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Insight into the new infection
pathway resulting from above-
ground pathogen infection of
grapevine crown gall
Akira Kawaguchi *

Western Region Agricultural Research Center (WARC) (Kinki, Chugoku and Shikoku Regions), National
Agriculture and Food Research Organization (NARO), Fukuyama, Hiroshima, Japan
Grapevine crown gall (GCG), a soil-borne plant disease caused by tumorigenic

Allorhizobium vitis (TAV) (=tumorigenic Rhizobium vitis) strains, poses a

significant threat to grapevines worldwide. Recently, outbreaks of GCG have

been reported in several vineyards, necessitating investigation into potential

alternative infection pathways beyond soil transmission. The spatiotemporal

distribution of GCG in vineyards from 2020 to 2022 was analyzed using the

binary power law (BPL) model, with variations in quadrat shapes. Both total and

newly observed diseased plants exhibited an aggregated distribution, indicating

that new infections clustered around existing diseased plants, with secondary

infections appearing as independent cluster points. This study provides evidence

that infected pruning tools can transmit the pathogen to healthy grapevines and

that TAV inoculation through spraying contributes more to GCG incidence than

planting in infected soil alone. This represents the first documented case of

secondary above-ground TAV infect ion contr ibut ing to GCG in

commercial vineyards.
KEYWORDS

Allorhizobium vitis, spatiotemporal distribution, grapevine crown gall, secondary
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Introduction

Grapevine (Vitis vinifera L.) crown gall (GCG) is primarily caused by tumorigenic

Allorhizobium vitis (TAV) [syn. tumorigenic Rhizobium vitis, tumorigenic Agrobacterium

vitis (Ti), and A. tumefaciens biovar 3] (Mousavi et al., 2015). TAV infects grapevines

through various wounds, including freezing injuries, cutting damage, and grafting (Burr

et al., 1998; Burr and Otten, 1999; Kawaguchi, 2022b; Kawaguchi et al., 2017, 2021, 2023b;

Gan et al., 2019). GCG presents a global challenge, with galls typically emerging on both

mature and young grapevine trunks and cordons, including nursery stocks (Burr et al.,

1998; Kawaguchi, 2009; Kawaguchi et al., 2017, 2021, 2023b; Gan et al., 2019). Infected
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grapevines often exhibit inferior growth, and in severe cases, the

galls lead to grapevine death (Kawaguchi, 2022a).

The primary objective of this study is to harness the

antagonistic potential of these strains to develop a new

biopesticide, urgently needed as GCG frequently occurs in Japan

(Kawaguchi et al., 2023a). Particularly, in recent years, severe

damage from GCG has been reported in several vineyards in

northern regions of Japan (Kawaguchi et al., 2023a). Interestingly,

numerous observations suggest the occurrence of secondary TAV

infections in commercial vineyards. However, there have been no

reports on alternative infection pathways besides soil transmission

and planting infected nursery stocks thus far (Burr et al., 1998).

Therefore, the objective of this study is to uncover other potential

infection pathways contributing to GCG outbreaks in commercial

vineyards. This article presents the findings of investigations into

GCG occurrence in infected vineyards, spatiotemporal distribution

of GCG, and the efficiency of TAV infection through above-

ground processes.
Materials and methods

Field survey

The spatial spread patterns of GCG within 20 vineyards over the

past three years since 2020 were investigated, with detailed

information provided for each vineyard in Supplementary Tables

S1, S2. Although vineyard sizes varied, investigation plots were

similar, ranging from a maximum of 120 × 30 m to a minimum of

60 × 15 m. Rows within each vineyard were approximately 3 m

apart. GCG incidence was assessed and mapped in contiguous

quadrats, covering 4 to 6 rows of 200 to 360 grapevines. Three

different quadrat patterns were employed in each vineyard: first, a

vertical quadrat consisting of a single row of 10 plants; second, a

horizontal quadrat comprising 10 plants crossing multiple rows

(not following a specific row pattern); and third, a rectangular

quadrat consisting of two or three adjoining rows of 5 plants each,

totaling 10 to 15 plants per quadrat (Figure 1A). The number of

plants exhibiting GCG symptoms was recorded in each vineyard.

To confirm the presence of TAV, symptomatic plant tissues (galls)

were randomly sampled from the vineyards. Colonies generated on

AV selective medium, namely Roy and Sasser (RS) medium (Roy

and Sasser, 1983; Supplementary Table S3), were subjected to

confirmation through multiplex PCR using two TAV-specific

primer sets: Ab3-F3/Ab3-R4 and VCF3/VCR3, as previously

reported (Kawaguchi et al., 2005a; Supplementary Table S4).
Mathematical analysis

The binary power law (BPL) serves as a model for

characterizing the spatial heterogeneity of plant disease incidence

(Hughes and Madden, 1992, 1993; Madden et al., 2018). When

utilizing xi, the observed variance (Vobs) and the variance of a

binominal distribution (Vbin) are defined as follows:
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p =on
i=1xi=N (1)

Vobs =on
i=1(xi − np)2=(n − 1) (2)

Vbin = np(1 – p) (3)

whereon
i=1xi is the number of diseased plants, n is the number

of quadrats, xi is the number of diseased plants in the i th quadrat

(i =1…n), p is a parameter representing the probability of an

individual being diseased in field and N is a total number of

investigated plants. Furthermore, a relationship between Vobs and

Vbin was defined as follows (Hughes and Madden, 1992; Madden

et al., 2018):

Vobs = A VB
bin (4)

ln (Vobs) = ln (A) + B ln (Vbin) (5)

Where A and B are parameters, with B representing the

exponent of the BPL, serving as the slope of the straight-line

relationship between the logarithm of Vobs and the logarithm of

Vbin. When A = B = 1, the BPL reduces toVobs = Vbin, indicating that

the observed variance equals the variance that the data would have

if xi followed a binomial distribution (Hughes and Madden, 1992;

Madden et al., 2018). When A > 0 and B = 1, overdispersion occurs,

independent of the level of disease incidence (p), suggesting that the

degree of heterogeneity remains constant for all incidence values

(Hughes and Madden, 1992; Madden et al., 2018). If B does not

equal 1, overdispersion (heterogeneity) systematically varies with

the level of incidence (Hughes and Madden, 1992; Madden et al.,

2018). Typically, B > 1 indicates that Vobs increases faster than Vbin,

demonstrating an aggregation distribution (Hughes and Madden,

1992; Madden et al., 2018). In this study, when B is significantly

greater than 1.0 (p < 0.05), diseased plants demonstrate

aggregation distribution.
Population measurement of TAV in
grape shoots

To monitor the population dynamics of TAV following

different inoculation methods, inoculation and re-isolation were

performed. Grapevine seedlings (2 years old, cv. Muscat of

Alexandria) were grown from seeds, which were provided some

commercial vineyards without GCG incidence in Okayama

prefecture, Japan. Seedling grown by seed were used because

potential natural contamination of TAV in commercial nursery

stocks should be avoided in this study (Burr et al., 1998). A cell

suspension of TAV strain VAT20-1sc at a concentration of 105

cells/ml was prepared. VAT20-1sc is a streptomycin (St)- and

copper sulfate (CuSO4)-resistant mutant of VAT20-1, which was

isolated from a galled grapevine in 2020 in Hokkaido, Japan

(Kawaguchi et al., 2021), obtained by culturing on PDA medium

(Difco, Detroit, MI, USA) containing 500 mg/ml St and 250 mg/ml

CuSO4 (Kawaguchi, 2015).
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For contaminated scissors inoculation, scissors were briefly

soaked in the TAV cell suspension for 1 second, and then used to

cut stems of 70 plants for inoculation. For spray inoculation, which

mimicked TAV infection from diseased plants by water splashing in

vineyards, stems of plants were cut using non-infected scissors, and

the plants were then sprayed with the TAV cell suspension (5 ml per

plant). Inoculated plants were cultivated in a greenhouse at 25°C.

To confirm TAV infection at 1, 3, 5, 9, 21, and 31 days after

inoculation (dai), 10 plants (i.e., n = 10) were randomly selected

from the inoculated plants at each sampling day. Stem samples were

collected, including the inoculation point of the plants (0.1 g fresh

weight per plant, 1 sample per plant), and TAV populations were

assessed using the serial dilution plate method on RS medium

containing St and CuSO4 following the procedure previously

reported (Kawaguchi et al., 2023b). As negative controls, five

healthy grapevine seedlings (i.e., n = 5) were prepared, and TAV

strain isolation was conducted.
Disease incidence by three different
inoculation methods

To prepare infected soil, strain VAT20-1 was inoculated into

the soil by pouring cell suspensions at a concentration of 108 cells/

ml onto the soil (500 ml/kg soil), resulting in a final concentration

of approximately 5 × 107 cells/g soil (Kawaguchi and Inoue, 2012).
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The roots of grapevine seedlings were pruned by half and then

planted in pots (15 seedlings per pot) containing the infected soil.

For spray or contaminated scissors inoculation, two

concentrations (105 and 107 cells/mL) of TAV strain VAT20-1

cell suspension were prepared. In contaminated scissors

inoculation, scissors were briefly immersed in the TAV cell

suspension for 1 second, and then used to cut stems of 15 plants

(i.e., n = 15) for inoculation. In spray inoculation, which simulated

natural conditions, stems of 15 plants were cut using non-infected

scissors, and then the plants were sprayed with the TAV cell

suspension (5 ml per plant). Inoculated plants were cultivated in

a greenhouse at 25°C, and gall formation on the roots and stem

wounds of seedlings was assessed after 3 to 4 months. The

inoculation experiment was independently repeated 5 times. TAV

inoculated into the plants was re-isolated using RS medium from

formed galls in each experiment, and some re-isolated colonies on

RS medium were confirmed as VAT20-1 by rep-PCR DNA

fingerprinting, using the (GTG)5 primer set following the

procedure previously reported (Wong et al., 2021).
Data analysis

All statistical analyses were performed using the RStudio user

interface (version 1.2.5001) for R software (version 4.3.1, R

Foundation for Statistical Computing, http://www.r-project.org/)“.
FIGURE 1

Spatiotemporal distribution analysis of grapevines naturally infected with grapevine crown gall (GCG) in commercial vineyards includes the following
components: (A) Placement of three distinct quadrat patterns within each vineyard. An aerial image illustrates a section of the vineyard. These
patterns consist of a vertical quadrat comprising a row of 10 plants (highlighted in red), a horizontal quadrat spanning 10 plants across each row
(highlighted in yellow), and a rectangular quadrat comprising two adjacent rows of 5 plants each, totaling 10 plants per quadrat (highlighted in blue);
(B) Regression analysis conducted for totally recognized diseased plants during each observation using the binary power law (BPL); (C) Regression
analysis performed for newly recognized diseased plants during each observation using the BPL. The dashed line represents the BPL regression line,
while the solid line depicts ln(Vobs) = ln(Vbin) (B =1, ln(A) = 0), indicating a random distribution. The B values derived from the BPL regressions were
significantly above 1.0, denoted by * for P < 0.05, and ns for P> 0.05.
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Results

Spatiotemporal distribution of
grapevines with GCG symptom
in commercial vineyards

The spatiotemporal distribution of GCG in vineyards from 2020

to 2022 was analyzed using the BPL with varying quadrat shapes.

The results of the BPL applied to the combined data for the total

number of recognized diseased grapevines in each vineyard revealed

the observed variance (Vobs) and the variance of a binomial

distribution (Vbin) (Figure 1B, Table 1). Based on equation (5),

estimates of B and ln(A) were obtained for three types of quadrat

shapes, with the estimated B in the rectangular quadrat being 1.289

(95% confidence interval (CI): 1.046 to 1.533), significantly greater

than 1.0 (p < 0.05) (Figure 1B, Table 1). Additionally, the Vobs of

newly recognized diseased plants at each observation increased with

Vbin (Figure 1C). Similarly, for the totally recognized diseased

plants, the estimated B in the rectangular quadrat was 1.305 (95%

CI: 1.067 to 1.543), also significantly greater than 1.0 (p < 0.05)

(Figure 1C, Table 1). These results indicate that both totally and

newly observed diseased plants exhibited an aggregated

distribution, suggesting that new diseased plants caused by

secondary infections clustered around previous observed diseased

plants, while secondary infections occurred as independent

cluster points.
Population of TAV in grapevine shoots
in vineyards

The CFU (colony-forming units) of TAV were detected in

grapevine shoot samples obtained from grapevines displaying

GCG symptoms in three different commercial vineyards. An

average of 5.02 ± 0.51 log10 CFU/g plant tissue (mean ± standard
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deviation of the mean) (95% CI; 4.88 to 5.17) was observed

(Figure 2A), indicating that approximately 105 cells/g plant tissue

of TAV could inhabit shoots in naturally infected grapevines.
Population dynamics of TAV in grapevine
shoots after inoculation

Following inoculation by spraying or pruning using

contaminated scissors with a cell suspension of TAV (105 cells/

ml), TAV exhibited rapid growth in grapevine shoots by 10 days

after inoculation (dai), with similar dynamics observed among

different inoculation methods (Figures 2B, C). At 31 dai, 5.82 ±

0.36 log10 CFU/g plant tissue (95% CI; 5.60 to 6.10) was detected

with pruning inoculation, while 6.04 ± 0.43 log10 CFU/g plant tissue

(95% CI; 5.76 to 6.31) was detected with spray inoculation

(Figures 2B, C). These findings suggest that even relatively low

numbers of TAV cells, such as 105 cells/ml through above-ground

inoculation methods, could infect and proliferate within grapevines.
Assessment of GCG incidence resulting
from different inoculation methods and
concentrations of cell suspension

GCG incidence was evaluated by comparing incidences of

diseased (galled) plants following inoculation by different

methods, including planting into infected soil with 5 ×107 cells/g

soil, pruning with contaminated scissors soaked in 105 and 107 cells/

ml TAV cell suspensions, and spraying with 105 and 107 cells/ml

TAV cell suspension. When pruning and spraying with 105 cells/ml

TAV cell suspension were employed, GCG incidences were 2.7%

and 4.0%, respectively (Figure 2D). However, using a high

concentration of cell suspension (107 cells/ml), the number of

diseased plants significantly increased, with GCG incidences
TABLE 1 Slope and intercept parameter estimates of binary power law (BPL) for incidence of grapevines with crown gall symptoms from data sets
collected from commercial vineyards.

Data set
Quadrat
shape

B se

95% confidencial
interval (CI) ln(A) se

95% confidencial
interval (CI) R2 P value

of R2

Lower Upper Lower Upper

Totally
recognized
diseased plants at
each observation

Vertical
quadrat

1.200 0.111 0.972 1.427 0.620 0.089 0.437 0.803 0.819 4.0×10-11

Horizontal
quadrat

1.157 0.124 0.902 1.413 0.306 0.306 0.089 0.523 0.770 9.0×10-10

Rectangular
quadrat

1.289 0.118 1.046 1.533 0.555 0.094 0.362 0.750 0.820 3.5×10-11

Newly recognized
diseased plants at
each observation

Vertical
quadrat

1.213 0.117 0.973 1.452 0.603 0.088 0.423 0.784 0.806 9.3×10-11

Horizontal
quadrat

1.122 0.172 0.875 1.370 0.276 0.096 0.079 0.474 0.770 8.9×10-10

Rectangular
quadrat

1.305 0.116 1.067 1.543 0.553 0.087 0.375 0.731 0.829 8.9×10-10
fro
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following pruning and spraying reaching 85.3% and 94.7%,

respectively (Figures 2D, E). Some re-isolated strains were

confirmed as strain VAT20-1 (inocula) by rep-PCR DNA

fingerprinting (Figure 2F). In contrast, planting into infected soil

resulted in a GCG incidence of 24.0% and significantly lower than

spray and pruning inoculation (107 cells/ml) (Figure 2D). These

results suggest that the likelihood of GCG incidence through above-

ground inoculation methods, such as pruning and spraying, was

higher than that through planting into infected soil.
Discussion

In this study, spatiotemporal distribution analysis of GCG using

BPL was conducted, revealing an aggregated distribution of both

totally and newly observed diseased grapevines. If GCG occurred

solely through soil infection or infected nursery stocks without any

other transmission of TAV, newly observed diseased plants would not

appear around previously affected plants. Thus, these findings suggest

that new infections formed cluster points around diseased plants,

while secondary infections occurred as independent cluster points.

This marks the first report indicating an aggregated distribution of
Frontiers in Plant Science 05
plants with GCG symptoms in commercial vineyards, indicating at

potential alternative pathogen transmission pathways.

Certain soil-borne bacterial diseases, such as tomato bacterial

canker (TBC) and bacterial black node of barley and wheat, exhibit

multiple routes of infection. Pathogens can transfer from diseased

plants to healthy ones through water splash or agricultural practices

like pruning (Kawaguchi et al., 2010, 2013, 2018; Peritore-Galve

et al., 2021). Notably, in the case of TBC, disbudding and defoliation

significantly contribute to the secondary spread of the disease in

commercial greenhouses (Kawaguchi et al., 2010, 2013). If

disbudding and defoliation contribute to transmit pathogen to

healthy plants, disease plants should aggregate in vertical quadrats

(Kawaguchi et al., 2010, 2013). If pathogen could widely spread by

strong wind or rain, it likely seems diseased plants should aggregate

in horizonal quadrats and/or other shape quadrats. In this study,

However, diseased plants aggregated and formed clusters within

rectangular-shaped quadrats, which were relatively smaller than

other quadrats. This suggests that the transmission range of TAV

may be limited, with the pathogen spreading primarily to

neighboring diseased plants (Figure 1). Consequently, activities

like splashing water and pruning with contaminated scissors

could facilitate secondary above-ground spread, akin to TBC.
FIGURE 2

Populations of tumorigenic Allorhizobium vitis (TAV) and grapevine crown gall (GCG) incidence: (A) TAV population in grapevine shoots within
vineyards; (B) Dynamics of TAV populations in grapevine shoots post-inoculation via pruning with contaminated scissors using a TAV cell suspension
(105 cells/ml); (C) Dynamics of TAV populations in grapevine shoots post-inoculation via spraying with a TAV cell suspension (105 cells/ml);
(D) Evaluation of GCG incidence resulting from various inoculation methods and concentrations of cell suspensions; (E) Observation of GCG
symptoms following spray inoculation with a TAV cell suspension (107 cells/ml), with red arrows indicating gall formations; (F) Results of agarose gel
electrophoresis of rep-PCR DNA fingerprinting using the (GTG)5 primer set, with ‘M’ representing the DNA marker, ‘a’ indicating VAT20-1, ‘b’ and ‘c’
representing re-isolated strains from galls resulting from spraying with 105 cells/ml of VAT20-1, ‘d’ and ‘e’ representing re-isolated strains from galls
resulting from pruning with 105 cells/ml of VAT20-1, and demonstrating consistent band patterns across lanes from ‘a’ to ‘e’. In (B–D), the median is
denoted by the center bar of the box plot, with the lower and upper horizontal bars indicating the 25th and 75th percentiles respectively. The
whiskers represent the 95% range. In the population dynamics of TAV, boxes labeled with different letters denote a significant difference from
other boxes (p ≤ 0.05, Tukey’s HSD test). In GCG incidence (%), boxes labeled with different letters indicate a significant difference from other boxes
(p ≤ 0.05, Ryan’s test).
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Pruning is one of the fundamental agricultural practices in

vineyards. Shoots from diseased plants contained approximately

105 cells/g of plant tissue (Figure 2A). When a grower prunes a

healthy grapevine after having pruned a diseased one, 105 cells/ml

of TAV, which are attached to the scissors, could infect and

incubate inside the shoot (Figure 2B). However, the incidence of

GCG was only 2.7% through pruning, significantly lower than those

inoculated by other methods with 107 cells/ml of TAV (Figure 2D).

Similarly, spraying with 105 cells/ml of TAV, which mimicked TAV

transmission from diseased grapevines by water splashing in

vineyards, incubated at the wounds of grapevines resulted in only

a 4.0% incidence of GCG, similar to pruning with the same TAV

concentration (Figures 2C, D). TAV, present at around 104 cells/g

of plant tissue, is found on/in the skins of diseased grapevines

(Kawaguchi et al., 2023b). Based on these results and a previous

report, even if splashing water occurs due to rain or watering,

facilitating the transmission of TAV from diseased grapevines to

neighboring healthy ones, the spread of TAV may not directly

contribute to GCG incidence in vineyards. However, TAV could

proliferate at grapevine wounds after being spread and attached.

This secondary spread through splashing water and pruning shoots

could potentially lead to TAV infection, with GCG manifesting

under favorable environmental conditions in the future.

On the other hand, gall tissues of grapevines, occurring through

natural infection in vineyards, contain approximately 107 cells/g of

TAV (Kawaguchi et al., 2023b). The results of spraying (mimicked

water splashing in vineyards) and pruning (mimicked grower’s

agricultural practices by pruning after handling gall tissues) with

107 cells/ml of TAV indicate that growers could inadvertently

spread TAV by pruning after handling gall tissues, and that water

splashing could facilitate the spread of TAV from gall tissues of

grapevine to healthy tissues of the same grapevine and/or

neighboring grapevines (Figure 2D). Some growers attempt to

scrape off galls with a knife in commercial vineyards, but it is

imperative for them to disinfect the contaminated knife to prevent

further spread.

GCG is recognized as a soil-borne disease (Burr et al., 1998).

However, in this study, the incidence of GCG when planting into

soil contaminated with TAV (5 × 107 cells/g soil) was significantly

lower than when TAV was applied through spraying and pruning

(cell concentration of 107 cells/ml) (Figure 2D). This suggests that

secondary infection through splashing water and/or pruning with

contaminated knives after scraping galls could lead to severe GCG

incidence, such as over 50% GCG incidence in vineyards. These

results strongly support the notion that the initial diseased plant,

caused by soil infection and/or the planting of already infected

nursery stocks without visible GCG symptoms, acts as the primary

inoculum. Furthermore, inocula from diseased plants are also likely

to cause secondary infection with TAV through splashing water

and/or pruning with severely contaminated knives in neighboring

healthy plants in commercial vineyards. Specifically, splashing

water could transport TAV from galls to various wounds,

including freezing injuries, cuts, and/or mechanical damages

on grapevines.
Frontiers in Plant Science 06
In any case, the roles of primary and secondary inocula in the

disease cycle in fields remain unclear. Thus, clarifying these roles is

crucial as it could enable farmers to control the disease more efficiently.

To assess the significance of primary and secondary inocula, the author

investigated the spatiotemporal distribution of grapevines naturally

infected with TAV in vineyards following the initial detection of the

disease. This investigation involved comparisons using an

epidemiological model BPL and various quadrat shapes. This study

revealed that populations of the TAV pathogen formed new

independent clusters during outbreaks. To directly address this

hypothesis, labeling TAV strains by inserting antibiotic or

fluorescence genes and investigating GCG outbreaks in greater detail

could be beneficial. However, conducting such experiments in open-air

commercial vineyards presents significant challenges. Thus, a statistical

analysis of spatiotemporal distribution becomes essential for planning

efficient disease management strategies. Based on these findings,

growers may need to consider spraying bactericides in vineyards to

control secondary infections and prevent GCG outbreaks.

The absence of an effective and practical GCG management

method poses a significant issue. Previous studies have highlighted

that nonpathogenic and antagonistic A. vitis strains, such as ARK-1

and VAR03-1, inhibited gall formation not only in grapevines but

also in various plant species (Kawaguchi, 2009, 2011, 2013, 2014,

2015; Kawaguchi et al., 2005b, 2007, 2008, 2012, 2015, 2017, 2019,

2023a; Kawaguchi and Inoue, 2012; Kawaguchi and Noutoshi, 2022a,

2022b; Kawaguchi, 2022b; Ishii et al., 2024; Noutoshi et al., 2020;

Saito et al., 2018; Wong et al., 2021). While there are currently no

registered bactericides available for growers to apply in their own

vineyards, a new biopesticide made from strain ARK-1 is currently

under development (Kawaguchi, 2022b). Spraying this new

biopesticide onto grapevine cordons above ground could effectively

prevent GCG incidence resulting from secondary infections.

In conclusion, TAV exhibits a secondary infection pathway

above ground and seems to initiate new infections from the primary

inoculum at the beginning of an outbreak. Subsequently, each new

infection caused by secondary infection leads to another round of

new infections, ultimately expanding the area of diseased grapevines

in the disease cycle within commercial vineyards. Currently, there

are no reports available on the pattern of TAV infection spread in

vineyards. This study offers evidence to infer both the source and

mode of spread of TAV, which causes GCG.
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