar et al. (2020) found that Aspergillus

flavus fungal species removed the Cr by more than 70%. Moreover,

Aspergillus fumigates also showed an appreciable potential to

remove the Cd, Cr, Cu, Ni, and Zn from the contaminated soils

(Shazia et al., 2013). In another investigation, three different fungal

species including Penicillium citrinum, Trichoderma viride, and

Penicillium showed a significant potential (250 mg/L) to adsorb

the Cr(VI) (Zapana-Huarache et al., 2020).
Algae

Algae have also shown a good potential to remediate HM-

polluted sites owing to the fact algae produce various peptides that

help the accumulation of HMs and defend against the HMs (Bilal

et al., 2018). For instance, Fucus vesiculosus showed a tremendous

potential to adsorb the Pb(II) (Demey et al., 2018), likewise,

Cladophora fascicularis also showed a significant potential to

remediate the Pb(II) from wastewater. Similarly, Sargassum

marine algae also showed a significant potential to detoxify the

Cu (II) from the aqueous solution (Barquilha et al., 2017). In

another study Christoforidis et al. (2015) tested the absorption

capacity of Cystoseira crinitophylla for copper and found that this

algae showed a maximum capacity of 160 mg/g to adsorb Cu

(Christoforidis et al., 2015). On the other hand, authors noted

that Saccharina fusiforme and Saccharina japonica substantially

detoxify the Zn(II), Cd(II), and Cu(II) (Poo et al., 2018) while

Desmodesmus also showed an appreciable potential to remove the

Cu(II) and Ni(II) from the wastewaters (Rugnini et al., 2018). The

study findings of Aslam et al. (2019) showed that microalgae

showed promising results in the accumulation Mn, Cu, and Zn

(Freitas et al., 2011). Moreover, the findings of Freitas et al. (2011)

showed that algal biomass showed an appreciable potential for HMs

like Fe.
Factors affecting the
bioremediation process

Different factors including metal concentration, valance state,

metals bioavailability, redox potential, soil temperature, and pH

affect the bioremediation process (Bandowe et al., 2014). The pH of

the soil has an impact on bacterial enzymatic activity as well as

microbial bio-sorption (Morton-Bermea et al., 2002). Soil pH also

changes the surface charge of microbes by affecting the ability of

microbes to absorb the HM ions (Galiulin and Galiulina, 2008). Soil

pH substantially affects both the transportation and hydration of

HM ions in soil (Dermont et al., 2008) and it has been documented

that the rate of HMs removal is increased with increasing pH over a

certain rate and after this, the rate of removal starts declining

(Wierzba, 2015). The ideal pH range for most bacteria is 5.5-6.5
TABLE 3 Different microbes used to remediate heavy metals
polluted soils.

Type
of
microbe

Microbial
species
name

Used against
heavy metals

References

Bacteria Penicillium
chrysogenum A15

Lead Povedano-Priego
et al (2017)

Fungi A. fumigatus Lead Khan
et al (2019)

Bacteria Pseudomonas sp. Chromium Tirry et al (2021)

Fungi Penicillium sp. Chromium Barsainya
et al (2016)

Bacteria Phyllobacterium
myrsinacearum

Arsenic Alves
et al (2022)

Bacteria Acinetobacter Copper Ke et al (2021)

Yeast Wickerhamomyces
anomalus

Chromium Joutey
et al (2015)

Bacteria P. fluorescens Cadmium Abbaszadeh-
Dahaji
et al (2019)

Algae Pelvetia
canaliculata

Chromium Lytras
et al (2017)

Bacteria PGPE consortium Mercury Ustiatik
et al (2022)

Bacteria Sinorhizobium
Saheli

Cadmium Kang et al (2018)

Aerobic
bacteria

Variovorax
paradox

Nickle Durand
et al (2016)

Bacteria Bacillus sp. and
Bacillus pumilus

Cadmium Narayanan and
Ma (2023)

Aerobic
Bacteria

Micrococcus luteus Arsenic Pinter
et al (2017)
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(Wang et al., 2001), however, some bacteria like Bacillus jeotgali can

thrive at a pH of 7 (Rodrıǵuez-Tirado et al., 2012). Another

significant component that influences the absorption of HMs is

temperature; which influences the development and proliferation of

microorganisms (Fang et al., 2011). Different bacteria require

different temperatures to carry out their functions (Acar and

Malkoc, 2004). However, HM ions, soil additives, and soil type all

have an impact on microbial activity. It is challenging to achieve

microbial adsorption due to the low mobility of HM ions caused by

soil adsorption and retention of HM ions (Hu et al., 2010).

Soil pH is an important factor that affects microbial growth. For

instance, unfavorable pH affects enzyme activity which lowers the

rate of microbial metabolism and it also affects the binding capacity

between HMs and adsorbants (Bandowe et al., 2014). The changes

in pH also affect the mobility and hydration of metals (Bandowe

et al., 2014). For instance, the adsorption capacity of Zn and Pb was

increased with increasing pH, and an increase in soil pH above 5.5

decreased the removal of Pb and Zn (Wierzba, 2015). Other authors

also documented that soil acidification increased the mobility of

metals in the following order Cd>Zn>Pb. These authors also

document that soil pH affects mobility, causes metal ions to

become more or less active, and increases or decreases their

environmental risk (Kicińska et al., 2022). Temperature is also a

factor that affects microbial growth (Fang et al., 2011). The increase

in temperature affects the diffusion of metals and increases the

bioavailability of metals. However, optimum degradation

temperature can vary according to metal types, for instance, Cd

bio-degradation by Bacillus jeotgali was maximum at 35°C while

bio-degradation by the same bacteria was higher at 30°C

(Chanmugathas and Bollag, 1988). The adsorption efficiency is

also affected by soil organic matter, for instance, organic matter

tends to fix the metals in soil which reduces the availability to metals

(Wang et al., 2022). A short-term study investigates the response of

different temperatures (5, 15, and 25oC) Cd, Cu, Pb, and Zn

removal by Carex pseudocyperus, C. riparia, and Phalaris

arundinacea. Low temperatures reduce the removal capacity of all

the metals and an increase in temperature increases the removal

capacity of all the metals (Schück and Greger, 2023). Climate

change also induces a significant impact on soil microbial

activities. For instance, climate-induced variation in soil

temperature, and humidity affect the decomposition of SOM and

nutrient cycling (Burns et al., 2013), and it partially or fully depends

on microbial activity. The change in soil temperature and moisture

can change the growth, structure, function, composition, and

interaction among microbes for the degradation of pollutants in

soils (Alkorta et al., 2017).

Bioremediation is generally limited to bio-degradable

compounds, and it is also susceptible to rapid degradation which

more toxic compounds. Besides it, bio-remediation also needs

extensive monitoring and it has major drawbacks in terms of

environmental growth conditions, nutrient requirement,

temperature, and pH conditions. Therefore, it is essential to find

ways to identify the microbes having a wider adaptability under a

wide range of temperature and pH conditions for an efficient

remediation process. On a long-term basis, microbial mediation

remediation is a simple, cheap, and environmental method and it
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can improve the overall soil fertility, ecosystem health, and safer and

sustainable food production. Nonetheless, implantation of

bioremediation needs a comprehensive understanding of soil

microbial communities, properties of contaminants, and

environmental conditions as these factors play a critical role in

getting effective results.
Microbial mediated remediation of
heavy metals polluted soils

The use of microbes is considered as an effective way to treat the

HMs in polluted soils, as these microbes absorb HMs and also

convert them into less toxic forms (Gupta et al., 2016).

Microorganisms play a critical role in remediating HMs polluted

soils owing to the fact they can with stand metal toxicity. Numerous

HMs have been reported to be precipitated, undergo oxidation state

changes, and be sequestered by microbes (Figure 2; Kang

et al., 2016).
Microbial mediated remediation of
antimony contaminated soils

Microorganisms are crucial for remediating Sb polluted soils

and they reduce the toxicity of Sb through different ways including,

bio-reduction and bio-oxidation (Jeyasundar et al., 2021). Many

bacteria have been identified that can be used to remediate the Sb-

polluted soils (He et al., 2019). For instance, two bacteria Shinella

and Ensifer discovered from Sb-contaminated soils showed a

tremendous potential to oxidase Sb (Choi et al., 2017) while the

bacterial Bacillales strain also showed marked results to change the

Sb-V into Sb-III (Lai et al., 2018). Similarly, fungi have been also

used to remediate the Sb polluted soils, and study findings of Xi

et al. (2022) showed that AMF increased plant antioxidant activities

by reducing the retention of Sb in plant parts. The findings of Liu

et al. (2013) showed that the bacterial strain Pseudomonas

substantially increased the plant growth, and microbial activity

and decreased Sb availability (Liu et al., 2013). In another study

Zhang et al. (2012) found that microbes isolated from the rice field

contributed significantly towards the oxidation of Sb-III likewise, Li

and Yu (2015) also found that Agrobacterium tumefaciens

contributed towards the oxidation of Sb-III.

Some environmental microorganisms, particularly those that

thrive in anaerobic environments, are capable of converting Sb(V)

to Sb(III). For instance, Hockmann et al. (2014) noted that microbes

converted the SB-V to Sb-III with the help of lactate as an electron

donor. Similarly, Kulp et al. (2014) found that microbes in Sb-

polluted mines reduced Sb-V to Sb-III. In the case of flooded mine

pit soils group of researchers from China found that autotrophic

bacteria reduced the Sb-V and generated Sb2O3 by using hydrogen

gas (H2) as an electron donor (Lai et al., 2016). Additionally, Huang

et al. (2022) found that after 60 days of injection of the B. cereus

solution into plant roots; the concentration of As and Sb in soil was

significantly reduced as compared to soil without bacteria solution
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this indicates that this strain promoted the absorption of As and Sb

from soil (Huang et al., 2022).
Microbial mediated remediation of
arsenic contaminated soils

Arsenic occurs in the environment in different inorganic forms

including As-0, As-III, and As-V, and organic forms like

dimethylarsinic acid (DMA), monomethylarsonic acid (MMA),

trimethylarsine oxide (TMAO) and arsenobetaine. It has been

found that bacteria, algae, and fungi can methylate As-III into

methylated species (Yang and Rosen, 2016; De Francisco et al.,

2021). Different fungal species like Aspergillus, Candida,

Scopulariopsis, and Penicillium can also cause a change in the

methylate inorganic As to the organic As species (Bentley and

Chasteen, 2002). It is important to keep in mind is that the ability of

certain microorganisms to methylate and volatilize depends on soil

organic matter (SOM), soil chemistry, and As concentration

(Mestrot et al., 2011). Spagnoletti et al. (2016) tested the impact

of AMF (R. intraradices) on soybean plants under As stress and
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found a marked improvement in plant biomass and a reduction in

As accumulation. Likewise, Chan et al. (2013) also found that AFM

(Geosporum) enhanced the phosphorus uptake and reduced the As

concentration in rice grains.

Transgenic microbes are also an effective way to treat As

toxicity. For instance, transgenic microbes with expressed arsM

showed an ability of 2.2-4.5% to remove As from soil while the same

microbe showed an ability of 10-fold in nutrient solution (Liu et al.,

2011). In another study, Huang et al. (2015) found that

thermophilic strain Bacillus subtilis 168 was unable to do

methylation and volatilization of As. They genetically modified this

bacteria with CmarsM gene and found that genetically modified

bacteria caused methylation and volatilization of As it occurred

within 48 hours in As-contaminated organic compost. Moreover,

Villadangos et al. (2014) also modified the As-resistant bacteria

named Corynebacterium glutamicum by ArsC1 and ArsC2. These

authors found that As(V) was significantly increased after the

introduction of genetically modified bacteria. Additionally, Preetha

et al. (2023) also prepared the mutantC. glutamicum strain and found

that this strain showed an ability of 15 folds and 30 folds more to

accumulate As-III and As-V as compared to the control treatment.
FIGURE 2

Different mechanism used by microbes to induce heavy metals toxicity in plants. Microbes use different mechanisms bio-sorption, bio-
mineralization, bio-accumulation, bio-leaching and bio-transformation to remediate polluted soils. They also increase the availability of nutrients by
increasing production of IAA and ACC deaminase, and siderophores thus resulting in better growth under polluted soils.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1420408
Microbial mediated remediation of
cadmium contaminated soils

Cadmium is a very toxic HM posing a serious threat to human

health and the environment. The application of microbes is an

effective and promising technique to treat Cd-polluted soils. In a

study, Ma et al. (2020) discovered the Cd immobilization PGPR

(TZ5) and found that this bacteria significantly increased ryegrass

weight by 77.78% and decreased the concentration of Cd in ryegrass

by 48.49%. Further, the application of this bacteria also increased

the soil enzymatic activities and microbial growth which indicates

that this bacterial strain (TZ5) can provide a practical approach to

remediate Cd-polluted soils (Ma et al., 2020). Limited studies are

conducted to determine the impacts of single and co-inoculation of

Bacillus mycoides and Micrococcus roseus on growth and nutrient

uptake of maize grown under Cd stress (100 and 200 mg kg-1).

These authors found that all bacterial treatments appreciably

improved the plant growth and biomass and the combination of

both bacteria reduced the root and shoot Cd uptake and transfer

and translocation as compared to control (Malekzadeh et al., 2012).

In Cd-contaminated soils, Cd-tolerant bacteria play an

important role (Bravo, 2022). The microbes use various

mechanisms including biosorpt ion and intra-cel lular

accumulation to mitigate the adverse impacts of Cd stress (Ghosh

et al., 2022). Recently, genetically modified organisms also played an

important role in remediating Cd-polluted soils (Abbas et al., 2018).

Different genetically modified organisms (CdtB Enterobacter and

Klebsiella variicola) showed an appreciable potential to remediate

Cd polluted soils (Feria-Cáceres et al., 2022; Quiroga-Mateus et al.,

2022). Similarly, Arce-Inga et al. (2022) found that the application

of Theobroma cacao (CCN51) significantly decreased the uptake of

Cd, and its translocation to plant parts. Feng et al. (2023) studied

the impact ofmixotrophic acidophiles under Cd-contaminated soils.

These authors also found that soil solution pH and reduction level

of glucose affected the abundance of Acidithiobacillus which

contributes significantly towards removal of Cd (Feng et al.,

2023). On the other hand, the fungal strain belonging to

Purpureocillium lilacinum tolerated the Cd stress up to 12000 mg/

L. The SEM analysis indicated Cd can be accumulated on the

mycelial surface generating plenty of metal precipitation particles.

Further, these authors also found that in pot experiments this fungal

strain also reduced the soil Cd concentration in soil by 12.56% and

promoted plant growth this indicates that this fungal could be an

important candidate to remediate Cd polluted soils (Deng

et al., 2021).
Microbial mediated remediation of
chromium contaminated soils

Chromium is released into the environment as a result of

human and anthropogenic activities which pose a serious threat

to living organisms. Microbial remediation is an effective approach

to treatment the Cr polluted soils. For instance, in a study authors

tested the impact of Nostoc linckia to remediate Cr polluted soils.
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They found that this microbe showed an appreciable potential to

accumulate Cr and suggested that this bacteria could be an effective

candidate to remediate Cr-polluted soils (Cepoi et al., 2021). In

another study, edaphic cyanobacteria were tested for Cr

remediation and it was found that these bacteria produce

polysaccharides, glycoproteins, lipopolysaccharides, and ionic

functional groups that can coordinate with Cr and reduce its

availability (Cheung and Gu, 2007). Moreover, different Cr-

tolerant bacteria including Bacillus, Enterobacter, Pseudomonas,

and Streptomyceshave been identified and they can remove the Cr

by 50-90% (Ramesh and Winkler, 2010; Bansal et al., 2019; Elahi

and Rehman, 2019; Murthy et al., 2022). The study findings of Wen

et al. (2023) showed that the addition of SR-2, PA-1, and LB-5

improved the plant fresh weight by 10.3%, 13.5%, and 14.2% and

increased the soil enzymatic (catalase and sucrose) activities and

significantly decreased the shoot Cr concentration by 19.2-83.6%.

Chen et al. (2021) studied the impact of B. cereus WHX-1 on

mitigating Cr toxicity. They found that this microbial species

improved the soil physicochemical properties, soil bulk density

and decreased the redox potential. They also found that this

microbial species transferred the Cr-IV by 94.225 into Cr-III

increasing the residual fraction of Cr by 63.38%. Further, these

authors also found that the application of B. cereus improved the

growth and biomass production of ryegrass. In another study,

Ahmed (2018) studied the impact of chromium-tolerant auxin-

producing rhizobacteria on growth characteristics of Lens culinaris

growing under different Cr concentrations (0, 50, 100, 200, 400, and

500 µgml−1). The results of their study findings showed that

Bacillus species mitigated the deleterious impacts of Cr reduced

the Cr accumulation in soil and reduced Cr availability to plants.
Microbial mediated remediation of
lead contaminated soils

Bioremediation with microbes is considered an effective

approach is a promising technique to remediate the Pb-

contaminated soils. For instance, a pot study conducted on wheat

showed that R. sphaeroidesreduce the Pb concentration in root and

lead by 14.78% and 24.01% (Li et al., 2016). On the other hand,

Rhee et al. (2012) found that two fungal species Paecilomyces

javanicus and Metarhizium anisopliae isolated from mining

produced organic acids that resulted in precipitation of Pb. In

another research study Sun et al. (2017) found that soil inoculation

with M. circinelloides significantly increased the Pb removal by S.

nigrum L. These authors also found that soil fertility was also

increased after inoculating the soil with S. nigrum (Sun et al., 2017).

Likewise, Zhou et al. (2016) added WH16-1 strain in Pb2+

contaminated paddy soil and found that this bacterial strain

decreased the exchangeable and carbonate-bound Pb in the paddy

soil 14.04 and 10.69% (Zhou et al., 2016).

The study findings of Puyen et al. (2012) showed that

Micrococcus luteus marked decreased Pb concentration in soil,

likewise, findings of Kalita and Joshi (2017) showed that

Pseudomonas aeruginosa application to Pb-polluted soil
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appreciably reduction the concentration of Pb with 40 mg g-1

sorption capacity (Kalita and Joshi, 2017). Shanab et al. (2012)

tested the potential of different algae to remediate Pb-polluted soils

and they found that different algae isolates like Phormidium

ambiguum, Pseudochlorococcum typicum, and Scenedesmus

significantly reduced the Pb toxicity. Fungi is also an effective

candidate for reducing Pb toxicity (Fawzy et al., 2017) application

of AMF under Pb stress effectively increased the sunflower biomass

and mitigated the toxic effects of Pb (Hassan et al., 2013). In

addition to producing various organic acids, polyphosphates,

peptides, and sulfur compounds, fungi also do cell wall binding,

and make chelate, and precipitate that decreases Pb toxicity (Bellion

et al., 2006).
Microbial mediated remediation of
mercury contaminated soils

Mercury microbial remediation needs the microbial species to

withstand and remove the Hg over extended periods. Various

authors noted that microbes effectively remediate the Hg-

contaminated soils. For instance, Vigna unguiculata inoculated

with Photobacterium and grown on Hg-contaminated soil (27

mg/kg) showed increased root growth (11%), seed production

(33%), leaf numbers (50%), Hg uptake in roots (25%) and

decreased Hg concentration in aerial plant organs (55%) as

compared to un-inoculated control (Mathew et al., 2015).

Similarly, two bacterial strains like Brevundimonas diminuta and

Alcaligenes faecalis applied to Hg and Pb-contaminated soil

increased the phyto-accumulation of Pb and Hg by roots and

shoots (Hamzah et al., 2015). In another study Hg resistant

microbials including Enterobacter ludwigii and Klebsiella

pneumoniae, promoted plant growth and decreased proline

concentration, MDA concentration and electrolyte leakage in

wheat seedlings growing under Hg stress 75 mM; (Gontia-Mishra

et al., 2016).

In another study, bacteria inoculation significantly improved

maize growth and reduced the Hg uptake by maize plants growing

under Hg (Mariano et al., 2020). Fungi have also shown an

appreciable potential to remediate Hg-contaminated soils and it

has been found that AMF inoculation increased the plant growth, P

uptake, and reduced Hg uptake as well as translocation in Lactuca

sativa growing under Hg stress under (10 mg/kg) (Cozzolino et al.,

2016). Moreover, commercial AMF like Glomus, Entrophospora and

Scutellospora genera, appreciably improved the seedling growth and

root elongation of rice plants growing under Hg toxicity (Vargas

Aguirre et al., 2018). Another group of authors also found that

commercial AMF also promoted plant growth and stimulated the

uptake of Hg in Lolium perenne and rice plants growing under Hg

toxicity (Leudo et al., 2020). Likewise, Pietro-Souza et al. (2020)

found that compared with Chrysopogon zizanioides plants growing

with AMF under Hg stress showed a marked improvement in plant

growth, root and shoot biomass, chlorophyll concentration and

showed a reduction in Hg accumulation. Moreover, Aspergillus and

Curvularia geniculata also appreciably increased the maize root
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growth, root dry weight, shoot dry weight, chlorophyll, and Hg

accumulation by 40% and 34% respectively (Pietro-Souza

et al., 2020).
Microbial mediated remediation of
nickel contaminated soils

Microorganisms are extremely important for the

bioremediation of Ni-polluted soils owing to the fact this method

is very economically effective against Ni toxicity (Hassan et al.,

2019). Various bacterial strains including Bacillus thuringiensis and

Bacillus cereus have shown promising results in treating the Ni

contaminated soils (Zhu et al., 2016). Cabello-Conejo et al (2014)

recorded that Arthrobacter nicotinovorans appreciably improved

plant growth and increased the phyto-extraction of Ni from

polluted soil. Zaidi et al. (2006) documented that Bacillus subtilis

decreased the toxicity of nickel while noticeably boosting mustard

growth and nickel phyto-extraction. Other authors also found that

inoculation with Trichoderma atrovirideand Glomus intraradices

improved the Ni phyto-extraction and reduced the Ni toxicity in

linseed and mustard (Cao et al., 2008).

In another study, Alboghobeish et al. (2014) tested the potential

of bacterial strain (Klebsiella oxytoca) and found that this strain

showed a Ni tolerance of 24 mM. Likewise, Enterobacter asburiae

from industrial water depicted the Ni tolerance to a 15 mM

concentration and it removed the 75% Ni by bio-accumulation

(Paul and Mukherjee, 2016). Heidari and his colleagues found that a

Microbacterium oxydans strain showed a Ni removal efficiency of

83-91% (Heidari et al., 2020) while Das et al. (2014) reported that

Bacillus thuringiensis found that removed the Ni by 82% through

bio-sorption process. According to Costa and Tavares (2017),

Alternaria and Penicillium species have respective Ni biosorption

potentials of 11.3 and 13.1 mg g-1. Trichoderma and Aspergillus

inoculation also considerably increased the effectiveness of Ni’s

phytoextraction (Jiang et al., 2008) and Stenotrophomonas from

industrial waste also showed an appreciable potential to remove the

Ni (Aslam et al., 2020). However, the biosorption of Ni by microbes

significantly affects microbial strain, pH, temperature, and initial Ni

concentration (Heidari et al., 2020).
Microbial resistance to heavy metals
and their mechanisms

During HMs stress microbes either die owing to toxicity

developed by HMs or they thrive in this condition through

different resistance mechanisms against HMs (Table 4). Microbes

develop different mechanisms including, extra and inter-cellular

sequestration, and extracellular barriers, and they actively transport

the metal ions to tolerate HMs toxicity. On the surface of bacteria,

there are several barriers such as cell walls, plasma membranes, and

other structures like EPS that prevent HMs from entering bacterial

cells (Bhati et al., 2019). The research findings of Kumar et al.

(2014) indicated that bacteria and fungi cause the bio-sorption of
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metals like Cu, Pb, and Cr. Microbial biofilms contain polymers that

accumulate HM ions and protect the inside bacterial cells and the

presence of biofilm on Pseudomonas aeruginosa showed tolerance

against, Cu, Pb, and Zn (Teitzel and Parsek, 2003). Further, the

presence of biofilms also increased the elimination efficiency of

HMs (Grujic et al., 2017). Additionally, cell walls and EPS also work

as an excellent barrier and they substantially adsorb the metal ions

like Pb and Cr (Kushwaha et al., 2017).

The cellular membranes of microorganisms contain additional

proteins and metabolic products that interact with HMs to decrease

their availability. Microbes also develop extracellular sequestration

which involves the complexation of metal ions as insoluble

compounds and this mechanism is an important way to reduce

the HMs toxicity (Thelwell et al., 1998). Microbes also develop

intra-cellular sequestration in the metal ions form complexes with

distinct compounds in the cell cytoplasm and this is a very common

mechanism used by microbes to withstand the toxicity of HMs.

Microbes with the aid of low molecular proteins like cysteine

accumulation HMs like Cu, Cd and Zn intra-cellularly (Higham

et al., 1986) and other microbes like Rhizobium leguminosarum use

glutathione to accumulate HMs (Cd) intra-cellularly (Lima et al.,

2006). The cell wall of fungi is made of lipids, chitin, polysaccharide,

polyphosphates, and proteins which help them to accumulate HMs

both intracellularly and extra-cellularly (Remenar et al., 2018).
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Numerous metal exporting proteins, including ABC

transporters, P-type efflux ATPase, cation diffusion facilitator, and

proton-cation anti-porters, are found in microorganisms and assist

in the efflux of harmful metals (Soto et al., 2019). ABC transporters

also help microorganisms tolerate the stress brought on by HM by

facilitating the ions’ transfer across membranes (Lerebours et al.,

2016; Zammit et al., 2016). The microbial resistance to HM is also

contributed by enzymes that transfer the HMs ions from hazardous

to less toxic forms (Giovanella et al., 2016; Liu et al., 2017).

Microbes use different mechanisms including, biotransformation,

extrusion, EPS production, and proteins to survive the toxicity of

metals (Wu et al., 2009). They also produce different proteins like

metallothioneins that bind heavy metals thereby reducing HMs

toxicity (Wu et al., 2010). Further, EPS produced by microbes is a

mixture of proteins, nucleic acid, and polysaccharides that find metals

and reduce their concentration in the surrounding environment.

Different mechanisms including electrostatic interaction, ion

exchange, precipitation, redox process, and surface complexation are

involved in processes (Yang et al., 2015). The enzymes transfer metals

into less toxic forms in cells throughoxidation, reduction, complexation,

sequestration, methylation, and de-methylation. Different enzymes like

arsenite oxidase, mercuric reductase, chromate reductase, and nickel-

coenzyme m reductase have been identified to convert the metals

Lerebours et al., 2016; Zammit et al., 2016).
TABLE 4 Microbial remediation of heavy metals contaminated soils and different mechanism used by microbes to remediate heavy metals
contaminated soils.

Type
of microbe

Microbial species name Used against
heavy metals

Potential mechanism References

Bacteria Bacillus sp. KL1 Nickel Biosorption Taran et al. (2019)

Algae Spirulina sp. Chromium Biosorption Rezaei (2016)

Bacteria Bacillus thuringiensis Nickel Immobilization of Ni Zhu et al (2016)

Algae Spirulina platensis Chromium Biosorption Kwak et al (2015)

Bacteria Streptomyces sp. NRC21696 Arsenic Chelation AL-Huqail and El-
Bondkly (2022)

Bacteria Sphingomonas paucimobilis Chromium Enzymatic transformation Ibarrolaza et al (2011)

Yeast Candida tropicalis Chromium Biosorption Bahafid et al. (2013)

Bacteria Acidithiobacillus Nickel Bioleaching Wu et al. (2020)

Bacteria Aspergillus spp. Nickel Oxidation and reduction Bisht and Harsh (2014)

Yeast Cyberlindnera fabianii Chromium Biosorption Fernández et al. (2018)

Bacteria Bacillus sp. E1S2 Cadmium IAA production and ACC
deaminase synthesis

Ma et al. (2015)

Fungus Ganoderma lucidum Lead Biosorption Chang et al. (2020)

Filamentous fungi Aspergillus niger Chromium Biotransformation Gu et al (2015)
Singh et al. (2021)

Bacteria Aspergillus niger Nickel Biosorption Oyewole et al (2019)

Fungi Phanerochaete chrysosporium BKM-
F-1767

Lead biosorption and bioaccumulation Huang et al (2017)

Bacteria Bacillus amyloliquefaciens Chromium Biosorption/Bioreduction Fernández et al (2018)
ACC, 1-Aminocyclopropane-1-carboxylate; IAA, indole-3-acetic acid.
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Microbial mechanism used clean up
HMs polluted soils

Different mechanisms were used by microbes to clean up the

HM-polluted soils. Microbes play a critical role in the oxidation of

metals, for instance, Thiobacillus ferrooxidans) can promote the

oxidation of metal sulfides to enhance the release of HMs. Microbes

mediate the transformation of metal sulfides by sulfur oxidation. In

this process, microbes oxidize sulfide ores into metal ions by the

process of biological leaching (Kaksonen et al., 2020). Microbes also

cause the reduction of metals to reduce their toxicity. The removal

capacity of HM-nFeS against Cr-VI was 12-20% lowest as

compared to DM-nFeS which was linked with the capacity of

both HM-nFeS and DM-nFeS to reduce the Cr (Du et al., 2016).

The details of various mechanisms used by microbes to remediate

the HMs polluted soils are discussed below.
Bioaccumulation and biosorption

Bioaccumulation and biosorption are the most common

mechanisms used by microbes to remediate polluted soils and in

both mechanisms, microbes bound the HMs from the surrounding

environment (Joutey et al., 2015). In bio-sorption microbes use

cellular structure to capture the HM ions and then absorb these

HMs on the binding sites of cell walls (Malik, 2004). Microbes also

used adsorption mechanisms as bioremediation of HM. Different

microbes including Magnetospirillum gryphiswaldense, Bacillus

subtilis, microalgae, Chaetomorphalinum, Rhizopus arrhizus, and

Saccharomyces cerevisiae produce biosorbents for remediation of

HM (Zhou et al., 2012). In comparison to other microbes, bacteria

are thought to be superior bio-sorbents because of their larger

surface-to-volume ratio and variety of chemosorption sites in their

cell walls, including teichoic acid (Beveridge, 1989). Dead bacterial

strains also have good biosorbent properties and it has been found

that dead Bacillus sphaericus showed 13-20% more bio-sorption

capacity for Cr as compared to living cell of the same strain

(Velásquez and Dussan, 2009). On the other hand, bio-

accumulation depends on an import storage mechanism. This

process is known as active bio-accumulation and it involves the

movement of HM ions across the lipid bilayer of the cell membrane

and into the cytoplasm or intracel lular regions. The

bioaccumulation of HM in bacterial membranes is mediated via a

variety of ionic channels, carrier-mediated transports, permeation,

and lipid permeation (Shahpiri and Mohammadzadeh, 2018). In

literature, it has been well documented that microbes cause

bioaccumulation of Pb, Ni, Hg, Cd, and Cr (Rani and Goel, 2009;

Sher and Rehman, 2019; Naskar et al., 2020). Different researchers

also identified the micro-bacterium that shows resistance to HMs.

For instance, Henson et al. (2015) reported that Microbacterium sp.

(Cr-K29) reduced the Cr-IV uptake by 88% while Pattanapipitpaisal

et al. (2001) found that Microbacterium liquefaciens eliminated the

Cr by 90-95%. These microbes use heavy metal ions in order to

facilitate their metabolic activities or they also use enzymes
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produced by bacterial cells to detoxify ions of HMs (Kubrak

et al., 2010).
Bioleaching

Bioleaching is another important mechanism used by a wide

range of microbes to remediate polluted soils. For instance, in a

research study, authors found that Acidophiles and chemolithotrophs

oxidized the Fe-II to Fe-III and reduced sulfur to sulfuric acid. The

production of sulfuric acid leads to the synthesis of ferric ions as well

as protons which helps to extract metals through solubilizing oxides

and sulfides of metal (Srichandan et al., 2014). Microbes are utilized

in bioleaching as reduction agents, but they can also be used to extract

and recover HMs (Wang and Zhao, 2009). Bio-remediation has been

offered as an excellent tool to recover raw materials from effluents

(Gadd, 2010). Using an Annona squamosa-based absorbent with 0.1

M HCl, Isaac and Sivakumar (2013) achieved Cd recovery efficiency

of 98.7%. Contrarily, matrix-immobilized P. putida cells

demonstrated 100% recovery for Cu while Pseudomonas

aeruginosa biomass demonstrated 82% recovery efficiency for Cd

(Hammaini et al., 2007). In another study, co-application

Pseudomonas aeruginosa biomass, and hydrochloric acid (0.1 M

HCl) achieved the Cd recovery rate by 82% (Dickerhof et al.,

2019), whileP. putida achieved a Cu recovery rate of 100%. Further,

autochthonous variant Enterobacter brought an exceeding recovery

of >90% for Cu and Pb (Bayramoglu and Arica, 2011). Acidphiles

produce different acids through their metabolic process which aids in

the dissolution of metal ores, thereby reducing the availability of

metals. On the other hand, chemolithotrophs cause oxidation and

reduction of sulfur compounds which provide energy to them and

also increase the production of acids subsequently increasing

solubilization of metals. The bio-leaching carried by both

acidophiles and chemolithotrophs is eco-friendly and it can be

carried at lower temperatures along with additional benefits of

energy saving (Adetunji et al., 2023).
Biotransformation

In biotransformation, microbes converted the toxic metal ions

to less hazardous forms (Pervaiz et al., 2013). To adapt to

environmental changes, bacteria have developed bio-

transformation mechanisms. Production of carbon bonds,

isomerization, functional groups, oxidation, reduction,

condensation, hydrolysis, methylation, and demethylation help

the microbes to transform the HMs. These are all processes that

can be used to alter HM in microbes. Microbes cause the

transformation of HM and Nagvenkar and Ramaiah (2010) noted

that Micrococcusand Acinetobacter caused the oxidation of As-III

into less soluble and non-toxic form. Moreover, Thatoi et al. (2014)

documented that Cr (VI) tolerant Bacillusspecies cause the

biotransformation of Cr (VI) and changed it into a less hazardous

form of Cr (III). Both Micrococcus and Acinetobacter reduce the

toxicity of metals by causing oxidation, reduction, biological
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1420408
chelation, and inducing the metabolic transformation and bio-film

formations (Adetunji et al., 2023).
Bio-volatilization

Bio-volatilization is a process where microbes convert the HMs

into volatile compounds enzymatically. This process significantly

reduced the availability and toxicity of metals in soil and water. Bio-

volatilization uses enzymatic reduction and methylation to convert

toxic metals into less toxic forms. Different enzymes like Arsenic

methyltransferase, Mercury reductase, and Antimony

methyltransferase are involved in the bio-volatilization of As, Hg,

and Sb. This method is considered to be suitable for HMs like Hg,

As, and Sb, and in this process, these HMs are converted into non-

toxic compounds by bio-volatilization (Boriová et al., 2014).

Bacterial enzymes like methyltransferases transfer the As(V) into

the mono, di, and tri-methylated As species which is then

transferred into the atmosphere owing to its volatile nature. In

another study, enzymes like reductase (MerA) and mercurial lyase

present in archaea and eubacteria caused bio-volatilization

(Freedman et al., 2012). Similarly, Scopulariopsis brevicaulis, also

showed promising results to convert the As(V) and Hg(II) to their

nontoxic states (Urıḱ et al., 2007; Boriová et al., 2014).
Bio-mineralization

In the bio-mineralization process, microbes activate the

synthesis of minerals and microbes to tackle with HMs. Different

bacteria cause immobilization of Pb and Cr by carbon

mineralization (He et al., 2019). Similarly, another bacterial strain

Sporosarcina ginsengisoli caused immobilization of different HM

calcite, aragonite, and vaterite biomineralization (Achal et al., 2012;

Cheng and Holman, 2012). Fungal species also showed promising

results for bio-mineralization, for example, Penicillium

chrysogenum causes mineralization of Pb and Cr (Qian et al.,

2017). Likewise, Penicillium chrysogenum effectively causes bio-

mineralization of Pb (Povedano-Priego et al., 2017) additionally,

due to the synthesis of PO43- that is released during the breakdown

of Pb, Bacillus subtilis triggered bio-mineralization of Pb (Lin et al.,

2016). Moreover, other authors reported that Pseudomonas putida

forms the carbonate and phosphate minerals which speed up Cd

precipitation (Li et al., 2016). Microbes play a critical role in the bio-

mineralization process as this process involves the production of

mineral deposits to immobilize HMs. The microbes produce EPS,

specific metabolites, and organic acids which promote the

formation of mineral deposits thereby leading to the

immobilization of HMs (Qian et al., 2017). The siderophores and

polysaccharides produced by microbes bind the HMs by forming

complexes with metals thereby reducing uptake and accumulation

of metals by plants. Besides this, they also facilitate the sequestration

of metals in soil thereby reducing toxicity of metals on plants.
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Modern approaches used to
remediate HMs contaminated soils

Different techniques are being applied globally to clean up HM-

polluted soils. The role of modern approaches to remediate HM-

contaminated soils is discussed below.
Phyto-microbial system for remediation of
polluted soils

The application of plants and microbes has emerged as an

excellent tool to remediate HM-polluted soils. The use of PGPR has

been tested as an effective, and environmentally friendly way to

eliminate HMs (Sati et al., 2023). Different microbes like bacteria

and fungi can help the plants absorb the HMs (Bojórquez et al.,

2016). For instance, Joner and Leyval (1997) noted that fungal

inoculated plants uptake more Cd by 90, 127, and 131% growing

under different Cd levels (1, 10, and 100 mg/kg) as compared to un-

inoculated plants. Similarly, fungal inoculation improves the plant’s

ability to absorb Cu, Cd, and Zn (Sati et al., 2023). Different PGPB

also produce polysaccharides which increase the transformation,

immobilization, and chelation of HM thus reducing their

availability. PGPB decreases soil pH by increasing the production

of organic acids which helps to remove the HM ions, further, these

PGPB also provide nutrients to plants thus reducing the negative

effects of HM on plants. Siderophore is also an important microbe

and it has shown an appreciable ability to form complexes with

different metals like Al, Cd, Cu, Zn, and Pb (Rajkumar et al., 2010).

When bio-augmentation and phytoremediation are used together,

they produce noticeable results and can also get around some of the

challenges that arise with using them alone. The plant also showed

significant results to remediate polluted soils and according to

Wang et al. (2021), planting Salix in soils with Cd contamination

increased the diversity of helpful fungi and microorganisms and

contributed to impressive bioremediation outcomes. Plant growth-

promoting rhizobacteria (PGPR) interact with plants to increase

their ability to absorb HMs through a different mechanism like the

production of chelators, increased nutrient uptake, volatilization,

transformation, and phytostabilization. This technique is

considered sustainable and eco-friendly which can help to

mitigate the HMs pollution in agricultural settings.
Genetically engineered microbes: key
player to remediated HM polluted soils

The recent advancements in genetic engineering and the

production of genetically modified microbes have shown

promising results for the remediation of polluted soils. Molecular

biology involves understanding and changing the genes to improve

the bio-remediation process. It has been documented that different

microbes possess resistance mechanisms against HMs (Jaiswal et al.,

2019). This includes genes that encode different metal proteins,
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transporters, and enzymes involved the detoxification (Malla et al.,

2018). Thus, engineering these genes can allow for an increase in the

microbial ability to effectively carry the microbial remediation

process. The recent advance in CRISPR-Cas9 also ensured the

editing of microbial genes and the introduction of new genes

resulting in improved performance of microbes against HMs (Lee

and Lee, 2021). The microbial metabolic pathways can also be

modified which can enhance the microbe’s ability, while fine-tuning

genes is also leading to better remediation capabilities. Moreover,

omics and microbial consortia engineering also provided insights

into the response of microbes to HMs (Peña-Castro et al., 2023).

This can help to identify different genes, regulatory pathways, and

elements to improve the remediation process (Peña-Castro

et al., 2023).

The literature shows that genetically modified microbes have a

better capacity to remove the HMs (Bhatt et al., 2022). The editing

of a single gene and changing the sequence of the gene are

important practices used to produce genetically modified

microbes (Diep et al., 2018). Different HMs like Cd, Cu, Hg, Ni,

and Fe are eliminated by engineered bacteria (Azad et al., 2014)

however, the degradation rate largely depends on enzymes present

in bacterial cells (Kang, 2014). Moreover, the use of recombinant

DNA technology and the introduction of foreign genes has also

allowed to develop the genetically modified microbes. For instance,

the use of genetically modified Pseudomonas putida and Escherichia

colie effectively removed the Hg from polluted soils (Deckwer et al.,

2004), similarly, the addition of mer operon from Escherichia coli to

bacterium Deinococcus geothemalis also reduce the Hg pollution

even at higher temperature (Dixit et al., 2015).

Cupriavidus metallidurans modified genetically with pTP6

plasmid also significantly reduced the Hg from polluted soils

(Dixit et al., 2015). The use pMR68 plasmid to introduce novel

genes into Pseudomonas also led to the development of Hg

resistance (Sone et al., 2013). To enhance the bioremediation of

HM, microbial membrane transporters can also be genetically

engineered and in this context, transporters and binding

mechanisms play a critical role to remediate polluted soils (Manoj

et al., 2020). When HMs enter the cell, several phytochelatins,

metallothioneins, and polyphosphates collaborate to sequester the

HM and alter the HM key storage system, enhancing their ability to

take HMs from soil and water (Diep et al., 2018).

The use of genetically modified microbes (GEMs) has speeded

up the remediation process. For the successful implementation of

implementation of GEMs bacteria must be capable of tolerating the

antagonism induced by other native bacterial species (Dixit et al.,

2015). Therefore, more novel approaches to screening as well as

isolation of microbes for remediation of polluted soils must be used.

Recently, different approaches like genomics, metagenomics,

metabolomics, proteomics transcriptomics, and computational

biology have been used to develop the GEMs for the remediation

of HMs (Raza et al., 2024). The recent advancement in high

throughput techniques has allowed us to identify the genes

involved in the bio-remediation of diverse metals. Further, recent

techniques like CRISPR-Cas also made it possible to create GEMs

containing genes that can break down the HMs. Besides this, it also
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made it easy to transfer the desired set of information into microbial

genomes to develop the microbes with better ability (Miglani, 2017).

CRISPR-Cas9 techniques have also allowed to development of

microbes with appreciable precision, high efficiency, and targeting

multiple metals. Genetically modified microbes can provide better

results to remediate polluted soils. For instance, genetically

modified microbes enhance metal uptake capacity, and they have

better metal tolerance and resistance with minimal environmental

impacts. They also have appreciable sequestration, transformation,

detoxification, and uptake abilities which make them effective tools

to mitigate metals toxicity. However, many potential ethical and

environmental implications must be considered when using

genetically modified microbes for the remediation of polluted

soils. For instance, it includes proper regulation and monitoring

of genetically modified organisms to balance the benefits of

reduction in contamination along with potential risks. Other

concerns could be human health, environmental quality, and the

negative effects of farming practices. Many environmental

considerations must be used while using genetically modified

microbes. These microbes should not disrupt biodiversity, food

webs, and ecosystem health.
Use of nano-technology for microbial
remediation of HM polluted soils

Nano-materials have documented appreciable results in

remediating polluted soils owing to their higher surface area,

reactivity, and surface chemistry (Khati et al., 2017; Baragaño et al.,

2020. Different types of nano-materials including zero-valent metals,

metal oxide nanoparticles, carbon-based nano-materials, nano-

composites, and nano-biosensors are used around the globe to

remediate polluted soils (Aliyari et al., 2023). The nano-materials

serve as electron donors in the microbial reduction process and they

promote the reduction of toxic metals. On the other hand, nano-

particles serve as absorbents and they also favor HMs degradation

(Dhanapal et al., 2024). Further, carbon-based produces also enhance

the transfer of electrons among metal ions and microbes which in

turn increases the efficiency of bio-remediation. Recently, nano-

biosensors have also shown appreciable results in detecting HMS

which has allowed the monitoring of the remediation process

(Dhanapal et al., 2024). Nano-biosorbents can be employed as a

substitute for conventional bio-sorbents (Alviz-Gazitua et al., 2019).

There are various functional groups found in NPs, including NH2,

-COOH, and -OH, and customizing the right functional groups by

activating them physically or chemically or by altering their surfaces

has produced promising results for the elimination of HMs.

Additionally, bacterial strains produce the NPs that can aid in the

bio-remediation of the HMs (Arshad et al., 2019). It has been shown

that using NPs in conjunction with microorganisms boosted the

reduction of HMs, producing more beneficial benefits than using

them alone. Nano-particles have a higher surface area, ion exchange,

reduction and stabilization capacity, mobility, and delivery which

enhance the remediation efficacy. The interaction between NPs and

microorganisms is, however, influenced by a variety of factors,
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including NPs’ chemical properties, size and shape, coating qualities,

crystalline phase, level of contamination, and resistance to hazardous

elements (Tan et al., 2018). Their tailored properties and enhanced

adsorption capacities make them promising candidates for

sustainable and efficient remediation strategies, provided that

environmental and safety considerations are carefully addressed in

their application. However, nano-sorbents must be tested for their

environmental impacts in terms of stability and NPs release into the

environment. Microbes trapped with nano-materials produce the

nano-composite, a combination of Halomonasand iron oxide NPs

substantially eliminated the Cd-II and Pb-II (Cao et al., 2020). Since,

separation and recovery of HMs from nano-materials is laborious

and time-consuming thus magnetic NPs gained significant attention

in recent times, wherein surface amendment, coating of diverse

materials, and encapsulation focused on simple separation of HMs.
Conclusion and future
research directions

Heavy metals pollution is a serious issue across the globe and it is

considered the biggest challenge of this century. Heavy metal

pollution has drastic effects on soil quality, soil fertility, microbial

activities, and diversity, and it also impost deleterious impacts on

human health by entering the food chain. Globally, different

physiochemical strategies are used to remediate the HMs polluted

soils. However, these strategies are very expensive, difficult to

application, inefficient in certain conditions and they can also alter

the soil quality. Therefore, new biological methods have been

developed to remediate polluted soils. Among biological methods,

the use of microbes is considered as an effective, economical, and eco-

feasible measure to remediate polluted soils. The microbes use

different mechanisms to remediate polluted soils and recently

engineered microbes provided excellent results for bioremediation

which makes them an effective measure to be used on polluted soils.

The use of a single strategy could be both noneffective and

inefficient in reclaiming polluted soils. Therefore, a combination of

microbes and plants, nano-particles, and additives could also be an

important approach to remediate polluted soil. Moreover, a

combination of microbes with other strategies including organic

and carbon-based materials must also be tested. Additionally, to

create the HM tolerance in microbes more focus must be done to

understand the physiochemical, biological, and molecular

characteristics of microorganisms in soil and water habitats where

HMs are prevalent. In the literature, no studies are available about

the long-term effects of altering soil pH, temperature, and redox

conditions for bioremediation efforts on soil health, microbial

diversity, and the persistence of heavy metals over a long period.

Therefore, efforts must be made to study the long-term impacts of

soil pH, temperature, and redox conditions on on soil health,

microbial diversity, and the persistence of heavy metals. Besides

this, there is also a lack of information about the interactions

between metal concentration, pH, redox potential, and

temperature affecting the efficiency and effectiveness of microbial

bioremediation processes in contaminated soils. Thus, it is

interesting to study the interactions between metal concentration,
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pH, redox potential, and temperature affecting the effectiveness of

the remediation process.

To identify prospective metal resistance and detoxification

genes that can be regulated in other species to improve their

particular performance, meta-genomic techniques, and microbial

metabolic studies are required. Additionally, genetic study is

required to comprehend the routes and mechanisms that plants

and microorganisms use to tolerate and detoxify heavy metals. The

recent advance in omics-based approach can also help to develop

the strains tolerant against the prevalent environmental conditions.

Recently, yeast has been modified and it showed promising hyper-

accumulation capacity, therefore, other bacteria can also be

developed in the same way to clean the polluted soils. Future

research should pay more attention to the usage of algae since it

may be a promising strategy for the sorption of heavy metals. The

application of nanotechnology in combination with microbes can

also promote microbial use and their efficiency on polluted soil.
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