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Forage maize is a versatile crop extensively utilized for animal nutrition in

agriculture and holds promise as a valuable resource for the production of

fermentable sugars in the biorefinery sector. Within this context, the

carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction

during ruminal digestion and the saccharification process. However, the cell

wall’s natural resistance towards enzymatic degradation poses a significant

challenge during both processes. This so-called biomass recalcitrance is

primarily attributed to the presence of lignin and ferulates in the cell walls.

Consequently, maize varieties with a reduced lignin or ferulate content or an

altered lignin composition can have important beneficial effects on cell wall

digestibility. Considerable efforts in genetic improvement have been dedicated

towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery

sector and the environment. In part I of this paper, we review conventional and

advanced breeding methods used in the genetic improvement of maize

germplasm. In part II, we zoom in on maize mutants with altered lignin for

improved digestibility and biomass processing.
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Introduction

Maize, also known as corn, plays a multifaceted role in agriculture, serving as a crucial

resource for food, feed and the production of basic chemicals such as fuels, plastics, etc.

Maize silage represents the areal part of maize – including leaves, stems, cobs and seeds –

stored under anaerobic conditions for conservation, to be used as ruminant feed (Barrière,

2017). The primary energy source in maize silage comes from starch in the kernels and
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from the cell wall carbohydrates. The cell wall, in the animal feed

field known as neutral detergent fiber (NDF), is composed mainly of

two types of carbohydrates, cellulose and hemicellulose, and the

aromatic heteropolymer, lignin. NDF digestibility is influenced by

the genetic background, the environmental conditions, field

management and timing of harvest, and typically varies between

40 to 50% (Allen et al., 2003; Barrière, 2017). At the cell wall level,

NDF digestibility is primary influenced by the lignin content, lignin

composition and the ferulate cross-linkages between lignin and

hemicelluloses (Wolf et al., 1993; Fontaine et al., 2003; Grabber

et al., 2009; Courtial et al., 2013; Barrière, 2017). Consequently,

breeding efforts to improve the NDF digestibility often target the

lignin characteristics1.

Besides its use as ruminant feed, maize lignocellulosic biomass

(i.e., maize stover consisting of the leaves, stems and cobs without

seeds) has been identified as a promising resource for the

biorefinery (Torney et al., 2007; Vermerris et al., 2007; Lorenzana

et al., 2010; van der Weijde et al., 2013; Torres et al., 2015b; Saratale

et al., 2019). During biorefining, the carbohydrate fraction of the

lignocellulosic biomass is enzymatically deconstructed into primary

sugars, a process called saccharification. These primary sugars can

then be used in fermentation reactions to produce renewable

materials and biofuels (Lips, 2022). Similar to ruminal

digestibility, the intrinsic resistance of the maize stover to

enzymatic degradation, also known as biomass recalcitrance, is

mainly caused by the presence of lignin (Torres et al., 2015a).

Therefore, breeding towards a reduced lignin amount, an altered

lignin composition, or an altered interaction between lignin and

hemicelluloses can be advantageous to improve both feed

digestibility and the industrial saccharification process (Torres

et al., 2016). In this review, we start by providing a brief history

of conventional maize breeding methods, followed by an overview

of more advanced breeding strategies. Next, we focus on maize

mutants and transgenic lines with a modified lignin content and

composition, and their effect on digestibility and biomass

processing efficiency.
Part I. The past, present and future
of maize breeding

The origin of Zea mays

Maize (Zea mays L. spp. mays) is currently one of the most

important staple crops, along with rice and wheat, worldwide (FAO,

2023). The origin of maize has been studied extensively;

phylogenetic analyses and archaeological research show a direct

ancestral link to two wild grass subspecies commonly known as
1 Given the land required for growing animal feed, methane emissions from

ruminants and animal welfare, the ecological and ethical implications of

consuming meat and dairy are a rising matter of concern. Despite this,

such practices remain widespread (Dixon et al., 2023; Henchion and

Zimmermann, 2021).
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teosinte (Z. mays ssp. parviglumis and Z. mays ssp.mexicana) (Yang

et al., 2023). Maize domestication started 7.000 to 10.000 years ago

in the tropical lowlands of present-day Mexico when indigenous

Americans discovered its potential as food. From its origin, maize

spread northwards and southwards throughout the American

continent, giving rise to Northern Flint and Southern Dent

lineages (see later) (Tenaillon and Charcosset, 2011). This spread

caused maize to diversify under genetic drift and selection, resulting

in varieties adapted to different climates and soil types, from sea

level to the high altitudes in the Andean mountains (Vigouroux

et al., 2008; Bouchet et al., 2013; Andorf et al., 2019). In the 15th and

16th century, maize was introduced into Europe, Africa and Asia via

European explorers and traders (Barrière et al., 2006). The early

maize breeders on each of the continents played a pivotal role in the

domestication process and the development of maize cultivars as we

know them today. Recent advances in biotechnology and genomics

provide new tools for maize breeders to further improve their

cultivars and speed up the breeding process (Singh et al., 2021b).
Modern maize breeding

In the 19th century, farmers selected the best ears from the most

productive and healthy plants. Their seeds were then sown in the

next growth season and the selection process was repeated. This so-

called mass selection is the oldest form of maize breeding. This

method is simple and effective for fixing traits with high heritability,

but not very effective for traits with low heritability, such as yield

(Choo and Kannenberg, 1981; Hallauer et al., 2010). Hopkins

introduced the ear-to-row selection method to speed up maize

breeding (Hopkins, 1899). In this method, a number of maize

plants with desirable phenotypes are identified and their seeds

harvested separately. About 50 seeds from a single ear are then

grown in a single progeny row, and allowed to open-pollinate. From

these progeny rows, again the best plants are identified and allowed

to open-pollinate. This process is repeated for three to six

generations until the individual plants from this open-pollinated

variety (OPV) start showing similarity for the desired trait (Awata

et al., 2019). In the late 19th century, hybridization became a game-

changing method in maize breeding. It was noticed that the

offspring (i.e., hybrids) of two different open-pollinated maize

cultivars had up to 53% higher yield as compared to either parent

(Beal, 1878). This phenomenon, called “heterosis” or “hybrid

vigor”, has been extensively exploited in breeding programs even

though the molecular basis is still poorly understood (Labroo et al.,

2021; Yu et al., 2021). Breeders have primarily relied on ‘heterotic

groups’ to select parents to make hybrid combinations. A heterotic

group is a collection of germplasm, that, when crossed with

germplasm from another heterotic group, tends to exhibit a

higher degree of heterosis (on the average) than when crossed

with a member of its own group (Lee, 1995). The genetic diversity of

the germplasm within one heterotic group is too small to give the

desired hybrid vigor effect (Akinwale, 2021). Early 20th century,

Shull and East independently discovered that both heterozygous

and homozygous loci were present in OPVs and that fully

homozygous lines can be obtained after five to seven generations
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of self-pollination (East, 1908; Shull, 1908, 1909). These inbred lines

were often weak due to inbreeding depression, but vigor could be

restored in the hybrid offspring of two different inbred lines. By

continued improvement of the inbred lines, the production of

‘hybrid maize’ became a reality and hundreds of inbred lines were

developed for the production of hybrids (Bennetzen and Hake,

2009; Hallauer et al., 2010). Therefore, the modern hybrid maize

breeders have two main activities. First, genetically improving

inbred lines by recombination and introgression of interesting

alleles and, secondly, testing the combining ability between inbred

lines to produce outstanding hybrids. Subsequently, these hybrids

are extensively evaluated for their agronomic performance before

commercialization (Lee and Tollenaar, 2007).
Inbred line development

Inbred lines can be made in various ways, e.g., via pedigree

breeding, backcross breeding or doubled haploid breeding. Pedigree

breeding is a method to gradually improve a population by

concentrating desirable alleles through a selection process of the

best hybrids (Beckett et al., 2019; Singh et al., 2021a). In short,

parents with desirable traits are crossed to generate hybrid

seedstocks (in case the parental lines are heterozygous, their
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offspring will be highly heterogeneous). The resulting hybrids are

then evaluated and the best-performing plants are self-pollinated

for several generations to create inbreds. In each generation, plants

with obvious defects are removed and the promising inbred lines

are crossed with tester lines from different heterotic groups to

evaluate their general combining ability. The newly generated

inbreds are retained and the cycle is repeated until the inbreds

are ready for use in cultivar development (Lee and Tollenaar, 2007).

Backcross breeding allows the breeder to transfer a desired trait

obtained from a donor parent into a favored elite background (also

called recurrent parent). Here, the objective is to genetically recover

the recurrent parent except for the desired trait. Theoretically, in each

backcross (BC) generation, about 50% of the recurrent parent genome

is recovered (F1 – 50%, BC1 – 75%, BC2 – 87.5%, BC3 – 93.7%, BC4 –

96.9%, BC5 – 98.4%). Donor genes can reside for example in exotic

germplasm, transgenic genotypes or mutants. Typically, breeders try

to recover at least 98% of the recurrent parent genome (Vogel, 2009).

This process is generally slow but molecular markers can be used to

reduce the number of BC generations (Figure 1A). Marker technology

can be carried out at the seedling stage and allows to characterize

multiple loci at once and minimize linkage drag, thus speeding up the

breeding process (Hasan et al., 2021).

Doubled haploid breeding is a method to obtain pure inbred lines

within a single generation (Ren et al., 2017) (Figure 1B). Typically, the
B

CA

FIGURE 1

Graphical representation of inbred line development via conventional backcross breeding or doubled haploid technology. (A) Number of generations
necessary to obtain a homozygous inbred line using conventional backcross breeding and (B) using doubled haploid breeding. (C) Identification of
haploid seeds using the R1-nj color marker. The colored bars represent chromosomes. The inducer line carries the R1-nj dominant marker gene; the
location on the green chromosomes does not reflect the actual physical location, but signifies its presence in the inducer line’s genome.
Chromosome doubling, either artificial or spontaneous, after haploid induction is essential to obtain fertile homozygous inbred lines. The
homozygous inbred line shown is just one of many possibilities, derived from a single recombinant gamete from the hybrid parent.
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production of stable and uniform hybrids relies on inbred line

development and the latter takes multiple generations of self-

crossing or back-crossing as described above. This labor intensive

and time-consuming process can be overcome by the use of a genetic

trick. Haploids can be generated in different ways (tissue culture from

mega- and microsporocytes, natural generation by androgenesis,

CENH3-mediated haploid induction and via haploid inducer lines)

but making use of inducer lines is the most popular method (Ren

et al., 2017; Maqbool et al., 2020; Meng et al., 2021). Coe discovered

that one of his maize stocks, “stock 6”, produced 2 to 3% haploid

plants when used as a male parent in crosses (Coe, 1959). As Coe’s

“stock 6” was able to produce haploid progeny, it was named a

“haploid inducer (HI)”. The process of haploid induction is also

known as gynogenesis and is an asexual way of reproduction in which

the male gamete triggers the development of an unfertilized egg into a

haploid embryo (Gilles et al., 2017). In order to ease haploid

identification, the HI is combined with the R1-navajo (R1-nj) gene,

a dominant marker that results in a purple anthocyanin color in the

kernel. This gene is expressed in the aleurone layer of the endosperm

and in the embryo and allows to discriminate haploid seeds from

diploid seeds (Rádi et al., 2020). The haploids will have no purple

color in the embryo but will show a coloration in the aleurone layer

(Figure 1C) (Bennetzen and Hake, 2009). Haploids are usually highly

sterile and cannot undergo meiosis, but will produce pure and fertile

diploid inbreds or doubled haploids after spontaneous or artificial

chromosome doubling (Jackson, 2017).

The underlying major causal gene for the haploid induction in

“stock 6” has been independently identified by three different

research groups (Gilles et al., 2017; Kelliher et al., 2017; Liu et al.,

2017). The mutation was mapped to a patatin-like phospholipase

gene expressed in mature pollen and the pollen tube. This same

gene was named by the three groups NOT LIKE DAD (NLD),

MATRILINEAL (MTL), and ZmPHOSPHOLIPASE A1 (ZmPLA1).

Recently, additional mutations have been identified that are able to

further boost the haploid induction rate of NLD/MTL/ZmPLA1

mutants (Zhong et al., 2019; Li et al., 2021; Jiang et al., 2022).

Modern inducer lines have 7 to 16% haploid progeny depending on

the genetic background and can speed up the maize breeding

process tremendously, especially when combined with genome-

editing techniques such as CRISPR-Cas9 (Kalinowska et al., 2019;

Jacquier et al., 2021; Impens et al., 2023).
Maize germplasm diversity

Although maize has gone through some evolutionary

bottlenecks during domestication and directional selection, the

maize breeding germplasm still has standing variability with a

wide phenotypic diversity, nutritional qualities and resistance

against (a)biotic stresses. Two groups in particular are very

popular in maize breeding in North America and Europe: the

Northern Flints and Southern Dents (Troyer, 1999; Barrière et al.,

2005). The Northern Flints are described as cold tolerant, early

flowering and mature, having long slender ears with undented

round kernels. The Southern Dents are more heat tolerant with
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later maturity, being taller, higher-yielding, and having wide ears

with higher kernel rows and dented rectangular kernels. Crosses

between the two groups provide better adapted and higher-yielding

varieties in a range of environments (Troyer, 1999).

The success of highly adapted maize varieties is the result of

ingenious farmers who contributed to population improvement and

developed prominent OPVs, including, but not limited to, the Reid

Yellow Dent, Lancaster Sure Crop, Minnesota 13, Leaming Corn,

Northwestern Dent and Longfellow Flint (Sprague and Dudley,

1988). This heterogeneous group of OPVs was classified by breeders

into heterotic groups. The major heterotic groups present in current

maize breeding programs can be divided into the female heterotic

groups, showing high kernel yield and smaller tassels, and the male

heterotic groups, with more pollen and longer pollen shedding

duration. Heterotic groups PA and Stiff Stalk (represented by

inbreds such as B73 and B104) are mainly used as female

heterotic groups, while PB, SPT, Non-Stiff Stalk (represented by

inbreds such as Mo17, Oh43 and H99) and Iodent (represented by

inbreds such as PH207) are predominantly used as male heterotic

groups (Li et al., 2022). These heterotic groups continually expand

by the creation of new inbred lines and the occasional introgression

of exotic germplasm. Phenotypic and genetic evaluation of recent

inbred lines from various heterotic groups revealed that

advantageous alleles for traits accumulate within the heterotic

groups during selection. Some traits evolved divergently between

the female and male heterotic groups (e.g. tassel height, kernel

weight) and other convergently (e.g. stress tolerance) (Li et al.,

2022). Notably, some alleles showing fixation within specific

heterotic groups remain genetically heterogenous between

heterotic groups, potentially contributing to heterosis upon

crossing inbred lines from different groups (Gerke et al., 2015; Li

et al., 2022). Maintaining or even increasing allelic diversity among

heterotic groups is key for maize improvement, with novel breeding

techniques offering potential acceleration of this process (see later).

Allelic diversity occurs spontaneously in germline cells and is

derived from natural processes such as UV radiation, errors in DNA

replication during cell division or in DNA repair after breakage, or

via transposable elements (see later) (Martıńez-Fortún et al., 2022).

Studies have estimated the spontaneous mutation rate in maize to

be 2.2 to 3.9 x 10-8 per site per generation (Yang et al., 2017b). The

exploitation of spontaneous mutations in breeding has led to

variations in in vivo NDF digestibility in hybrids, ranging

between 36 and 60% (Méchin et al., 2000; Barrière et al., 2004a;

Barrière et al., 2009b). Lignin is a major contributor to this variation

in cell wall degradability. Although the exact genetic cause for the

variation in lignin content among different genotypes is often

unclear, quantitative trait loci (QTL) studies have shown that

various loci collectively contribute to this trait (Barrière et al.,

2015). However, exceptions exist where the genetic cause of

certain historical maize lignin mutants turned out to be

monogenic. These lignin mutants typically show a brown midrib

(bm) phenotype, facilitating their study due to its easy-to-see

phenotype. However, it was not until the 90’s that the genetic

cause for the bm phenotype and its associated increase in

digestibility were elucidated (see later).
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Advances in novel breeding techniques
in maize

Conventional breeding happens in a relatively uncontrolled

manner. The breeder chooses and crosses parental plants but the

results are unpredictable at the phenotypic and genetic level

(Wieczorek and Wright, 2012). Additionally, crossing and

backcrossing of the hybrids to obtain elite lines is a laborious and

time-consuming process. Marker-assisted selection accelerates the

prediction and selection process in maize breeding, facilitating the

identification of varieties with desired traits such as improved

digestibility (Barrière et al., 2016; López-Malvar et al., 2019;

Vinayan et al., 2021). Although conventional breeding relies on

genetic diversity found in commercial varieties and landraces, this

diversity can sometimes be limited. Consequently, modern

biotechnological tools allowing to alter the plant’s DNA provide

valuable alternatives (Hamdan et al., 2022). To mimic the process of

random mutagenesis and increase genetic variation, the concept of

mutation breeding was developed [reviewed by Ma et al. (2021)].

Mutation breeding is based on introducing mutations via radiation

or chemical mutagens. Mutant populations can either be screened

phenotypically, or by the use of techniques such as TILLING

(Targeting Induced Local Lesions IN Genomes) that allow

identifying specific mutations in genes of interest (Till et al.,

2004). Another mutagenesis approach involves the use of Mutator

(Mu) and Activator (Ac) lines. Mu transposons, often referred to as

‘jumping genes’, have the ability to randomly transpose within the

genome. When activated by Ac genes,Mu transposons jump to new

locations, thereby increasing the genetic variation (Bennetzen et al.,

1993; May et al., 2003; Marcon et al., 2020).

In the 1990’s, another milestone in agriculture was reached with

the development of transgenic breeding techniques, utilizing

recombinant DNA technology and the ability of Agrobacterium

tumefaciens to transfer DNA into host genomes to produce

herbicide- and pest-resistant maize (Woo et al., 1997; Lundquist

and Walters, 2001). RNA interference (RNAi) is a gene mechanism

that allows to downregulate an endogenous gene by introducing part

of that same gene in reverse orientation leading to double-stranded

RNA that is degraded by the cellular machinery (Lindbo, 2012).

Although currently no commercial RNAi lines for maize are available

on the market, RNAi has been used to downregulate genes involved

in lignification to study their effect on cell wall composition and

degradability (see later). Although both mutation breeding

approaches and transgenic breeding techniques modify the plant’s

genome, there is a big difference between the two methods. Mutation

breeding involves the introduction of mutations in the plant’s

genome to achieve the desired traits, while recombinant DNA

technology introduces foreign genes to impart new traits to

the species.
The CRISPR-Cas revolution

Unlike the mutation techniques mentioned above, which may

introduce unpredictable, random and unwanted changes, the use of

sequence-specific nucleases enables the editing of a pre-defined
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DNA sequence in the host plant by introducing a double stranded

break (DSB) at or near the target site. Subsequently, the DNA repair

machinery induces errors, leading to a mutation (Hamdan et al.,

2022). The first sequence-specific nucleases used for genome editing

in maize were zinc finger nucleases and transcription activator-like

effector nucleases (Shukla et al., 2009; Liang et al., 2014). These

techniques were successful but relatively laborious, because protein

engineering was necessary to adjust the enzyme for every new target

gene (Bortesi and Fischer, 2015). More recently, CRISPR-Cas

[clustered regularly interspaced short palindromic repeats

(CRISPR)-CRISPR associated proteins (Cas)] has revolutionized

the field by enabling precise gene editing without introducing

exogenous DNA in the final product (Van Vu et al., 2022).

Hence, the emphasis has shifted towards gene editing techniques,

with legislation showing a more favorable stance towards gene

editing as compared to its transgenic counterpart (Wang et al.,

2023; Stokstad, 2024).

The CRISPR-Cas system uses a DNA nuclease and a guide RNA

to introduce a DSB, which is repaired via the error-prone non-

homologous end-joining (NHEJ) or the error-free homologous

directed repair (HDR) pathways (Xue and Greene, 2021). NHEJ

often introduces short insertions or deletions (indels), leading to a

gene knock-out (loss-of-function) or truncated proteins (Piatek

et al., 2018). However, the mutation outcome after NHEJ is not

predictable. This urged for the development of more precise editing

techniques such as base and prime editing, both of which have been

successfully demonstrated in maize (Jiang et al., 2020; Li et al.,

2020). HDR is an alternative repair pathway to precisely restore the

DSB using a DNA template derived from a homologous

chromosome or to introduce a genetic modification using an

artificial DNA repair template (Piatek et al., 2018). Despite the

potential of HDR for gene replacement or gene insertion, its

inefficiency limits its exploitation for crop improvement (Hamdan

et al., 2022). Various studies have used this technology for diverse

purposes, e.g. reducing smut susceptibility, introducing herbicide

resistance, enhancing grain yield and developing more drought-

tolerant maize varieties (Svitashev et al., 2015; Shi et al., 2017; Pathi

et al., 2020; Liu et al., 2021a). Currently, there are no published

CRISPR mutants affecting the lignin biosynthesis in maize.

However, a comprehensive list of CRISPR applications in maize is

available on EU-SAGE (http://www.eu-sage.eu).

Beyond single-gene mutagenesis, CRISPR-Cas9 also allows for

simultaneous editing of numerous genes, including members of the

same gene family. A notable multiplex genome editing approach,

BREEDIT, was developed to rapidly generate a collection of

multiplex edited plants. This method employs a single construct

that simultaneously targets up to twelve genes, followed by self-

pollination or crossing to achieve even higher order mutants. This

strategy enables identification of promising gene combinations that

can later be used in breeding programs (Lorenzo et al., 2023).
CRISPR-Cas delivery strategies in maize

The delivery of plasmid DNA encoding a CRISPR-Cas

construct in maize primarily relies on Agrobacterium-mediated
frontiersin.org
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transformation or biolistic delivery. The major advantage of

Agrobacterium-mediated T-DNA delivery is its ability to integrate

a single or low copy number of relatively large DNA fragments (up

to 150 kb) into the plant’s genome (Frame et al., 2006; Yadava et al.,

2017). Biolistics or particle bombardment is a genotype-

independent T-DNA delivery method that physically breaches the

plant cell with gold or tungsten particles coated with an expression

vector, DNA fragments or ribonucleoprotein complexes (Yadava

et al., 2017; Liang et al., 2019). Biolistics also presents some

challenges such as the introduction of multiple copies and

complex integration events of the vector (Jackson et al., 2013).

Therefore, Agrobacterium-mediated transformation is generally the

method of choice for maize transformation (Peterson et al., 2021).

However, it is important to note that genotype-associated

recalcitrance is also related to the tissue culture procedure,

explant material and the Agrobacterium strain used (Yassitepe

et al., 2021). Significant innovations have been made to overcome

this genotype-associated recalcitrance, with one advancement being

the codelivery of the morphogenetic regulators BABY BOOM

(BBM) and WUSCHEL (WUS). The co-expression of BBM/WUS

induces somatic embryogenesis, resulting in improved

transformation efficiency (Lowe et al., 2016). For example, the

transformation frequency has increased from 0% up to 15% in

the B73 inbred line, known to be highly recalcitrant towards

transformation (Mookkan et al., 2017). Although the codelivery

of these morphogenic regulators has also increased the

transformation efficiency of the B104 inbred line, continuous

expression of BBM/WUS leads to pleiotropic developmental

effects and sterility (Aesaert et al., 2022), which can be mitigated
Frontiers in Plant Science 06
using gene excision systems such as CRE/loxP and/or inducible

promoters (Lowe et al., 2016; Mookkan et al., 2017; Aesaert

et al., 2022).

Although CRISPR-based genome editing holds great potential

in plant breeding, the genotype-associated recalcitrance mentioned

earlier often limits its large-scale application for the development of

new commercial maize lines. Maize lines such as Hi-II and B104 are

amenable to the standard transformation protocol, however these

lines are usually not suitable for commercial applications

(Hernandes-Lopes et al., 2023). Moreover, commercial maize

varieties are typically hybrids derived from a cross between

distinct parental elite inbred lines. Consequently, introducing

traits requires both parental elite inbred lines to be edited. To

bypass the transformation procedure and thus the genotype-

associated recalcitrance, transgenerational gene editing presents

an alternative method to deliver the CRISPR-Cas machinery in

elite inbred lines (Li et al., 2017; Wang et al., 2018). In short, a

transgenic maize plant containing a CRISPR-Cas9 T-DNA is

crossed with a recalcitrant genotype (Figure 2A). Within the

resulting hybrid, CRISPR-Cas can then edit the target gene in

trans. The advantage of this approach is that mutations are

introduced in the recalcitrant background without the need for

introgression of an allele derived from another variety, thus

avoiding linkage drag (Impens et al., 2022). Nonetheless, multiple

backcrosses are still required to restore the elite background, which

is both a time-consuming and laborious process (Wolter et al.,

2019). For example, maize plants transformed with a CRISPR-Cas

construct targeting the LIGULELESS1 (LG1) gene were crossed with

a recalcitrant elite inbred line, resulting in an in trans mutation
B

A

FIGURE 2

Schematic representation of transgenerational gene editing. (A) A maize plant containing a CRISPR-Cas T-DNA (orange) is crossed with an elite
inbred line, resulting in an edited allele (red star) in the elite inbred line. The T-DNA free plants are retained and the elite background is restored via
multiple rounds of backcrossing (BC). Finally, elite inbreds with homozygously edited alleles are screened for after selfing (⊗). (B) A CRISPR-Cas
construct is introgressed or transformed into a haploid inducer, which is crossed with an elite inbred line and the edited haploids are identified. An
elite inbred line homozygous for the edit is obtained after chromosome doubling.
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frequency of 20% in the F1 generation (Li et al., 2017). Subsequent

rounds of marker-assisted backcrossing were then conducted to

recover the elite background. In another example, the GRANULE

BOUND STARCH SYNTHASE I (GBSS I) or Wx locus was trans-

edited in two parental lines to rapidly generate a single hybrid waxy

maize (Qi et al., 2020). Variations of transgenerational gene editing,

such as the HI-edit or HI-mediated genome editing (IMGE)

methods (see Figure 2B), have been developed in maize (Wang

et al., 2018; Kelliher et al., 2019). The HI-Edit/IMGE methods

involve transient expression of the CRISPR construct from the

paternal HI line to edit the maternal genome in trans, followed by

the elimination of the paternal genome in the zygote phase

(Yassitepe et al., 2021). Subsequently, the edited haploid progeny

undergoes artificial chromosome doubling to produce transgene-

free doubled haploids (Wang et al., 2018; Kelliher et al., 2019).

However, efficiencies remain low because modern HIs typically

produce between 7 to 16% haploids and only 2 to 4% of the haploids

are edited in trans. Consequently, less than 1% of the progeny are

edited haploids (Wang et al., 2018; Kalinowska et al., 2019; Kelliher

et al., 2019; Impens et al., 2022).
Part II. Optimization of maize
lignocellulosic biomass for agricultural
and industrial applications

Increasing the nutritional value of feed and replacing fossil fuels

to produce bio-based products have been the driving forces behind

the increased interest in cell wall biosynthesis and its enzymatic

degradation. Primary targets in maize breeding for feed purposes

have been related to grain yield and whole plant biomass yield. A

comparison of ten different forage maize cultivars released between

1972 and 2020 revealed an average annual yield increase of 0.13 ton

dry matter (DM)/ha (Taube et al., 2020). Comparable trends in

yield increase were observed in forage hybrids released between

1950 and 1980 (0.07 ton DM/ha) and from 1991 to 2003 (0.18 ton

DM/ha) (Barrière et al., 1987; Luciani, 2004). However, while

substantial progress has been made in improving yield,

improvements in forage quality remain modest. Barrière et al.

(2006) reported even a decrease in cell wall digestibility during

the breeding period of forage maize in Europe from 1958 to 2002,

and subsequent research by Taube et al. (2020) found no significant

increase in cell wall digestibility among cultivars released between

1972 and 2020. Although a range of naturally occurring genetic

variants and induced mutants with increased biomass digestibility

have been identified, including the aforementioned bm mutants

having defects in lignin biosynthesis, it has been difficult to exploit

them in modern cultivars due to their pleiotropic effects (prone to

lodging and reduced yield) (Vignols et al., 1995; Halpin et al., 1998;

Chen et al., 2012b; Tang et al., 2014; Li et al., 2015; Xiong et al.,

2019). Here it is important to note that not all maize lines with

altered lignin show a bm phenotype (Tamasloukht et al., 2011;

Fornalé et al., 2012; Li et al., 2013; Marita et al., 2014), implying that

numerous lignin-modified maize mutants may have been
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overlooked in breeding programs that primarily screened for this

characteristic bm phenotype. Therefore, research has become

increasingly focused on investigating mutants and transgenic

plants perturbed in specific steps of the lignin biosynthesis

pathway. Ideally, modifying these genes or their expression levels

would reduce the biomass recalcitrance without compromising the

biomass yield. Below, we describe the biosynthesis of lignin and its

interaction with hemicellulose, followed by an overview of mutant

and transgenic maize lines with altered lignin and the resulting

improvement in digestibility.
Lignin biosynthesis

Lignin is a structural component of the cell wall that accounts

for up to 17.2% of the lignocellulosic biomass in maize (Zhu et al.,

2005). Lignin offers support to the cell wall, facilitates water

transport and protects the carbohydrates from being digested by

pathogens and insects. It is a complex aromatic heteropolymer

made from phenolic monomers that are biosynthesized in the

cytosol and translocated to the apoplast prior to polymerization

via oxidative combinatorial coupling (Boerjan et al., 2003; Dixon

and Barros, 2019; Vanholme et al., 2019). The traditional

monolignols are p-coumaryl alcohol, coniferyl alcohol and sinapyl

alcohol, that give rise to the p-hydroxyphenyl (H), guaiacyl (G) and

syringyl (S) units in the lignin polymer, respectively (Boerjan et al.,

2003; Ralph et al., 2004; Vanholme et al., 2010; Dixon and Barros,

2019; Vanholme et al., 2019). In addition, maize lignin also

incorporates the flavonoid tricin, coniferaldehyde, ferulic acid and

acylated monolignols such as coniferyl acetate, coniferyl p-

coumarate, sinapyl p-coumarate, coniferyl ferulate and sinapyl

ferulate (Lu and Ralph, 1999; Grabber et al., 2008; Ralph et al.,

2008; Hatfield et al., 2009; Marita et al., 2014; Lan et al., 2015;

Vanholme et al., 2019). Lignin is linked to hemicelluloses through

coupling with ferulate moieties that are esterified on the

arabinoxylan (Hatfield et al., 2017).

The elucidation of the lignin biosynthetic pathway in maize is a

work in progress. Figure 3 summarizes the latest insights into the

general and the monolignol-specific pathway and compiles which

enzymatic steps have been proven to occur in maize and which are

based on findings in other grass species. Lignin is synthesized in a

series of enzymatic steps starting from phenylalanine and tyrosine

(Boerjan et al., 2003; Vanholme et al., 2010, 2019; Barros and Dixon,

2020). The first step of the general phenylpropanoid pathway is the

conversion of phenylalanine by PHENYLALANINE AMMONIA

LYASE (PAL) to cinnamic acid. Next, cinnamic acid is

hydroxylated by CINNAMIC ACID 4-HYDROXYLASE (C4H) to

form p-coumaric acid (Ôba and Conn, 1988). PALs in grasses,

including maize, can be bifunctional and also have TYROSINE

AMMONIA LYASE (TAL) activity that allows the conversion of

tyrosine into p-coumaric acid (Rösler et al., 1997; Barros et al.,

2016). Subsequently, p-coumaric acid is converted into

p-coumaroyl-CoA through 4-COUMARATE:CoA LIGASE (4CL)

(Yun et al., 2005; Xiong et al., 2019). Next, p-coumaroyl-CoA is
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esterified into its corresponding shikimic or quinic ester derivative

catalyzed by p-HYDROXYCINNAMOYL-CoA: QUINATE/

SHIKIMATE p-HYDROXYCINNAMOYLTRANSFERASE

(HCT). This enzymatic conversion has not yet been proven to

occur in maize, although it has been identified in other grass species

like Brachypodium, switchgrass and sorghum (Shadle et al., 2007;

Walker et al., 2013; Escamilla-Treviño et al., 2014; Serrani-Yarce

et al., 2021). In turn, p-coumaroyl shikimate is hydroxylated by p-

COUMAROYL-CoA 3’-HYDROXYLASE (C3’H) to produce
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caffeoyl shikimate. Currently, two C3’H-encoding genes, namely

C3’H1 and C3’H2, have been found in maize (Barrière et al., 2007;

Guillaumie et al., 2007); the role of C3’H1 in lignin biosynthesis has

already been demonstrated through reverse genetics (Fornalé et al.,

2015). Caffeoyl shikimate is then further esterified by HCT into

caffeoyl-CoA (Serrani-Yarce et al., 2021). Alternatively to the

biosynthetic route via 4CL, HCT, C3’H and again HCT, p-

coumaric acid can also be converted into caffeoyl-CoA via a two-

step pathway; hydroxylation by COUMARATE 3-HYDROXYLASE
FIGURE 3

The main pathway of the lignin monomers in maize. Many metabolites are derived from the phenylpropanoid biosynthesis pathway. Here, only the
routes to lignin monomers are shown. Solid arrows represent enzymatic steps evidenced by at least in vitro activity, dashed arrows indicate
suggested conversions. Successive arrows indicate two or multiple metabolic conversions. The enzymatic conversions indicated in black are proven
in maize, those that are shown in gray occur with certainty in grasses. PAL, PHENYLALANINE AMMONIA-LYASE; TAL, TYROSINE AMMONIA LYASE;
C4H, CINNAMATE 4-HYDROXYLASE; C3H, p-COUMARATE 3-HYDROXYLASE; 4CL, 4-COUMARATE:CoA LIGASE; HCT, p-HYDROXYCINNAMOYL-
CoA:QUINATE/SHIKIMATE p-HYDROXYCINNAMOYLTRANSFERASE; C3’H, p-COUMAROYL SHIKIMATE 3’-HYDROXYLASE; CCoAOMT, CAFFEOYL-
CoA O-METHYLTRANSFERASE; CCR, CINNAMOYL-CoA REDUCTASE; F5H, FERULATE 5-HYDROXYLASE; COMT, CAFFEIC ACID O-
METHYLTRANSFERASE; CAD, CINNAMYL ALCOHOL DEHYDROGENASE; HCALDH, HYDROXYCINNAMALDEHYDE DEHYDROGENASE; PMT,
p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE; CHS, CHALCONE SYNTHASE; A3’H/C5’H, APIGENIN 3’-HYDROXYLASE/CHRYSOERIOL
5’-HYDROXYLASE; POX, PEROXIDASE; LAC, LACCASE; PAT, p-COUMAROYL-CoA ARABINOFURANOSE TRANSFERASE; FAT, FERULOYL
ARABINOFURANOSE TRANSFERASE; GTP, guanosine triphosphate; GCH1, GTP CYCLOHYDROLASE; THF, tetrahydrofolate; FPGS,
FOLYLPOLYGLUTAMATE SYNTHASE; MTHFR, METHYLENETETRAHYDROFOLATE REDUCTASE; MTR, 5-METHYLTETRAHYDROFOLATE
HOMOCYSTEINE METHYLTRANSFERASE; SAMS, S-ADENOSYLMETHIONINE SYNTHETASE; SAM, S-adenosyl-L-methionine. bm; brown
midrib mutants.
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(C3H) (Barros et al., 2019) and ligation to CoA by 4CL. In the last

step of the general phenylpropanoid pathway, caffeoyl-CoA is

methylated by CAFFEOYL-CoA O-METHYLTRANSFERASE

(CCoAOMT) into feruloyl-CoA (Wu et al., 2018).

The first committed enzyme of the monolignol-specific pathway is

CINNAMOYL-CoA REDUCTASE (CCR) that converts

hydroxycinnamoyl-CoA esters (p-coumaroyl-CoA and feruloyl-CoA)

into their corresponding hydroxycinnamaldehydes (p-coumaraldehyde

and coniferaldehyde) (Pichon et al., 1998). Coniferaldehyde can be

converted into 5-hydroxyconiferaldehyde through FERULATE 5-

HYDROXYLASE (F5H) (Kim et al., 2006; Wu et al., 2019). The

maize genome encodes two F5H genes (Guillaumie et al., 2007), of

which F5H1 was previously described as being associated with a QTL

for digestibility by Puigdomenech et al. (2001), but no functional proof

was given for either of the two genes through reverse genetics. In turn,

5-hydroxyconiferaldehyde is methylated by CAFFEIC ACID O-

METHYLTRANSFERASE (COMT) into sinapaldehyde (Piquemal

et al., 2002). Lastly, CINNAMYL ALCOHOL DEHYDROGENASE

(CAD) catalyzes the conversion of the hydroxycinnamaldehydes into

the traditional monolignols, p-coumaryl, coniferyl and sinapyl alcohol

(Halpin et al., 1998). The respective hydroxycinnamyl alcohols can

function either directly as lignin monomers or as substrates for

acyltransferase reactions, resulting in g-O-acylated monolignol

conjugates that can also be incorporated into the lignin polymer. In

maize, similar to other grasses, coniferyl alcohol is acylated with acetate

via an enzyme yet to be identified, and primarily sinapyl alcohol is

acylated with p-coumaric acid (pCA) by p-COUMAROYL-CoA:

MONOLIGNOL TRANSFERASE (PMT) (Withers et al., 2012;

Marita et al., 2014; Karlen et al., 2018). Monolignols (mainly sinapyl

alcohol) can also be acylated with ferulic acid, via FERULOYL-CoA

MONOLIGNOL TRANSFERASE (FMT) activity, although such

conjugates are less abundant (Karlen et al., 2016; Smith et al., 2017).
Biosynthetic routes branching from the
lignin pathway

The phenylpropanoid pathway is connected with other

biosynthetic routes, some of which result in other lignin monomers,

such as flavonoids, ormolecules that connect lignin with hemicelluloses

(Vanholme et al., 2019). For example, p-coumaroyl-CoA is the

substrate of CHALCONE SYNTHASE (CHS), the key enzyme in

regulating the flux toward the biosynthesis of flavonoids, including the

lignin monomer tricin. Tricin is known to be incorporated in lignin,

where it acts as an initiation site for lignin polymerization (Lan

et al., 2015, 2016; Eloy et al., 2017). In grass cell walls, ferulate and to

a lesser extent p-coumarate, can acylate the hemicellulose

polymer via the C5-hydroxyl of the a-L-arabinosyl side chains of

glucuronoarabinoxylan (GAX). These ferulate groups originate from

feruloyl-CoA and are coupled to the arabinose residue by a

FERULOYL ARABINOFURANOSE TRANSFERASE (FAT)

belonging to the BAHD acyltransferases (Figure 3) (Schmitt et al.,

1991; Guo et al., 2001; de Oliveira et al., 2015; Fanelli et al., 2021;

Chandrakanth et al., 2023). Feruloyl-CoA is a phenylpropanoid

pathway intermediate, and thus readily available in lignifying cells.
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Polymerization

After their biosynthesis, the lignin monomers are thought to

passively diffuse through the plasma membrane into the apoplast

(Vermaas et al., 2019; Perkins et al., 2022). In the cell wall, the

monomers are oxidized by peroxidases (POXs) and/or laccases

(LACs) into their corresponding radicals (Figure 3) (Guillet-

Claude et al., 2004; Zhao et al., 2013; Perkins et al., 2022). During

lignin polymerization, these monomer radicals will undergo

combinatorial coupling, resulting in a variety of chemical bonds,

of which the b-aryl (8-O-4), resinol (8–8) and phenylcoumaran

(8–5) bonds are the most frequent ones (Ralph et al., 2019). LAC4

has been described to be involved in lignification of the maize cob

and to affect the ear length (Bi et al., 2024). Due to the broad

substrate specificity of LACs and POXs, and the possibility of

radical transfer, the ferulates present on GAX can also undergo

oxidation and radical coupling, resulting in the formation of

dehydrodiferulate dimers or oligomers, which crosslink the

polysaccharide chains. Additionally, ferulates are also crosslinked

to lignin polymers, forming covalently linked carbohydrate–lignin

complexes (de Oliveira et al., 2015; Hatfield et al., 2017; Terrett and

Dupree, 2019). Thereby, ferulates act as nucleation sites for lignin

formation (Buanafina, 2009; Courtial et al., 2013; Hatfield et al.,

2017; Terrett and Dupree, 2019). Furthermore, free ferulic acids can

also be incorporated into the lignin polymer by 8-O-4 crosslinking,

allowing new branching points with biphenyl structures to be

formed (Ralph et al., 2008).
Upstream regulation of the lignin pathway

The transcriptional regulation of genes involved in lignin

biosynthesis is tightly controlled by transcription factors of the MYB

and NAC families (Barrière et al., 2015) (Zhao and Dixon, 2011; Zhong

and Ye, 2015). But so far, few transcription factors have been evaluated

by reverse genetics in grasses (Wang et al., 2016; Bhatia et al., 2017).

Expression profiling of Arabidopsis overexpression lines has shown

that maize ZmMYB31 and ZmMYB42 both act as repressors of COMT

and potentially other lignin biosynthetic genes (Fornalé et al., 2006;

Sonbol et al., 2009; Fornalé et al., 2010). It was later discovered that

ZmMYB69 acts as an activator of ZmMYB31 and ZmMYB42

expression, and thus a repressor of lignin biosynthesis (Qiang et al.,

2022). In contrast, maize ZmMYB46 is described as a master switch to

activate cell wall biosynthesis, including cellulose, hemicellulose and

lignin biosynthesis, based on overexpression experiments in

Arabidopsis (Zhong et al., 2011). Furthermore, there is evidence that

both ZmMYB5 and ZmMYB152 (which are also called ZmMYB148

and ZmMYB111, respectively) are activators of lignin biosynthesis, but

their function has not yet been evaluated in planta (Zhang et al., 2016;

Yang et al., 2017a). Based on overexpression in Brachypodium and

maize, also ZmMYB167 has been identified as an activator of lignin

biosynthesis (Bhatia et al., 2019). NAC transcription factors regulate

the expression of downstream MYBs (Xiao et al., 2018). Specifically,

NAC SECONDARYWALL THICKENING PROMOTING FACTOR

3 (NST3) and NST4 regulate the expression of, amongst others,
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MYB109, MYB128 and MYB149, and enhance cell wall thickening

(Xiao et al., 2018; Ren et al., 2020). Even though NST3 and NST4 are

shown to activate lignin biosynthesis in maize, the transcriptional

cascades involved are not yet described (Xiao et al., 2018; Ren

et al., 2020).
Lignin mutants

The availability of genomic information and insights into the

lignin biosynthetic pathway have made it possible to make

perturbations in this pathway to modify and steer the

biosynthesis of the monomers or the structure of the polymer

itself (Mottiar et al., 2016; Ralph et al., 2019). Table 1 provides an

overview of maize lines with altered lignin amount and

composition, and their cell wall degradability and biomass yield.

It should be noted that variation in the genetic background in which

the various mutations were studied hinders straightforward

comparisons of the specific effects of a particular perturbation

(Chabbert et al., 1994; Marita et al., 2003). Indeed, different

inbred lines already differ significantly in their lignin content and

forage quality (Lundvall et al., 1994). Hence, mutations in different

genetic backgrounds may result in different phenotypes. In

addition, often different mutant alleles, e.g. knock-out and weak

alleles, have been described for a given gene, or transgenic plants

may have different degrees of downregulation of the target gene

(Park et al., 2012; Barrière et al., 2013). This genetic variation is

reflected in the range of mutant phenotypes associated with a single

gene perturbation.

Maize lines have been described that are mutated or

downregulated in specific genes or gene family members of the

general phenylpropanoid pathway, such as C4H3, 4CL1, C3’H1 and

CCoAOMT (Table 1). Downregulation of C4H3 results in a decrease

in lignin content of 14 to 17%, but no cell wall degradability tests

have been reported for these lines (Abdel-Rahman and Mousa,

2016). The bm5 mutation that affects the 4CL1 gene results in a 10

to 20% decrease in lignin content without affecting the biomass

yield (Méchin et al., 2014; Xiong et al., 2019). The neutral detergent

fiber digestibility (NDFD) and saccharification efficiency of bm5 are

increased on average by 18% and 22%, respectively (Xiong et al.,

2019). Furthermore, the bm5 mutants show a 20 to 30% reduction

in pCA ester levels and a 5- to 20-fold increase in the incorporation

of ferulic acid into the lignin polymer (Méchin et al., 2014).

Downregulation of C3’H1 by RNAi in maize results in a tendency

towards a lower lignin content in stem tissue, while lignin content

remains unchanged in the midrib (Fornalé et al., 2015).

Additionally, the lignin composition in stem tissue shifts to an

increased proportion of H units, a decreased frequency of S units

and a tendency towards an increased proportion of G units.

Moreover, although the in vitro digestibility is increased by 32%,

the C3’H1-RNAi plants suffer from a growth reduction and male

sterility (Fornalé et al., 2015). Downregulation of CCoAOMT1 in

maize results in a decrease of 22% in lignin content and an increase

in the S/G ratio. Besides a slight growth delay, the CCoAOMT1-

RNAi lines are indistinguishable from wild-type (WT) plants (Li

et al., 2013).
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Maize lines with mutations in the monolignol-specific pathway

have been reported for CCR, COMT and CAD (Table 1). Studies

have shown that CCR-deficient plants have a lower lignin content,

which translates into a significant increase in saccharification

efficiency. For example, a Mu insertion in the first intron of the

CCR1 gene results in a 31% reduction in CCR1 expression, leading

to a 12% reduction in Klason lignin content, accompanied by an

increase in the S/G ratio as well as a decreased frequency of H lignin

units. These modifications are associated with a 15% improved in

vitro digestibility. The ccr1mutants do neither have a biomass yield

penalty, nor a bm phenotype, when grown in the greenhouse

(Tamasloukht et al . , 2011). Similarly, when CCR1 is

downregulated via an RNAi strategy, a reduction in Klason lignin

content of 7 to 8% is accompanied by a 7 to 8% increased enzymatic

conversion to fermentable sugars upon an ammonia fiber expansion

pretreatment. However, six out of the twenty generated RNAi lines

have a bm phenotype and a normal biomass yield, while 5% of the

RNAi lines show stunted growth with curly leaves and aborted early

flowering (Park et al., 2012). A third study examined the lignin

content, composition and saccharification efficiency of a maize line

with a Mu insertion in the fourth exon of CCR1. These maize lines

have an approximately 20% lower lignin amount and show an up to

53% increased digestibility in a limited-extend digestibility test.

These mutants have an increased S/G ratio and release more sinapyl

ferulate units by DFRC relative to WT plants. These maize plants

have neither a yield penalty nor a bm phenotype when grown in the

greenhouse. Furthermore, the latter mutants have a 16% reduction

in seed weight and an overall 28% increase in total biomass yield

when grown in the field (Smith et al., 2017). Presumably, the

differences in the phenotypes between the RNAi and stable ccr1

mutants are due to the possibility that in the RNAi lines, multiple

CCR gene family members are simultaneously downregulated,

resulting in further reductions in lignin content as compared to

the lines where only CCR1 is mutated. These data also imply that

one or more CCR gene family members other than CCR1 have a role

in determining lignin content, and these gene family members still

need to be pinpointed.

The bm3 mutants in maize have a defective COMT gene and

exhibit an improved in vitro digestibility by up to 45% (Vignols

et al., 1995). These mutants also have an average reduction of 20%

in lignin content with a striking decrease in S units. Moreover, the

esterified pCA content is consistently decreased, while in some

instances, an increase in esterified ferulic acid levels is observed, but

no differences in the level of crosslinking between arabinoxylans

(Chabbert et al., 1994; Marita et al., 2003; Barrière et al., 2004b).

Downregulation of CAD2 leads to a reduction in lignin content

ranging from 4 to 20%, depending on the particular mutation or

method used. Furthermore, a reduced content of pCA esters is

observed, accompanied by an increase in coniferaldehyde,

sinapaldehyde and ferulic acid incorporation into the lignin

polymer (Ralph et al., 2008; Barrière et al., 2013; Liu et al.,

2021b). Additionally, bm1 mutants, defective in CAD2, exhibit an

improvement of up to 58% in saccharification efficiency (Xiong

et al., 2020).

In addition, mutant maize lines have been described that have a

reduced availability of S-adenosyl-methionine (SAM), the methyl
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TABLE 1 List of lignin mutants in maize and the effects of the mutation on the lignin content, lignin composition, cell wall degradability and
biomass yield.

Gene Method
Growth

conditions
Biomass
yield

Lignin
content

Lignin
composition

Digestibility Reference

C4H3 Antisense Greenhouse n.d. Leaf: 14–17%↓ n.d. n.d.
Abdel-Rahman and
Mousa (2016)

4CL1 (bm5) Transposon Greenhouse
WT

bm phenotype
Stem: 10–20%↓
Midrib: WT

S/G↑, %H↑
pCA↓

NDFD: ~22%↑
Saccharification
efficiency: ~18%↑

Méchin et al. (2014);
Xiong et al. (2019)

C3’H1 RNAi Greenhouse
Plant height↓

Sterility
Stem: 19–23%↓
Midrib: WT

S/G: WT, %H↑
Saccharification
efficiency: ~32%↑

Fornalé et al. (2015)

CCoAOMT1 RNAi Greenhouse
WT

Delayed
growth

Whole plant,
without ear:

~22%↓
S/G↑ n.d. Li et al. (2013)

CCR1 Transposon Field WT
Whole plant,
without ear:

~12%↓
S/G↑, %H↓ NDFD: ~15%↑ Tamasloukht et al. (2011)

CCR1 RNAi Greenhouse

WT
Abnormalities

(5%)
bm phenotype

(30%)

Stover: 7–8%↓ n.d.
Saccharification
efficiency: 7–8%↑

Park et al. (2012)

CCR1 Transposon
Greenhouse

Field

Greenhouse:
WT
Field:

DM ~28%↑

Stem: ~20%↓
S/G↑, %H: WT
%Sinapyl ferulate units↑

Saccharification
efficiency:
40–53%↑

Smith et al. (2017)

COMT
(bm3)

Transposon Field DM: 5–20%↓ Stem: 20–40%↓
S/G↓, %H↓
pCA↓
5-hydroxyguaicyl units↑

n.d.
Barrière et al. (1994);
Chabbert et al. (1994);
Vignols et al. (1995)

COMT Deletion Field n.d. n.d. n.d n.d. Vignols et al. (1995)

COMT n.d. Field n.d. Stem: 20%↓
FA↑
pCA: ~50%↓
5-hydroxyguaicyl units↑

n.d. Marita et al. (2003)

COMT n.d. Field n.d. Stem: ~21%↓
S/G↓, %H↓
pCA↓
5-hydroxyguaicyl units↑

NDFD: ~45%↑ Barrière et al. (2004b)

COMT Antisense Greenhouse
WT

bm phenotype

Whole plant,
without ear:
25–30%↓

S/G↓,%H↓
pCA↓
FA↑
5-hydroxyguaicyl units↑

NDFD: ~9%↑
Piquemal et al. (2002);
Barrière et al. (2017)

COMT Antisense Greenhouse
WT

bm phenotype
Stem: ~20%↓
Leaf: ~12%↓

n.d. NDFD: ~5%↑ He et al. (2003)

COMT Antisense Field
bm phenotype
Plant height:
15–30% ↓

Stem: ~10%↓
S/G↓
pCA↓
5-hydroxyguaicyl units↑

NDFD: ~23%↑ Pichon et al. (2006)

COMT n.d. Greenhouse
bm phenotype

Stem
DW: ~36%↓

Stem: ~43%↓
Midrib: WT

S/G↓, %H↓

Saccharification
efficiency:
Stem: ~9%↑
Midrib: ~12%↓

Fornalé et al. (2017)

CCoAOMT1 Transposon Greenhouse WT WT %H↓
Saccharification
efficiency:
Stem: ~32%↑

Fornalé et al. (2017)

COMT
CCoAOMT1

n.d.
Transposon

Greenhouse
bm phenotype

Stem
DW: ~25%↓

Stem: ~38%↓
Midrib: ~33%↓

S/G↓, %H↓

Saccharification
efficiency:
Stem: ~23%↑
Midrib: ~16%↑

Fornalé et al. (2017)

(Continued)
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TABLE 1 Continued

Gene Method
Growth

conditions
Biomass
yield

Lignin
content

Lignin
composition

Digestibility Reference

CAD2 (bm1) n.d. Greenhouse n.d. Stem: ~21%↓
S/G↑, %S↓, %G↓
pCA↓

NDFD: ~10%↑ Barrière et al. (1994)

CAD2
2 bp insertion,
method n.d.

Greenhouse
bm phenotype

WT
Stem: ~20%↓

S/G: WT
FA(Ag)↑

n.d.
Halpin et al. (1998);
Barrière et al. (2013)

CAD2 Transposon Greenhouse
bm phenotype

WT

Whole plant,
without ear:
6–17%↓

pCA↓
FA(Ag)↑
Coniferaldehyde
incorporation↑

NDFD: ~12%↑ Barrière et al. (2013)

CAD2 n.d. Field n.d. Stem: WT

FA↓
pCA↓
Coniferaldehyde
incorporation↑

n.d. Marita et al. (2003)

CAD2 RNAi
Greenhouse

Field
WT

Stem: WT
Midrib: ~6%↓

S/G↓, %H↑
Coniferaldehyde
incorporation: WT

Saccharification
efficiency:
16–19%↑

Fornalé et al. (2012)

CAD2 n.d. Field n.d. Stem: ~11%↓

S/G↓
FA↓
pCA↓
Coniferaldehyde
incorporation↑

NDFD: ~21%↑ Barrière et al. (2004b)

CAD2
Chemically

induced (EMS)
Greenhouse bm phenotype Midrib: ~5%↓ S/G↑

Saccharification
efficiency: ~58%↑

Xiong et al. (2020)

CAD2 Transposon Field n.d.
Whole plant,
without ear:

~18%↓

S/G: WT, %H↓
pCA↓
FA: WT
Coniferaldehyde and
sinapaldehyde
incorporation↑

Saccharification
efficiency: 20%↑

Liu et al. (2021b)

CAD2 Transposon Greenhouse bm phenotype
Leaves+stem:
24–30%↓

n.d. n.d. Chen et al. (2012a)

MTHFR1
(bm2)

n.d. Field n.d. Stem: WT FA↑ n.d. Marita et al. (2003)

CAD2 (bm1)
MTHFR1
(bm2)

n.d. Field bm phenotype Stem: 9%↓
Coniferaldehyde and
sinapaldehyde
incorporation↑

n.d. Marita et al. (2003)

MTHFR1 n.d. Field n.d. Stem: ~17%↓
S/G↑
FA↓

NDFD: ~27%↑ Barrière et al. (2004b)

MTHFR1 Transposon n.d. bm phenotype Stem: 7%↓ S/G↑ n.d. Tang et al. (2014)

MTHFR1 Transposon Greenhouse
WT

bm phenotype
Midrib: WT S/G↑, %H↑

Saccharification
efficiency
stem: ~58%↑

Wu et al. (2018)

FPGS (bm4) n.d. Field n.d. Stem: WT FA↑ n.d. Marita et al. (2003)

FPGS n.d. Field n.d. Stem: ~13%↓

S/G↑
pCA ↓
FA ester: ~6%↑
FA ether: ~19%↓

NDFD: ~43%↑ Barrière et al. (2004b)

FPGS Transposon Field
WT

bm phenotype
Stem: 10–14%↓ S/G↑ n.d. Li et al. (2015)

GCH1 (bm6) Transposon n.d.
Plant

height: ~6%↓
Stover: ~9%↓ n.d. NDFD: ~3%↑

Chen et al. (2012a);
Leonard et al. (2021)

PMT RNAi Greenhouse n.d.
Stem: WT
Leaf: WT

S/G↓
pCA↓

n.d. Marita et al. (2014)
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donor for CCoAOMT and COMT (Figure 3). For example, bm2

mutants show a significant reduction in METHYLENE-

TETRAHYDROFOLATE REDUCTASE 1 (MTHFR1) expression,

resulting in a 7 to 17% decrease in lignin, an increase in the S/G

ratio in stalks and a 21% increase in NDFD compared to WT plants

(Barrière et al., 2004b; Tang et al., 2014). Furthermore, Wu et al.

(2018) reported bm2 plants with lignin levels similar to WT but

with an increase in the S/G ratio and fraction of H units. These

changes lead to a notable 58% improvement in saccharification

efficiency. On the other hand, the bm4 mutation impacts

FOLYLPOLYGLUTAMATE SYNTHASE (FPGS) (Cossins and

Chen, 1997; Mehrshahi et al., 2010). Similar to bm2, bm4 mutants

accumulate 10 to 14% less lignin in the stalks, have an elevated S/G

ratio and show an increase in NDFD by 43% (Barrière et al., 2004b;

Li et al., 2015). The bm6 mutant phenotype is caused by a loss-of-

function mutation in GTP-CYCLOHYDROLASE 1 (GCH1),

encoding an enzyme functioning upstream of FPGS, where it

mediates the first step in the tetrahydrofolate (THF) biosynthesis

pathway. These mutants show a 6% reduction in lignin content and

a 3% improvement in NDFD (Chen e t a l . , 2012b ;

Leonard et al., 2021).

A transgenic line downregulated in PMT shows a substantial

reduction in esterified pCA levels, accompanied by a decrease in S

units (Marita et al., 2014). Furthermore, the naturally silenced
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colorless (c2) mutant, which is defective in the CHALCONE

SYNTHASE gene, exhibits a 98% reduction in tricin incorporation

in the leaves whereas tricin is below the detection limit in the

mutant stems. Despite this, the c2 mutant exhibits WT lignin levels

in the stem, although with a reduction in H units. Conversely, in leaf

tissue, the c2 mutant shows a 27% increase in lignin content, which

is accompanied by a decrease in saccharification efficiency of 39%

(Eloy et al., 2017). Finally, maize lines with a defective allele of the

peroxidase-encoding gene ZmPOX3, resulting from a MITE

transposon insertion, exhibit higher forage digestibility compared

to lines with similar genetic backgrounds but carrying a functional

allele of ZmPOX3 (Guillet-Claude et al., 2004).

Only a limited number of maize lines has been described with

altered levels of MYB or NAC transcription factors involved in

lignin biosynthesis (Table 1). ZmMYB167 overexpression lines are

not affected in their growth and development and exhibit an

increase of 4 to 13% in lignin, 8 to 52% in pCA and 13 to 38% in

ferulate esters in the internodes. Nevertheless, no changes in

biomass recalcitrance are observed upon saccharification (Bhatia

et al., 2019). Furthermore, maize lines in which ZmMYB69 is

overexpressed display a decrease in plant height, as well as in

vascular bundle cell wall thickness (Qiang et al. (2022).

Significantly reduced levels of lignin are observed in the

ZmMYB69 overexpression lines in comparison to the control,
TABLE 1 Continued

Gene Method
Growth

conditions
Biomass
yield

Lignin
content

Lignin
composition

Digestibility Reference

POX3 Transposon Greenhouse n.d. n.d. n.d. NDFD: ~12%↑ Guillet-Claude et al. (2004)

CHS RNAi Greenhouse

Total DM: 18–
32%↑

Leaf DM:
25–27%↑

Stem: WT
Leaf: ~27%↑

Stem:
S/G: WT, %H↓
Tricin: 100%↓
Leaf:
S/G: WT, %H: WT
Tricin: 98%↓

Saccharification
efficiency
leaf: 39%↓

Eloy et al. (2017)

Unknown
gene (sfe)

Transposon Field

Plant height:
~4%↑

Biomass:
~14%↑

Stem: 5–19%↓
Sheat: 3–10%↓

Stem:
S/G↑
FA↓
pCA↓
Sheat:
FA↓
pCA↓

NDFD:
Stem: ~3%↑
Sheat: ~4%↑

Jung and Phillips (2010)

MYB69 Overexpression Greenhouse Plant height ↓ Stem: ↓ n.d.
Saccharification
efficiency: ↑

Qiang et al. (2022)

MYB69 CRISPR Greenhouse WT Stem: ↑ n.d. n.d. Qiang et al. (2022)

MYB167 Overexpression Greenhouse WT Stem: 4–13%↑
pCA↑
FA↑

Saccharification
efficiency: WT

Bhatia et al. (2019)

NST3 Overexpression Greenhouse Plant height ↓ Stem: ↑ n.d. n.d. Xiao et al. (2018)

NST3 Antisense Greenhouse

Plant height ↓
Arrested

growth, up-
curled leaves

Stem: ↓ n.d. n.d. Xiao et al. (2018)

NST4 Antisense Greenhouse
Plant height ↓
Tubular leaves

Stem: ~70%↓ n.d. n.d. Xiao et al. (2018)
The full-length gene names corresponding to the abbreviations are provided in the legend of Figure 3. For lignin composition, the %H is expressed on the total amount of monomers released
from the lignin (H+G+S), and pCA and FA refer to the relative change in their levels expressed per total cell wall, pCA; p-coumaric acid, FA; ferulic acid, DM, dry matter; NDFD, neutral detergent
fiber digestibility; bm, brown midrib; FA(Ag), marker for ferulic acid incorporation as monomer in lignin; ↑, increase; ↓, decrease; WT, equals to wild-type levels; n.d., not determined.
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which is accompanied by increased saccharification efficiency.

Conversely, thicker cell walls and a higher lignin content are

observed in zmmyb69 loss-of-function lines, generated via

CRISPR/Cas. These plants do not show any visible growth

defects. In addition, both overexpression and downregulated lines

were made for ZmNST3 and ZmNST4. The overexpression of

ZmNST3 leads to a decrease in plant height and an increase in

cell wall thickness, which is due to an increase in lignin and cellulose

content in the internodes. Meanwhile, ZmNST4 overexpression

appears to be lethal. The downregulation of either ZmNST3 or

ZmNST4 results in a reduction in stem lignification and reduced

plant height (Xiao et al., 2018).
Causes of reduced cell wall recalcitrance

Cell wall digestibility is a complex trait influenced primarily by

factors such as lignin content, lignin composition and ferulate

cross-linkages (Méchin et al., 2014; Torres et al., 2015b; Barrière,

2017). Plants with a lower lignin content generally have an

improved digestibility, but it is not easy to discern the

contribution of specific structural lignin alterations to the

improvements in biomass digestibility (Halpin, 2019). For

example, an increased proportion of H units may contribute to

improved biomass digestibility in maize, by engendering smaller

lignin polymers (Fornalé et al., 2012; Vanholme et al., 2012; Méchin

et al., 2014; Fornalé et al., 2015; Wu et al., 2018). This has been

achieved by suppressing C3’H1, but this engineering strategy

additionally resulted in a reduction of total lignin (Fornalé et al.,

2015). Furthermore, a positive correlation between S/G ratio and

cell wall degradability in maize has been observed (Méchin et al.,

2000, 2005; Zhang et al., 2011). This could likely be attributed to the

different linkage type frequencies engendered by coupling of S and

G units (Barrière et al., 2009a). Where lignin rich in S units is

relatively linear and abundant in (8-O-4) ether bonds, lignin rich in

G units has more carbon-carbon (8–5 and 5–5) linkages and

branched structures (Ralph et al., 2008). Additionally, the

observed positive correlation might also be caused by the

confounding effect that S units, as compared to G units, are more

prone to esterification into pCA esters, which have a positive effect

on cell wall degradation (Méchin et al., 2000; Grabber et al., 2009;

Zhang et al., 2011).

Maize lines mutant for enzymes acting upstream of

coniferaldehyde (MTHFR, 4CL1, C3’H1, CCoAOMT, CCR1)

show a reduction in both G and S lignin units, with a stronger

decrease in G units, resulting in an increased S/G ratio, which could

contribute to the increased cell wall digestibility (Barrière et al.,

2004a; Tamasloukht et al., 2011; Smith et al., 2017; Xiong et al.,

2020). In contrast, the decreased COMT activity in comt mutants

strongly reduces the biosynthesis of sinapyl alcohol, resulting in a

substantial decrease in the S/G ratio. The improved digestibility of

comt mutants can primarily be attributed to their lower lignin

content, while their reduced S/G lignin ratio would rather

counteract the release of cell wall sugars (Fornalé et al., 2017).

However, instead of S units, the lignin polymer contains 5-

hydroxyguaiacyl (5-OH-guaiacyl) subunits, that give rise to
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benzodioxane structures, through the incorporation of 5-

hydroxyconiferyl alcohol and 5-hydroxyconiferaldehyde (Marita

et al., 2003). The increased presence of benzodioxane structures

in the lignin polymer is thought to reduce cross-linking of lignin

with cell wall carbohydrates, in this way contributing to the cell wall

degradability (Weng et al., 2010; Vanholme et al., 2012).

In addit ion to 5-hydroxyconiferyl a lcohol and 5-

hydroxyconiferaldehyde, the incorporation of other intermediates

from the lignin pathway can also facilitate cell wall processing. For

example, a reduced CAD activity results in the integration of

coniferaldehyde and sinapaldehyde into the lignin, thereby

producing a lignin polymer with a higher proportion of free

phenolic units (Lapierre et al., 1999; Ralph et al., 2001).

Depending on the plant species and pretreatment used,

incorporation of these hydroxycinnamaldehydes results in an

improved cell wall processing (Fu et al., 2011; Fornalé et al., 2012;

Van Acker et al., 2017; Liu et al., 2021b). In addition, reduced CAD

activity also results in the incorporation of ferulic acid into the

lignin polymer, presumably because its substrate coniferaldehyde is

converted by HCALDH into ferulic acid (Nair et al., 2004; de

Oliveira et al., 2015; Končitıḱová et al., 2015; Missihoun et al., 2016;

Liu et al., 2021b). The incorporation of ferulic acid results – in

contrast to GAX-bound ferulate moieties (see below) – in acetal

bonds that are cleavable in acidic conditions (Ralph et al., 2008).

However, in different lignin engineering strategies in a variety of

plant species, the incorporation of ferulic acid appears to be

marginal, presumably due to the low translocation efficiency of

ferulic acid to the apoplast (Van Acker et al., 2013, 2014; Vermaas

et al., 2019).

Considering that pCA is mainly esterified into sinapyl alcohol in

maize, mutants with a reduced biosynthesis of sinapyl alcohol, such

as cad2 and comt, show a reduced amount of pCA conjugates

(Piquemal et al., 2002; Barrière et al., 2013; Méchin et al., 2014).

However, the strongest reduction in cell wall bound pCA esters in

maize was observed by downregulating PMT (Marita et al., 2014).

The pCA moieties are pending groups with free phenolic ends that

make the lignin polymer more soluble in alkaline pretreatment

conditions (Hatfield et al., 2017; Lapierre et al., 2021). Therefore, the

increase in pCA conjugates, e.g. by overexpression of PMT, is

expected to improve the saccharification efficiency of the

maize biomass.

GAX-bound ferulates allow cross-links between xylan chains

and between xylans and lignin. Such cross-linkages have a negative

effect on maize cell walls degradability (Grabber et al., 1998, 2009;

de Oliveira et al., 2015). Downregulation of BAHD genes encoding

acyltransferases with FAT activity in Brachypodium, rice and

Setaria results in a drop in GAX-bound ferulates (Piston et al.,

2010; Buanafina et al., 2016; de Souza et al., 2018). Expression

analysis in maize hinted five genes encoding BAHD acyltransferases

as potential FAT genes, however no functional analysis has been

undertaken yet to validate their function (Chateigner-Boutin et al.,

2016). The seedling ferulate ester (sfe) maize mutant was selected

from a transposon mutant stock, by screening for seedlings with

reduced ferulate ester content, but the mutated gene causing this

phenotype is not yet identified (Table 1) (Jung and Phillips, 2010;

Hatfield et al., 2018). The sfe mutant biomass does not only show
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reduced ferulate levels, but also has lower lignin levels, and

improved rumen digestibility as evidenced by its performance in

animal feeding trials (Jung et al., 2011).
Agronomic performance

Concerns often arise that plants with reduced lignin levels

would have increased susceptibility to pests, diseases, reduced

biomass yield and lodging. Indeed, lignin does play an important

role in these agronomic traits and some maize mutants with altered

lignin were reported to have such unfavorable characteristics

(Table 1) (Oliveira et al., 2020; Ren et al., 2020). On the other

hand, it seems that lignin content variations within the natural

maize population have little discernible impact on its agronomic

performances (Pedersen et al., 2005; Barrière, 2017; Manga-Robles

et al., 2021). In addition, promising inbred lines have already been

developed with enhanced fermentable sugar yields that rival or

surpass the bmmutant. These lines exhibit superior tolerance to fall

armyworm compared to their isogenic counterparts (Vermerris

et al., 2007). Similarly, another study also observed no close

correlation between insect susceptibility and the lignin content

(Williams et al., 1998).

The bm3 mutants have demonstrated the most significant

improvement in in vitro cell wall digestibility as compared to

other bm mutants, making them the most promising among all

bmmutants for breeding purposes. However, a bm3mutation often

results in a reduction of 15 to 20% in dry matter yield as compared

to their non-mutant isogenic controls (Inoue and Kasuga, 1989). In

contrast, two studies reported no biomass yield reductions

associated with the bm3 mutation in certain genetic backgrounds

as compared to their isogenic control lines (Weller et al., 1985;

Gentinetta et al., 1990). The bm3 mutants are also often associated

with reduced stalk strength, increased susceptibility towards

pathogens and drought, and precocious senescence (Nicholson

et al., 1976; Zuber et al., 1977; Vermerris et al., 2010; Akhter

et al., 2018). However, several studies were not able to detect a

correlation between increased lodging susceptibility and bm3

mutants (Weller et al., 1985; Inoue and Kasuga, 1989). Recently,

some of these pleiotropic effects of a bm3 mutation, such as

precocious senescence and low drought tolerance, were

counteracted by the introgression of a BRACHYTIC2 (BR2)

mutation, resulting in a bm3 br2 double mutant (Landoni et al.,

2022). In conclusion, there are strong interactions between the gene

of choice, the genetic background and the environment in which the

plants are grown. Therefore, the agronomic performance will

largely be determined by these factors (Pedersen et al., 2005).
Conclusion and future perspectives

Lignin plays a fundamental role in various agronomically relevant

traits. Lignin offers tolerance against biotic stresses, provides

structural support to stems to prevent lodging, yet it also acts as a

biomass recalcitrance factor limiting cell wall degradability. Current

evidence suggests that reducing lignin content in maize can be
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achieved without compromising plant growth and biomass yield by

choosing the right gene or by introgression of the corresponding

mutation into the most appropriate genetic background. There is still

considerable potential for new lignin-engineering strategies in maize,

as many genes involved in lignin biosynthesis and its regulation have

yet to be investigated (Barrière et al., 2015; Penning et al., 2019).

Genomic studies have shown that lignin biosynthesis genes are often

part of multigene families, of which in most cases only a single

member has been analyzed. Knocking-out multiple members of the

same gene family, which has only now become possible by CRISPR-

based gene editing, is a promising strategy to further improve the

processability of lignocellulosic biomass. In addition, CRISPR-based

gene editing allows the generation of a range of alleles, not only

knock-out alleles, but also weak alleles that should allow the tuning of

lignin content and composition without affecting yield, as illustrated

by editing CCR2 in poplar (De Meester et al., 2020). Furthermore, by

analyzing lignin mutants and transgenics, it has become clear that

lignin is tolerant towards large compositional shifts. This opens

perspectives to redirect the lignin pathway towards the

overproduction of rare natural monomers, or even to let the plant

synthesize alternative monomers by expressing exotic genes. For

example, ectopic overexpression of the two penultimate genes of

the scopoletin biosynthesis pathway in lignifying cells in Arabidopsis

has resulted in the incorporation of scopoletin into the lignin

polymer, making it more susceptible to alkaline pretreatments

(Hoengenaert et al., 2022). Several other examples and strategies

exist and have been reviewed (Mottiar et al., 2016; Vanholme et al.,

2019; de Vries et al., 2021).

For future research and applications, a few critical factors need

to be considered with regard to the genotype to work with, and the

environment where the experiments are carried out. First, it needs

to be recognized that most studies on the effects of lignin

engineering on digestibility have been conducted in greenhouses.

The main reason for this is that the effect of a genetic modification is

easier to determine in a stable greenhouse environment.

Experiments with transgenic plants under field conditions require

a regulatory permit, which discourages most researchers from

conducting field trials. Nevertheless, field trials are essential to

validate the effect of the mutation. Field trials represent a realistic

environment with fluctuating weather conditions (wind, UV

radiation, rain, drought), exposure to abiotic stressors and

variations in soil type and soil microorganisms. Furthermore, the

planting density in the field differs from that of plants grown in pots

under the controlled greenhouse settings. Thus, results obtained in

the greenhouse may not always align with observations made under

field conditions (Tuberosa, 2012; Nelissen et al., 2014). When

improving a commercially relevant trait, it is therefore advisable

to conduct the experiments directly in the field to select the most

promising mutants, and only then study their more subtle effects in

a greenhouse setting for purely scientific purposes. Second, it is

important to recognize that genotypes typically used in experiments

and transformation (laboratory strains) are not optimized for cell

wall degradability. As a result, genomic modifications can lead to

substantial improvements in the digestibility in these genotypes,

whereas the improvement does not necessarily translate into elite

inbreds or their hybrids. It will be essential to either edit elite inbred
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lines if transformation protocols exist for them, or to use other

methods such as transgenerational editing. Importantly, when the

mutations are recessive, both elite inbred lines will need to be edited

in order to create a mutant hybrid. Only when the mutant hybrid

outperforms, and preferentially in different environments, the

strategy can be considered successful. Navigating the future of

maize breeding requires embracing cutting-edge gene editing

technology. By addressing the challenges associated with genotype

selection and field validation, we can adopt a sharper approach to

develop modern maize varieties that contribute to a sustainable

agriculture and bio-based economy.
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