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Accurate estimation of chlorophyll is essential for monitoring maize health and

growth, for which hyperspectral imaging provides rich data. In this context, this

paper presents an innovative method to estimate maize chlorophyll by

combining hyperspectral indices and advanced machine learning models. The

methodology of this study focuses on the development of machine learning

models using proprietary hyperspectral indices to estimate corn chlorophyll

content. Six advanced machine learning models were used, including robust

linear stepwise regression, support vector machines (SVM), fine Gaussian SVM,

Matern 5/2 Gaussian stepwise regression, and three-layer neural network. The

MRMR algorithm was integrated into the process to improve feature selection by

identifying the most informative spectral bands, thereby reducing data

redundancy and improving model performance. The results showed significant

differences in the performance of the six machine learning models applied to

chlorophyll estimation. Among the models, the Matern 5/2 Gaussian process

regression model showed the highest prediction accuracy. The model achieved

R2 = 0.71 for the training set, RMSE = 338.46 µg/g and MAE = 264.30 µg/g. In the

case of the validation set, the Matern 5/2 Gaussian process regression model

further improved its performance, reaching R2 =0.79, RMSE=296.37 µg/g,

MAE=237.12 µg/g. These metrics show that Matern’s 5/2 Gaussian process

regression model combined with the MRMR algorithm to select optimal traits

is highly effective in predicting corn chlorophyll content. This research has

important implications for precision agriculture, particularly for real-time

monitoring and management of crop health. Accurate estimation of

chlorophyll allows farmers to take timely and targeted action.
KEYWORDS

maize chlorophyll estimation, hyperspectral indices, minimum redundancy maximum
relevance (MRMR) algorithm, spectral bands, machine learning
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1 Introduction

Maize (Zea mays L.) is the global second-largest arable crop,

playing a pivotal role in global agriculture due to its status as a staple

food, animal feed, and industrial crop (Grote et al., 2021). Its

adaptability, versatility, and widespread cultivation contribute

significantly to initiatives addressing food security and economic

growth in developing countries. Maize is high in starch content,

typically around 65%. With starch as its primary carbohydrate,

maize serves as a major energy source for both humans and

animals, making it a critical component of the global food supply.

Given its significance, monitoring the health and nutrient status of

maize is essential for optimizing yield and ensuring sustainable

agricultural practices. Maize, like other green plants, exhibits

distinct absorption maxima in the blue (around 430 nm) and red

(approximately 660 nm) regions of the spectrum due to chlorophyll,

while reflecting green light (around 550 nm), which gives maize

leaves their characteristic color (Al-Abbas et al., 1974; Weber et al.,

2012). The near-infrared spectrum (700-1300 nm), where maize

shows high reflectance, is particularly useful in assessing plant

health, as it is influenced by the internal structure of leaves (Nagy

and Tamás, 2013; Szabó et al., 2019). Monitoring these spectral

properties allows for the detection of water stress, chlorophyll

content, and overall plant health, providing critical insights for

crop management. Leaf colour is determined by various pigments

like anthocyanin, xanthophyll, carotenoid, and chlorophyll, all of

which play a crucial role in light conversion and energy utilization

(Winkel-Shirley, 2002). In addition to the initial harm caused by

oxidative stress impacting lipids, proteins, nucleic acids, and

chlorophyll breakdown, plants undergoing drought stress undergo

subsequent damage. During severe drought conditions, chlorophyll

a and b levels decline (Sircelj et al., 2007), and analysing chlorophyll

levels proves valuable in studying how plants respond to biotic

stress (Ghobadi et al., 2013; Neto et al., 2017). The concentration of

chlorophyll is closely linked to the nitrogen content of plants and, as

a result, is intricately associated with the photosynthesis process.

Usha and Singh (2013) illustrated that the sensitivity of reflectance

to stress-induced chlorophyll content is particularly high in the 690-

700 nm range. If stress possesses sufficient potency to impede the

formation of chlorophyll, heightened reflectance is initially detected

at the typical absorption wavelengths. The 760-790 nm range

proves effective for determining plant water stress (Jung, 2005;

Nemeskéri et al., 2009). Additionally, Yu et al. (2014) noted that

wavelengths at 730 and 960 nm are linked to water absorption

bands. Maize plants, like other green plants, have absorption

maxima in the blue (about 430 nm) and red (approximately

660 nm) sections of the spectrum owing to chlorophyll

absorption. This reflectance relates to light scattering by leaf

interior structures and can be an indicator of plant health (Al-

Abbas et al., 1974; Weber et al., 2012). Current methods for field

maize chlorophyll estimation face limitations such as the

destructiveness and labor-intensity of traditional sampling,

variability and calibration challenges in non-destructive optical

sensors, and the high costs and complexity of advanced remote
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sensing techniques (Fu and Jiang, 2022). Environmental factors and

temporal variability further complicate accurate assessments, while

scalability and practical application remain concerns, especially for

large-scale operations (Bramer et al., 2018). Spectroscopic

technology has gained attention for its ability to monitor plant

growth and nutrient status non-destructively, offering a time-

efficient, cost-effective, and detailed analysis of plant health (Qiao

et al., 2020). In contrast, spectroscopic techniques, particularly

those involving visible-near infrared (Vis-NIR) detection, allow

for real-time, non-invasive estimation of chlorophyll levels by

identifying specific wavelengths that correlate with chlorophyll

absorption and reflectance characteristics (Chen et al., 2020).

In the spectroscopic determination of chlorophyll content,

various machine-learning techniques are employed to formulate

accurate predictions by establishing correlations between input

spectral data and the associated chlorophyll content. Combining

hyperspectral indices with machine learning models (MLMs) can

offer superior performance over traditional methods by leveraging

the high-dimensional data from hyperspectral imaging and the

advanced analytical capabilities of MLMs. Hyperspectral indices

provide detailed spectral information, capturing subtle variations in

chlorophyll content and plant health, while MLMs can analyze

complex patterns and relationships within this data to improve

accuracy and prediction. This integration enhances the ability to

detect and quantify chlorophyll levels more precisely and

dynamically, leading to more informed and effective agricultural

nutrient and water management (Yoosefzadeh-Najafabadi et al.,

2021). Among these techniques, the Minimum Redundancy

Maximum Relevance (MRMR) algorithm emerges as a prominent

feature selection approach widely adopted in both machine learning

and bioinformatics (Radovic et al., 2017; Ding and Peng, 2005). The

primary objective of the MRMR algorithm is to identify a subset of

features (variables) from an extensive set, emphasizing both the

relevance of these features to the target variable and the

minimization of redundancy among the selected features.

Recognized for its efficacy, the MRMR algorithm proves

instrumental in enhancing the selection of the most informative

spectral bands or indices crucial for precise chlorophyll estimation

(Li et al., 2018). Its application ensures a refined set of features that

optimally contribute to the accuracy and reliability of chlorophyll

content predictions, thus elevating the overall effectiveness of

machine learning models in this spectroscopic context. Robust

linear (RL) regression is applied to improve the accuracy of

chlorophyll content predictions by mitigating the impact of

outliers in the remote sensing data, hyperspectral data, multi-

sensor data fusion, drought or stress conditions, and longitudinal

studies (Park et al., 2015; Luo et al., 2019; Liu et al., 2019). In field

spectroscopy, stepwise regression is applied to build models that

predict chlorophyll content using a subset of relevant spectral

features. Stepwise regression is a useful tool for variable selection

to adapt or integrate chlorophyll detection models to changing

environmental conditions or stress factors and cross-sensor

calibration (Liu et al., 2018; Song et al., 2021). Support Vector

Machines (SVM) is employed as a supervised learning algorithm to
frontiersin.org
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develop models that can classify or estimate chlorophyll content

based on spectral data. It is effective in scenarios where the

relationship between spectral features and chlorophyll content is

complex or non-linear, such as diagnosing citrus greening disease

and nutritional stress in citrus leaves (Cen et al., 2017). When the

spectral data is high-dimensional and exhibits non-linear patterns,

A Fine Gaussian SVM, a type of Support Vector Machine (SVM)

model that utilizes a Gaussian kernel, is highly effective in

classifying leaves and plants as either disease-free or infected

(Lacotte et al., 2022; Jia et al., 2023). The Matérn 5/2 kernel

Gaussian process regression specific form of covariance function

commonly used in Gaussian Process (GP) regression. It provides a

flexible and smooth representation of the underlying relationship

between spectral features and chlorophyll content. It has been

utilized to forecast the acoustic performance of composite

materials made from agricultural crop waste (Puyana-Romero

et al., 2022). It is based on a methodology used to optimize

hyperparameters of noisy, expanding black-box functions that

represent a systematic approach to modeling uncertainty. The

method performs better in detecting tea leaf chlorophyll and

optimization of functions (Sonobe et al., 2020; Snoek et al., 2015).

A trilayered neural network involves neural network architecture

with three tiers of nodes which include an input layer, a concealed

layer, and an output layer. It is applied to chlorophyll detection for

yield predictions (Lagrazon and Tan, 2023), precision agriculture

(Zahra et al., 2023), and soil health monitoring (Ropelewska et al.,

2023). This type of neural network can learn intricate patterns in the

data for accurate predictions. As chlorophyll is an indicator of plant

vigor, it is, therefore, essential to provide spatially resolved real-time

or near real-time monitoring of chlorophyll levels without

damaging the plant or disrupting its environment. Existing

methods often lack standardization and effective integration with

machine learning models, limiting their reliability and broader

applicability (Maier, 2021).

The primary aim of the study is to expand the area of remote

sensing in agricultural monitoring using proximal sensors by

creating a new rapid non-invasive approach for predicting crop

chlorophyll content with hyperspectral data, machine learning

models, and MRMR feature selection technique. The specific

objectives are (1) to develop and test novel proximal sensor-based

spectral indices that cover a broader range of wavelengths; (2) to

assess the precision of six machine learning algorithms which are

Robust Linear (RL), Stepwise Regression (SR), Support Vector

Machines (SVMs), Fine Gaussian SVM (FG-SVM), Matern 5/2

Gaussian Process Regression (MGPR) and Trilayered Neural

Networks (TNN) in predicting chlorophyll levels in maize leaves,

thereby enhancing the ability to detect and quantify chlorophyll

content with higher precision. The study seeks to close the gap

where chlorophyll estimations are generally not plant-specific by

offering an integrated and refined approach to improve reliability

and accessibility in chlorophyll estimation. The ultimate objective is

to give farmers and agricultural stakeholders new approaches for

more precise and dependable tools for measuring crop health while

promoting sustainability, efficiency, and scalability in crop

management practices.
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2 Materials and methods

2.1 Study site

The study site is in the Pannonian region on the Northern Great

Plain, marked by coordinates (latitude: 47°48’18.60”N, longitude:

22°9’43.89”E, altitude: 144 m), at the boundary of a climate zone

characterized by moderately warm and cold (continental). This

location is an alluvial cone plain primarily covered with sand.

Covering an expanse of 87.5 hectares, the area is designated as

irrigated arable land and is equipped with a linear irrigation system.

Due to past melioration and drainage activities conducted in the

previous century, the active water network is currently sparse, and

the landscape experiences low horizontal fragmentation. The

European Commission declared the study site a nitrate-vulnerable

area in 2010. Over the past ten years, the annual sunshine hours

have varied between 1900 and 2000, with 800 hours during the

summer season and 170 hours in winter, according to the

Hungarian National Weather Service (HNWS) (2020). The

average annual temperature falls within the range of 9.6°C to

12.6°C. In summer, the daily maximum temperature can surpass

34°C, while winter typically sees minimum temperatures below

-17.0°C. The annual rainfall is recorded at 570-600 mm, with

approximately 350-360 mm occurring during the summer season.

The prevailing wind directions are from the northeast and

southeast, with an average speed of 2.5 m/s (Magyar et al., 2023).

In 2021, maize P0725 - FAO 580 was sown on 13.05.2021 and

FAO 530 on 21.05.2021 at 76 000 grains/ha and 76.2 cm row

spacing. Harvest time was 22-23.09.2021 with an average yield of

34.14 t/ha at ~35% dry matter. In 2022, the sowing date was

19.04.2022 with the maize variety PIONEER P0725 at a grain

density of 76 000 grains/ha and a row spacing of 75 cm. The

harvest date was 23.08.2022, with an average yield of 34.40 t/ha. In

2023, the maize variety RAAGT Mexxpledge was sown on

29.04.2023 at a grain density of 72 000 grains/ha and a row

spacing of 75 cm. The harvest date was 16.08.2022. The silage

yield of the irrigated area was 40.4 t/h, and the yield of the non-

irrigated area was 32.8 t/ha. Maize was grown in sandy soils with

extreme water balance, which poses a particularly high risk of water

deficit and heat stress (Magyar et al., 2023). To ensure homogeneity

of sampling, leaf samples were taken from the upper biomass level

of selected maize plants to determine pigment content (Figure 1).
2.2 Measurement method and
data processing

Sampling was carried out 9 times (3/year) in 2021, 2022, and

2023 at 5 sampling areas, during which a total of 540 samples were

collected from irrigated and non-irrigated areas. One sampling area

was from an unirrigated part of the field, and the rest four were

from irrigated parts. The selection of sampling areas at the irrigated

part was based on different soil physical parameters (Magyar et al.,

2023). The sampling areas were selected based on sampling was

carried out between 10-12 h, for which 12 samples were taken from
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each selected point. Leaf samples were measured in the laboratory

within 6 h after storage and transport, chilled at 4°C. Samples were

destructed with 80% acetone and 1 g quartz sand for homogeneity.

After extraction, the suspensions were centrifuged at 3000 rpm for 3

min and the clear solution was transferred to a 2,5 ml cuvette. The

absorbance of the solution was measured with a spectrophotometer

(SECOMAN Anthelie Light II) at 470 nm, 644 nm, and 663 nm.

The chlorophyll content of the samples was determined using

the equation published by Droppa et al. (2003) (Equation 1):

Chlorophyll (a + b) mg=g fresh weight

= (20, 2 ∗A644nm + 8, 02 ∗A663nm) ∗V=w (1)

where:

V = volume of tissue extract (ml)

w = fresh weight of tissue (g)

A = absorbance

The AvaSpec 2048 spectrometer was used to collect spectral data

from leaf samples in the wavelength range 400-1000 nm with an

accuracy of 0.6 nm. The system consists of a spectrometer, an

AvaLightHAL halogen light source, and a special patented

sampling box, which performs measurements in the dark thus

making the measurements free from external light and various

noises. Changes in light conditions (e.g. LED or fluorescent tube)

affects the reflectances at specific wavelegthses, therefore elimination

of these background light is essential for proper measurements. After
Frontiers in Plant Science 04
calibration of the spectrometer to a white and dark reference, the leaf

sample was placed under the illumination of the spectrometer and

measurements were performed in three replicates (Szabó et al., 2019).
2.3 Model building and
performance assessment

The results were subjected to statistical analysis using SPSS

software, using PCA with Varimax rotation to compress the data,

detect outliers, and reveal patterns and internal structure within the

overall data set. The aim of this approach was to identify the

wavelengths with the largest variation in factor weights. Since

the major changes in leaf samples were in the pigments, especially

chlorophyll, the highest variation in reflectace is possibly due to the

different chlorophyll contents in leaves making PCA results optimal

for identifying wavelengths sensitive to plant chlorophyll content

(Liu et al., 2017). Varimax rotation, known for generating separate

factor loadings, facilitated the assignment of individual objects to a

single factor (Jolliffe, 2002). Varimax rotation, an orthogonal

rotation method, was specifically selected to make the output of

PCA more interpretable by maximizing the variance of the squared

loadings of each component. This results in more distinct and

meaningful patterns, making it easier to identify and analyze

specific features within the hyperspectral data, ultimately

enhancing the clarity and reliability of the analysis in this context.
FIGURE 1

Study site.
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In addition to PCA, the standard deviation (SD) of spectral features

was also examined to identify the wavelengths with the highest

variability, indicating potential chlorophyll changes. Using standard

deviation (SD) to examine the wavelengths of spectral data is a

simple method to identify regions of high variability. These regions

are often of interest because high variability can indicate significant

differences in the underlying samples that may be related to key

characteristics or chemical components present in the samples. By

identifying a wavelength with a high SD, we can focus on specific

parts of the spectrum that may contain the most informative

features. This pre-processing step helps to reduce the

dimensionality of the data even before more complex methods

such as PCA are applied, by potentially excluding low variability

wavelengths that are unlikely to contribute meaningful information

to the analysis. Following the selection of chlorophyll sensitive

wavelengths in the 400-1000 nm range, spectral indices were

created using the most and least sensitive wavelengths based on

PCA and SD results, with the combined results increasing the

likelihood of capturing the most important spectral features in the

analysis. Alongside the developed models, an existing and widely

used Vegetation Index (VI) was computed for comparative analysis.

The Normalized Difference Vegetation Index (NDVI) (Equation 2)

and the Red Edge Position (REP) (Equation 3) index were

determined by identifying the maximum slope point in the plant

leaf reflectance spectrum between red and near-infrared

wavelengths. The Red Edge Normalized Vegetation Index

(NDVI705) (Equation 4) (Potter et al., 2012) was introduced as a

modification, focusing on a narrower waveband at the chlorophyll

absorption edge (e.g., 705 nm) (Sims and Gamon, 2002; Moroni

et al., 2013). This modification, more influenced by chlorophyll

content, finds applications in precision agriculture, forest

monitoring, fire detection, and vegetation stress assessment

(Cundill et al., 2015). The Modified Red Edge Simple Ratio Index

(Equation 5), utilizing red edge bands with a correction for mirror

reflection, serves purposes in precision agriculture, forest

monitoring, and vegetation stress detection. The Modified Red

Edge Normalized Difference Vegetation Index (MNDVI) is a tool

developed for analyzing vegetation health and structure through

satellite imagery or remote sensing data. Unlike its predecessor, the

Normalized Difference Vegetation Index (NDVI), which compares

near-infrared (NIR) and red bands, MNDVI leverages the red-edge

band. Positioned between visible red and near-infrared bands, the

red-edge band is particularly attuned to nuanced alterations in

vegetation conditions. This adjustment enhances MNDVI’s

applicability in diverse fields like precision agriculture and

ecological surveillance (Equation 6). The Photochemical

Reflectance Index (PRI) (Equation 7) responds to changes in

carotenoid pigments in living foliage, indicating photosynthetic

light utilization efficiency. PRI, valuable for assessing vegetation

reactions to stress, can be combined with satellite data or remote

sensing techniques to evaluate overall ecosystem health. Unlike

other indices, PRI captures dynamic physiological changes that can

affect chlorophyll content, particularly under varying

environmental conditions (Filella and Peñuelas, 1994; Gamon

et al., 1997). When used with other indices, PRI provides a

complementary perspective. While these other indices primarily
Frontiers in Plant Science 05
focus on static measurements of chlorophyll or structural attributes,

PRI adds a dynamic component by reflecting short-term changes in

photosynthetic activity, thereby offering a more comprehensive

view of plant health and chlorophyll content (Gitelson et al.,

1996; Sims and Gamon, 2002) Lastly, the Modified Chlorophyll

Absorption Ratio Index (MCARI) (Equation 8) is responsive to leaf

chlorophyll concentration and soil reflectance. High MCARI values

generally indicate low leaf chlorophyll content, requiring

interpretation in conjunction with NDVI or Leaf Area Index

(LAI) for comprehensive analysis (Nagler et al., 2000). The

Vogelmann Red-Edge Index 2 (VREI2) (Equation 9) is a special

index for monitoring land use areas and crops, especially in

agricultural applications. VREI2 is a spectral index that uses two

near-infrared bands and one red band from sensor readings

(Vogelmann et al., 1993). Overall, indices like PRI, REP, and

MNDVI outperform NDVI in scenarios requiring precise

monitoring of chlorophyll content and early detection of plant

stress. Their practical applications in agriculture include optimizing

resource use, enhancing crop management strategies, and

improving yield predictions (Negrisoli et al., 2022).

Normalized Difference  NIR−RNIR+R

Vegetation Index
(2)

Red Edge Position = 700 + 40
(l670 + l780)=2 − l700

l740 − l700
(3)

Red Edge Normalized  l750−l705l750+l705

Difference Vegetation Index
(4)

Modified Red Edge Simple  l750−l445l705+l445

Ratio Index
(5)

Modified Red Edge Normalized  l750−l705
l750+l705−2l445

Difference Vegetation Index
(6)

Photochemical Reflectance  l531−l570l531+l570

Index
(7)

Modified Chlorophyll ½(l700 − l670) − 0, 2(l700 − l550)� ∗ ( l700l670
)

Absorption Ratio Index

(8)

Vogelmann red� edge index 2 
l757 − l720
l757 + l720

(9)

The simple linear regression method was used to generate

models to estimate chlorophyll content. The coefficient of

determination (R2) (Equation 10) was used to compare the

strength of the regression models. For validation every third data,

overall 180 independent samples were used. In the case of ML

model, training and testing datasets were sorted randomly before

training and testing the developed models, after cleaning process to
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guarantee evaluation of the models performance and accuracy

without any personal intervention. To measure the accuracy of

the predictive models Root Mean Square Error (RMSE) (Equation

11), Mean Absolute Error (MAE) (Equation 12), Mean Bias

Deviation (MBD) (Equation 13) and Mean Squared Prediction

Error (MSPE) (Equation 14).

 R2 = 1 −  o
N
i=1(yi − �yi)

2

oN
i=1(yi − �y)2

(10)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − �yi)
2

n

s
(11)

MAE =  
1
no

N
i=1 �yi − yij j (12)

MBD =  
1
no

N
i=1(yi − �yI) (13)

MSPE =  
1
no

N
i=1(yi − �yI)

2
(14)

where:

yi: estimated value;

�yI : measured value;
�y: mean value of reference samples

n: number of samples used for validation.
2.4 Machine learning models for estimating
chlorophyll content in plants

Multicollinearity refers to a situation in which two or more

predictor variables in a regression model are highly correlated

with each other, making it difficult to determine the individual

effect of each predictor on the dependent variable (Peng et al.,

2005). This means that the predictors carry overlapping

information about the target variable. If the predictors are

highly correlated, the variance of the estimated regression

coefficients increases. This inflation makes the coefficients

unstable, causing them to fluctuate significantly for small

changes in the data. Models affected by multicollinearity are

more prone to overfitting when the model captures noise

instead of the underlying relationship in the data. Although the

model may fit well on training data, it may degrade performance

on unseen data, leading to poor generalization. The instability of

the coefficient estimates in the presence of multicollinearity can

make the model’s predictions unreliable. This can cause problems

in interpreting coefficients, standard errors and overall model

performance. To detect multicollinearity, the Variance Inflation

Factor (VIF) was calculated. The VIF measures how much the

variance of the regression coefficient is inflated due to

multicollinearity. The tolerance, which is the reciprocal of the

VIF, was also calculated. VIF values above 5 and tolerance values

below 0.1 are often taken as an indication of multicollinearity

(Forthofer et al., 2007).
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2.4.1 The minimum redundancy maximum
relevance algorithm

MRMR is a feature selection method designed to handle the

challenges posed by multicollinearity effectively. MRMR explicitly

selects features that are minimally redundant with each other. By

focusing on reducing redundancy, MRMR ensures that the selected

features provide unique information. This directly addresses the

problem of multicollinearity, where highly correlated predictors

carry overlapping information. By minimizing redundancy, MRMR

helps to mitigate the instability and inflated variances that

multicollinearity introduces in a model. This dual focus on

relevance and redundancy helps build a more interpretable and

effective model. By selecting a subset of features that are both

relevant and non-redundant, MRMR contributes to the stability

of the model’s coefficients. This stability is crucial in producing

reliable predictions and avoiding the overfitting associated with

multicollinearity. A stable model with independent features is more

likely to generalize well to new data. MRMR’s approach to feature

selection leads to a model that is easier to interpret. With fewer, less

correlated features, it’s easier to understand the individual impact of

each predictor on the target variable. This clear interpretation is

often lost in models plagued by multicollinearity, where it is difficult

to disentangle the effects of correlated predictors. By carefully

selecting features that maximize relevance to the target and

minimize redundancy, MRMR helps create a model that is not

only simpler but also more predictive. This optimization is

particularly beneficial in high-dimensional datasets, where the

risk of multicollinearity is higher. Sun et al. (2023) used a dual

drone collaborative approach to monitor late blight and spatial

distribution of potatoes in a timely and efficient manner. By

integrating a vegetation index from a multispectral UAV, a

texture index from an RGB drone, and an estimated crown cover

trait, they combined a relief-MRMR technique with machine

learning modeling algorithms to monitor the late mottling of

potatoes. An et al. (2020) used machine learning to estimate the

chlorophyll content of rice from hyperspectral data. Machine

learning models have shown accuracy and effectiveness for

mapping weekly pan evaporation which is essential for

agricultural water management (Vishwakarma et al., 2024).
2.4.2 Robust linear regression
Robust linear regression is a statistical technique used to model

the relationship between a dependent variable and one or more

independent variables. It is designed to address the potential impact

of outliers or influential data points that can significantly affect the

results of traditional linear regression models. In conventional

linear regression, the model aims to minimize the sum of squared

differences between observed and predicted values. However, this

approach can be highly sensitive to outliers, which can lead to

biased parameter estimates and inaccurate forecasts. Robust linear

regression uses alternative estimation methods that are less affected

by outliers. A robust linear regression model is particularly useful in

situations where the data may contain outliers, errors, or deviations

from the underlying assumptions of classical linear regression. It

provides more reliable parameter estimates and forecasts and
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provides greater robustness to the effects of extreme observations

(Maronna et al., 2006; Rousseeuw and Leroy, 2005; Venables and

Ripley, 2002). The Huber loss function is commonly used in robust

linear regression. The formula for the Huber loss function is as

follows (Equation 13):

Ld(y,  f (x)) =
1
2 (y : f (x))

2    for   y − f (x)j j ≤ d

d ∗ y − f (x)j j − 1
2 d

� �
        otherwise :

(
(15)

where:

Ld is the Huber loss function.

y is the observed (actual) value.

f(x) is the predicted value.

d is a tuning parameter that determines the point at which the

loss function transitions from quadratic to linear behaviour.

The Huber loss can be conceptualized as the result of

convolving the absolute value function with the rectangular

function, which is then scaled and translated. This convolution

process effectively “smoothens out” the sharp corner that the

absolute value function has at the origin. The Huber loss function

is a hybrid between the Mean Squared Error (MSE) and Mean

Absolute Error (MAE). It is quadratic for small residuals (errors)

and linear for large residuals. This duality allows it to combine the

advantages of both MSE and MAE. MSE is sensitive to outliers

because the error is squared, which can disproportionately penalize

large errors. MAE, on the other hand, is more robust to outliers but

may be less sensitive to smaller errors. The Huber loss offers a

compromise by treating small errors like MSE (more sensitive) and

large errors like MAE (less sensitive), making it effective when the

data contains outliers. It doesn’t over-penalize large deviations as

much as MSE, preventing the model from being overly influenced

by a few extreme values. This can lead to better generalization on

unseen data, particularly when the dataset has noise or outliers.
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Unlike MAE, which can lead to non-differentiable points, the Huber

loss is smooth and differentiable everywhere.

2.4.3 Stepwise linear regression
Stepwise linear regression is a statistical method used to identify

the most significant independent variables to include in a linear

regression model. It is a variable selection technique that constructs

a regression model by adding or removing variables one by one

according to certain criteria. Common entry and exit criteria for

selecting variables include p-values, adjusted R-squared, AIC (Akaike

information criterion), BIC (Bayesian information criterion) or other

model selection criteria. It is essential to understand the implications

and assumptions of the criteria chosen (Mendenhall and Sincich, 1995;

Kutner et al., 2004; Gareth et al., 2013). The primary strategies

employed in stepwise regression include (1) Forward Selection:

Begin with an empty model, assessing the addition of each variable

based on a selected model fit criterion. Incorporate the variable (if any)

that contributes the most statistically significant enhancement to the

model fit. Iterate this process until the inclusion of additional variables

no longer yields a statistically significant improvement. (2) Backward

Elimination: Start with all potential variables included in the model.

Evaluate the deletion of each variable using a designated model fit

criterion. Remove the variable (if any) whose exclusion results in the

least statistically significant deterioration of the model fit. Continue

this process until further removal of variables would lead to a

statistically significant loss of fit. (3) Bidirectional Elimination:

Merge aspects of both forward selection and backward elimination.

At each step, assess variables for inclusion or exclusion based on

specific criteria. Implement a comprehensive approach by iteratively

refining the model through variable additions or deletions. These

stepwise regression techniques aim to systematically determine the

optimal set of predictors for the model, balancing model complexity

and statistical significance (Figure 2).
FIGURE 2

Steps of the Stepwise linear regression (Kim et al., 2012).
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2.4.4 Support vector machines
Support Vector Machines (SVMs) are a type of supervised

machine learning algorithm used for classification and regression

tasks. They are particularly efficient in high-dimensional spaces and

are well-suited for scenarios where there is a clear distinction

between classes (Elbeltagi et al., 2022). For example, as seen in

Figure 3 considering two independent variables n1, and n2, and one

dependent variable which is either a blue circle or a red circle, there

are multiple lines (hyperplanes) that could segregate data points or

do a classification between red and blue circles. SVMs aim to find a

hyperplane in an n-dimensional space (where n is the number of

features) that best separates the data into two classes. SVMs can be

used for both classification and regression tasks. When used for

classification, SVMs are often referred to as Support Vector

Classification (SVC). For regression tasks, they are known as

Support Vector Regression (SVR). SVMs are inherently binary

classifiers. To extend them to multiclass problems, they usually

use strategies such as one-vs-one or one-vs-all. When working with

SVMs, it is important to carefully select the kernel and tune the

parameters to achieve the best performance on a given task (Shawe-

Taylor and Cristianini, 2004) (Figure 3).

2.4.5 The gaussian kernel
The Gaussian kernel is often associated with support vector

machines (SVM), especially in the context of nonlinear

classification problems. The Gaussian kernel is a popular choice

for SVMs, especially when dealing with non-linear relationships

between features and the target variable. The kernel function takes

two data points as input and calculates the similarity between them

in a high-dimensional space (Scholkopf and Smola, 2002). The

Gaussian kernel is defined as (Equation 14):

K(x, y) = exp( −
x − yk k2
2s 2 ) (16)
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where:

K (x,y) is the value of the Gaussian kernel for points x and y

jj x − y jj represents the Euclidean distance between points x and y

s  (sigma) is the bandwidth or spread parameter of the kernel,

controlling the width of the bell curve.

In the context of SVM, the Gaussian kernel allows SVM to

operate in a higher-dimensional space without explicitly calculating

the transformations. It captures the similarity between data points

in the original feature space, and the transformation induced by the

kernel corresponds to projecting the data into a higher-dimensional

space where a linear decision boundary may be more easily found.

2.4.6 The matern 5/2 gaussian process regression
The Matern 5/2 Gaussian Process Regression function is

capable of modeling relatively smooth functions while allowing a

certain level offlexibility in capturing complex patterns. In Gaussian

process regression, the Matern 5/2 kernel is used to determine the

covariance (or similarity) between different points in the input

space. The GP regression model essentially models the distribution

between functions, and the choice of kernel determines

the characteristics of these functions (Duvenaud et al., 2011). The

Matérn 5/2 covariance function is a specific member of the Matérn

family and is defined as follows (Equation 15):

kMatern   5=2   (x, x
0) =  s   1 +  

ffiffiffiffiffi
5r

p

l
+  

5r2

3l2

� �
exp( −

ffiffiffiffiffi
5r

p

l
) (17)

where:

kMatern   5=2   (x, x
0) is the covariance between points x and x’

according to the Matérn 5/2 kernel

s is the variance parameter, representing the vertical variation

of the function

l  is the length scale parameter, controlling the length of the

wiggles in the function

r is the distance (or time difference, depending on the context)

between two points

2.4.7 The trilayered neural network
The Trilayered Neural Network generally refers to a neural

network architecture with three layers: an input layer, a hidden

layer, and an output layer (Pande et al., 2022). It is the simplest form

of neural network that can learn non-linear representations of data.

The layers are connected by weights and each layer consists of

nodes or neurons. The structure is often represented as (input layer)

- (hidden layer) - (output layer) (Figure 4). Hyper-parameters used

for the developed machine learning models for estimating crop

chlorophyll content are presented in Table 1.
3 Results

3.1 Spectral characteristics of maize

Chlorophyll content reflectance profiles were evaluated in the

wavelength range of 400-1000 nm. The lowest chlorophyll content

was 796.64 μg/g and the highest chlorophyll content was 3257.03
FIGURE 3

Support Vector Machines.
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μg/g. It was observed that leaves with high chlorophyll content

showed a reflectance value between 20-30%, which shows an

increasing reflectance with decreasing chlorophyll values. At low

chlorophyll values of 600-1000 μg/g, a reflectance value of 45-48%

was observed. The maximum reflectance of carotenoids was

measured in the 520-580 nm wavelength range, which gave a low

reflectance value of around 31% at high chlorophyll content. As the

chlorophyll content decreases, the reflectance value increases

proportionally for the carotenoid content. Carotenoids at low

chlorophyll content interval values gave a reflectance value of

46%. Plant stress can be detected with high reflectance values in

the wavelength range 500-700 nm (Figure 5). Based on the

structural properties of the leaf, most of the energy is transmitted

and reflected, which creates a high near-infrared (NIR) curve. The

red rim, which is located between the red and NIR bands during a

sharp rise in reflectance, is used to detect plant stress and is more

closely associated with pigments (Kior et al., 2021) Vegetation
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indices are derived mainly from red and NIR band reflectance

data, numerical measurements that measure biomass or the

progress of vegetation status based on the spectral characteristics

of vegetation (Roman and Ursu, 2016).

To further investigate the spectral characteristics of the leaf

samples, the relative standard deviation values of the reflectance (%)

data were divided into three groups based on chlorophyll content

(750-1500 μg/g, 750-2500 μg/g, 750-3500 μg/g). Low standard

deviation (up to 520 nm ± 30 nm) was observed in the low

chlorophyll groups. The standard deviation of reflectance

increased with chlorophyll content. Therefore, this range may be

suitable for plant maturity assays. The peak of the standard

deviation is prominent at 670 nm for high chlorophyll content

due to the absorption characteristics of chlorophyll measured in this

wavelength range. It is observed that the standard deviation of

reflectance values calculated in the wavelength ranges 550 nm, 670

nm, and 700 nm is pigment sensitive. This sensitivity decreases due

to an increase in absorbance with increasing carotenoid content.

Thus, this spectral characteristic disappears with increasing

carotenoid content (Figure 6). Nagy et al. (2022) and Zur et al.

(2000) have confirmed the variation in the pigment content of

leaves in their studies and reached similar conclusions to the

present study.
3.2 Calibration of the models

The PCA resulted in five principal components. Based on the

factor weights of the first component, the two largest variances of

the reflectance are observed in the wavelength range 516 and 551

nm. There were two minima in the factor weight, of which the 763

nm range was used together with the 516 and 551 nm ranges to

construct the chlorophyll estimator indices (Figure 7).

Three indices were created based on the results of principal

component analysis and standard deviation:

CHLI1 =  (l551 + l763)=(l763 − l551)

CHLI2 =  (l763 − l516)=l551

CHLI3 =  (l516 + l551)=l763
FIGURE 4

Steps of the trilayered neural network.
FIGURE 5

Maize leaf reflectance % values.
TABLE 1 Hyper-parameters used for the developed machine learning
models for estimating crop chlorophyll content.

Preset Hyper-parameters

Robust Linear Terms: Linear; Robust option: On

Stepwise Linear
Initial terms: Linear; Upper bound on terms:
Interactions; Maximum number of steps: 1000

SVM
Kernel function: Quadratic; Kernel scale: Automatic;
Box constraint: Automatic; Epsilon: Auto; Standardize

data: Yes

Fine Gaussian SVM
Kernel function: Gaussian; Kernel scale: 0.83; Box
constraint: Automatic; Epsilon: Auto; Standardize

data: Yes

Matern 5/2 GPR

Basis function: Constant; Kernel function: Matern 5/2;
Use isotropic kernel: Yes; Kernel scale: Automatic;

Signal standard deviation: Automatic; Sigma: Automatic;
Standardize data: Yes; Optimize numeric

parameters: Yes

Trilayered
Neural Network

Number of fully connected layers: 3; First layer size: 20;
Second layer size: 20; Third layer size: 20; Activation:
ReLU; Iteration limit: 1000; Regularization strength

(Lambda): 0; Standardize data: Yes
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This was based on linear regression with a medium regression

value R=-0.76 (p=0.000). The model showed a medium correlation

with R=0.72 (p=0.000). The model also showed a medium

regression with R=0.77 (p=0.000). In addition to the developed

models, for comparison, VIs already used in practice are also

considered (Table 2). In the case of NDVI, R=0.54, during the
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REP index, as the leaf point with the maximum slope between the

red and near-infrared wavelengths of the plant reflectance

spectrum, we obtained R=0.81. During the calculation of the Red

Edge Normalized Difference Vegetation Index, we obtained R =

0.80. During the Modified Red Edge Simple Ratio Index, we

obtained R=0.47. When calculating the Modified Red Edge

Normalized Difference Vegetation Index, R=0.81 was obtained,

and during the Photochemical Reflectance Index, a low value of

R=0.12 was obtained. When calculating the Modified Chlorophyll

Absorption Ratio Index, we obtained a value of R=-0.74. The

calculation of the Vogelmann red-edge index 2 gave a value of

R=-0.76 (Table 3).
3.3 Validation of the new models

R2 is the proportion of variance explained, which shows how

well the model fits the data. The closer the value is to 1, the better

the model fits the data. The RMSE andMAE values are indicators of

the accuracy of the model’s predictions, where smaller values are

better. Mean Bias Deviation (MBD) is a statistical measure used to

assess the accuracy of a model’s predictions compared to actual

observations. Mean Squared Prediction Error (MSPE) is a statistical

measure used to evaluate the accuracy of a predictive model. It

calculates the average of the squared differences between the

predicted values and the actual observed values in a test dataset.

Based on these, the REP (R2 = 0.65, RMSE=371.57, MAE=298.75,

MBD= -0.513, MSPE=0.263); NDVI705 (R
2 = 0.65, RMSE=376.00,

MSE=297.81, MBD= -0.0113, MSPE=0.000128); mNDVI705 (R
2 =

0 .65 , RMSE= 373 .68 , MAE=297 .97 , MBD= -0 .0123 ,

MSPE=0.000152) ; VREI2 (R2 = 0 .65 , RMSE=376.08 ,

MAE=297.76, MBD= 0.0117, MSPE=0.000137) and CHL3 (R2 =

0.64, RMSE=376.74, MAE= 297.12, MBD= 3.960, MSPE=58.537)

indices appear to perform best on the datasets under consideration.

(Figure 8) (Table 3).
FIGURE 6

Relative standard deviation values of the reflectance of maize.
FIGURE 7

Factor analysis of spectral values.
TABLE 2 Descriptive statistics of chlorophyll and vegetation indices.

Variable Mean StDev Minimum Q1 Median Q3 Maximum Skewness Kurtosis MSSD

NDVI 0.31577 0.04733 0.14267 0.29103 0.31703 0.34265 0.45749 -0.37 1.11 0.00159

REP 715.59 6.02 675.81 714.90 717.86 718.91 722.41 -2.56 8.09 6.38

NDVI705 0.33656 0.07733 0.06876 0.31328 0.35712 0.38414 0.49674 -1.29 1.44 0.00160

mSR705 0.93222 0.17080 0.35818 0.82021 0.93350 1.01252 1.68291 0.52 2.02 0.02445

mNDVI705 0.55517 0.13735 0.10424 0.49871 0.60995 0.65088 0.74525 -1.28 0.73 0.00458

PRI 0.014405 0.007429 -0.025879 0.010403 0.013689 0.017459 0.044902 -0.19 4.55 0.000044

MCARI 19.572 14.293 5.832 10.268 13.440 22.880 80.894 1.75 2.40 74.826

VREI2 -0.05873 0.02577 -0.12875 -0.07693 -0.06576 -0.03974 0.00005 0.50 -0.60 0.00025

Index1 2.7650 1.2309 1.7205 2.1998 2.3600 2.7112 13.5331 3.79 19.15 0.3090

Index2 1.6067 0.4269 0.3827 1.4045 1.6653 1.8513 3.0671 -0.31 0.82 0.0848

Index3 -0.09868 0.04824 -0.25874 -0.13622 -0.07523 -0.06444 -0.04863 -1.12 -0.13 0.00077

Chlorophyll 2479.8 632.5 321.1 2188.8 2640.4 2937.6 3713.1 -1.00 0.57 114.2
fro
*mean of the squared successive differences (MSSD).
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3.4 Training and testing results of machine
learning models

A strong positive correlation is observed between NDVI and REP

with a correlation of 0.66 and between NDVI and NDVI705 with a

correlation of 0.76. In both cases, a strong positive relationship is
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indicated, i.e. when one variable increases, the other increases. The

correlation between Index2 and Index3 is also high at 0.94, suggesting

that these variables are closely related. A strong negative correlation is

observed between MCARI and mNDVI705 with a correlation of -0.91,

and between MCARI and VREI2 with a correlation of -0.92. In both

cases, they show a strong negative relationship, i.e. when one variable

increases, the other decreases. Medium-strength correlations are

observed for the correlation between Index1 and Index3 of 0.71 and

the correlation between Index2 and Index3 of -0.80. These represent

medium-strength relationships. Weak correlations are observed

between NDVI and PRI with a correlation of 0.26, and between

NDVI705 and PRI with a correlation of 0.20. These indicate weaker

relationships. There are moderate (e.g. 0.80 between chlorophyll and

NDVI705), strong positive (e.g. 0.81 between chlorophyll and REP),

and strong negative (e.g. -0.74 between chlorophyll and MCARI)

correlations between chlorophyll and the other variables (Table 4).

The tolerance metric reveals how effectively a specific variable can be

forecasted by other variables within the model. Notably, the REP

variable exhibits an exceptionally low tolerance (0.01), suggesting a

substantial linear interdependence with other variables. Similarly, low

tolerances are observed for the rest of the indices indicating potential

strong dependencies, except for PRI and NDVI. Elevated VIF values

imply a linear dependence on other variables. Remarkably high VIFs

for the REP and VREI2 variables (71.83 and 24.77, respectively) point

to a pronounced linear dependence on other variables. Additionally,
FIGURE 8

Actual versus predicted values of chlorophyll for the linear regression models during the training period (A) Validation of CHL1, (B) Validation of
CHL2, (C) Validation of CHL3, (D) Validation of NDVI, (E) Validation of REP, (F) Validation of NDVI 705, (G) Validation of mSR705, (H) Validation of
mNDVI705, (I) Validation of PRI, (J) Validation of MCARI, (K) Validation of VREI2.
TABLE 3 Statistical results.

Index R2 RMSE MAE MBD MSPE

CHLI1 0.605 393.580 310.887 -7.651 58.537

CHLI2 0.518 438.496 345.437 0.0215 0.000463

CHLI3 0.641 376.743 297.114 3.960 15.68362

NDVI 0.293 531.259 422.817 -0.00153 2.36E-06

REP 0.654 371.573 298.750 -0.513 0.263

NDVI705 0.645 375.991 297.805 -0.0113 0.000128

mSR705 0.222 557.331 458.352 0.0294 0.000866

mNDVI705 0.650 373.677 297.970 -0.0123 0.000152

PRI 0.015 626.971 496.962 0.0249 0.00062

MCARI 0.544 426.579 341.269 0.00672 4.52E-05

VREI2 0.645 376.081 297.759 0.0117 0.000137
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the Index2, Index3, and mSR705 variables exhibit high VIFs,

suggesting substantial dependencies. These findings highlight

significant correlations among certain variables in the model,

indicating a multicollinearity. The PRI shows 0.47 tolerance and

2.11 VIF values, which exceeds the thresholds for both indicators,

therefore PRI shows no collinearity, and thus there is a high

probability for not using to develop good estimator models. In the

case of NDVI, the VIF value just slightly exceeds the threshold

(5) (Table 4).

The values in the MRMR (Minimum Redundancy Maximum

Relevance) database are used to indicate the relevance of each feature

to the model. The mNDVI705 is the most important feature of the

model. Its high importance value shows that this feature can make a

significant contribution to the model performance. The second most

important feature is mSR705. It also has a significant contribution to

the model. Index3 is also an important characteristic, with a rather

high value, indicating that it has important information for the target

variable. The NDVI705 characteristic also has a high importance

value. The VREI2 attribute has a lower importance value but still

contributes significantly to the model. Index2 is also important but

with a lower importance value. The MCARI characteristic also

contributes to the model. The REP characteristic is still important

but less significant than the others. The Index1 characteristic has a

lower importance value. The NDVI characteristic has a relatively

lower importance value. The PRI attribute has no importance value

(0), indicating that it is of no relevance to the model from a current

perspective (Table 5).

The Robust Linear Regression (R2 = 0.67) had RMSE=360.39

μg/g, MAE=283.62 μg/g, MBD=21.539 μg/g, MSPE= 463.959 μg/g.

An R2 value of 0.67 indicates that the model is explanatory and fits

your data reasonably well. The RMSE and MAE values are
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moderately low, suggesting that the model performs well overall.

Stepwise Linear Regression (R2 = 0.70) RMSE=343.76 μg/g,

MAE=267.89 μg/g, MBD=38.597 μg/g, MSPE= 148.757μg/g the

model has an even higher R2 value and lower RMSE and MAE

values, which generally means better fit and prediction. During

SVM (R2 = 0.67), RMSE=359.65 μg/g, MAE=280.74 μg/g,

MBD=23.2743μg/g, MSPE= 541.695 μg/g. The SVM model also

performs well, like Robust Linear Regression, but with a slightly

higher R2 value. Fine Gaussian SVM (R2 = 0.48) RMSE=467.54 μg/

g, andMAE=340.28 μg/g, the model has a lower R2 value and higher

RMSE and MAE values, which may indicate that it is less well fitted

to your data. Matern 5/2 Gaussian Process Regression (R2 = 0.42)
TABLE 4 Correlation matrix of spectral indices and chlorophyll content (A), Multicollinearity statistics analysis of spectral indices (B).

NDVI REP NDVI705 mSR705 mNDVI705 PRI MCARI VREI2 Index1 Index2 Index3

Correlation Matrix (A)

REP 0.657

NDVI705 0.759 0.915

mSR705 0.776 0.501 0.743

mNDVI705 0.590 0.939 0.929 0.448

PRI 0.261 0.148 0.200 0.440 0.019

MCARI -0.456 -0.867 -0.803 -0.283 -0.910 0.105

VREI2 -0.692 -0.849 -0.924 -0.582 -0.921 0.062 0.823

Index1 -0.655 -0.944 -0.883 -0.613 -0.833 -0.307 0.707 0.744

Index2 0.786 0.795 0.949 0.861 0.799 0.235 -0.678 -0.875 -0.804

Index3 0.465 0.860 0.830 0.314 0.938 -0.137 -0.922 -0.906 -0.718 0.738

Chlorophyll 0.541 0.809 0.804 0.473 0.806 0.124 -0.737 -0.760 -0.764 0.721 0.770

Multicollinearity statistics analysis (B)

Tolerance 0.198 0.014 0.003 0.010 0.006 0.474 0.072 0.040 0.031 0.014 0.026

VIF 5.056 71.827 384.170 100.589 165.484 2.108 13.802 24.774 32.045 69.603 38.203
fron
TABLE 5 Results of the MRMR.

Features Importance

mNDVI705 0.477

mSR705 0.414

Index3 0.394

NDVI705 0.381

VREI2 0.350

Index2 0.345

MCARI 0.341

REP 0.306

Index1 0.271

NDVI 0.244

PRI 0
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RMSE=338.46 μg/g, and MAE=264.30 μg/g, this model fits your

data relatively well, with high R2 values and lower RMSE, MAE

values. The Trilayered Neural Network (R2 = 0.38) RMSE=493.44

μg/g, MAE=378.42 μg/g, MBD= -70.253 μg/g, MSPE= 630.172 μg/g

the model has a low R2 value and higher RMSE, MAE values, which

may indicate that the modeling is less efficient in this case (Table 6;

Figure 9). The Robust Linear Regression (R2 = 0.748) had

RMSE=324.17 μg/g, MAE=262.26 μg/g, MBD=-79.625 μg/g,

MSPE= 493.569 μg/g. An R2 value of 0.748 indicates that the

model is explanatory and fits your data well. The RMSE and

MAE values are moderately low, suggesting that the model

provides a good fit and prediction. Stepwise Linear Regression

(R2 = 0.75) RMSE=322.10 μg/g, MAE=247.11 μg/g, MBD=

10.4014 μg/g, MSPE= 108.186 μg/g the model has an even higher

R2 value and lower RMSE and MAE values, which generally means

better fit and prediction. The SVM (R2 = 0.75), RMSE=325.74 μg/g,

and MAE=239.86 μg/g, this model also performs well, like Robust

Linear Regression, but with a slightly lower R2. Fine Gaussian

SVM (R2 = 0.48) RMSE=467.54 μg/g, and MAE=340.28 μg/g, the

model has a lower R2 value and higher RMSE, MAE values, which

may indicate that it is less well fitted to your data. Matern 5/2

Gaussian Process Regression (R2 = 0.79) RMSE=296.37 μg/g,

MAE=237.12 μg/g, MBD= 2.195 μg/g, MSPE= 4.820 μg/g the

model fits your data relatively well, with high R2 values and lower

RMSE, MAE values. The Trilayered Neural Network (R2 = 0.58)

RMSE=419.03 μg/g, MAE=335.42 μg/g, MBD= -29.545 μg/g,

MSPE= 872.929 μg/g the model has a low R2 value and higher

RMSE, MAE values, which may indicate that the modeling is less

efficient in this case. Almost identical accuracy values were observed

for the models created, with the Matern 5/2 Gaussian process

regression giving the most accurate prediction value when

comparing the results (Figures 9A, B, 10) (Table 6).
4 Discussion

There have been several research in the literature that uses

machine learning to estimate the chlorophyll content of maize

plants. However, few researchers have examined the effectiveness

of various machine-learning algorithms in assessing maize’s

chlorophyll content (Berry and Bjorkman, 1980; Munson and

Caruana, 2009). Furthermore, a limited number of studies have
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provided a thorough description of the machine learning parameter

optimization process through training and validation. In the present

research, six machine learning models (RL, SR, SVMs, FG-SVM,

MG-PR, and TNN) were optimized and developed using in

hyperspectral indices, employing the MRMR algorithm and PCA.

In this study, we observed the significance of standard deviation

as a crucial feature, likely reflecting seasonal patterns in the

chlorophyll target variable. It helped to assess the variability,

accuracy, and precision of the predictions. Seasonal patterns play

a vital role in chlorophyll content, driven by changes in

temperature, light, and plant growth cycle. For example, during

the spring and summer, longer daylight hours and warmer

temperatures promote photosynthesis, leading to higher

chlorophyll content (Berry and Bjorkman, 1980). Moreover, the

study conducted a comparison of the performances of three CHLI

indices created (Table 3) from PCA and various vegetation indices

used in practice. The following insights were based on the selected

features and the prediction results obtained from these indices. PCA

is commonly used as a data pre-processing step in classic machine

learning techniques.

The selection of features is a response aimed at balancing bias

and variance within the learning algorithms (Munson and Caruana,

2009). This improves the separation accuracy of biophysical

parameters. The MRMR algorithm illustrated that it can be

employed to enhance environmental noise filtering, aiding in the

differentiation between noise and the specific characteristic of

interest by filtering less important indexes such as PRI. Variables

such as NDVI705, mSR705, mNDVI705, Index1, Index2, and Index3

have low tolerance values, indicating potential multicollinearity

issues and as such, the need to address them in the regression

model to avoid biased coefficient estimates and unstable

predictions. However there are additional interpretability

techniques like Shapley Additive Explanations (SHAP) or Local

Interpretable Model-agnostic Explanations (LIME) to demonstrate

which features most influenced the machine learning model

predictions (REF), which are planned to implement inb our

further sstudies (Ma et al., 2022; Khan et al., 2024).

The Matern 5/2 Gaussian Process Regression (MG-PR) model

appears to have the highest R2 and relatively lower RMSE and

MAE, suggesting it performs well compared to the other models. It

demonstrated the highest accuracy in both the training set and

validation set. Notably, while the training set result did not surpass
TABLE 6 Statistical performance evaluation for the developed ML models in chlorophyll estimation during the training and testing stages.

Model Type
Training stage Testing stage

R2 RMSE MAE MBD MSPE R2 RMSE MAE MBD MSPE

Robust Linear Regression 0.670 360.389 283.623 21.539 463.959 0.748 324.178 262.269 -70.253 493.569

Stepwise Linear Regression 0.700 343.758 267.887 38.597 148.757 0.751 322.109 247.110 10.4014 108.186

SVM 0.672 359.647 280.744 23.2743 541.695 0.745 325.749 239.868 26.610 70.095

Fine Gaussian SVM 0.423 477.135 364.949 -15.9187 253.405 0.475 467.544 340.283 30.456 76.424

Matern 5/2 Gaussian Process Regression 0.709 338.461 264.297 -94.253 883.694 0.789 296.378 237.128 2.195 4.820

Trilayered Neural Network 0.383 493.444 378.418 -79.625 630.172 0.578 419.030 335.426 -29.545 872.929
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the validation set result, it implies that the generalization of MG-

PR is relatively good. It’s worth noting that this algorithm typically

benefits from a relatively large dataset to mitigate overfitting issues

(Manzhos and Ihara, 2023). In this study, the model’s moderate

RMSE indicates few anomalies or outliers in the predicted maize

chlorophyll content. Figure 10 illustrates that none of the

algorithms succeeded in forecasting extreme values or outliers.
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The performance of Robust Linear Regression (RL) ranked as

the second-best after Matern 5/2 Gaussian Process Regression

(MG-PR). The characteristics of RL’s performance slightly

differed from MG-PR; while MG-PR exhibited an excellent

goodness-of-fit, it also demonstrated relatively good prediction

results. Similar trends were observed in the RMSE and MAE for

both RL and MG-PR. Specifically, the MAE increased for both the
FIGURE 9B

Record number versus chlorophyll for the ML-developed models during the training period (A) Robust linear regression, (B) Stepwise linear
regression, (C) SVM, (D) Fine Gaussian SVM, (E) Matern 5/2 GPR, (F) Trilayered Neural Network.
FIGURE 9A

Actual versus predicted values of chlorophyll for the ML developed models during the testing period (A) Robust linear regression, (B) Stepwise linear
regression, (C) SVM, (D) Fine Gaussian SVM, (E) Matern 5/2 GPR, (F) Trilayered Neural Network.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1419316
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nagy et al. 10.3389/fpls.2024.1419316
training set and validation set of MG-PR, and the RMSE increased

for both the training set and validation set of RL. In both instances,

there was a general decline in performance metrics between the

training and validation stages for both models.

Therefore, in comparison to RL, MG-PR exhibited greater

generalization and demonstrated stronger stability, as evidenced

by its superior performance across various metrics and stages.

From Tables 4, 5, indices like REP, NDVI705, and mNDVI705

demonstrate strong positive correlations with chlorophyll content,

making them potentially valuable for estimating chlorophyll levels.

On the other hand, MCARI and VREI2 show strong negative

correlations, suggesting their potential as indicators of lower

chlorophyll content. Indices like CHLI2, CHLI3, NDVI705,

mNDVI705, and VREI2 show high R2 values and lower RMSE

and MAE, suggesting their effectiveness in predicting chlorophyll

content. NDVI, mSR705, and PRI exhibit moderate performance,

while MCARI shows relatively lower predictive capabilities.

The SVM classifier, a kernel-based classification approach, has

been successfully used in estimating crop parameters in studies

such as Karimi et al. (2008) and Kumar et al. (2015). Behmann

et al. (2014) used ordinal SVM (accuracy of 68%) to detect water

stress in barley leaves using hyperspectral images. In our study,

however, when combined with a fine Gaussian filter, the SVM

classifier performs the worst with an accuracy of 42.3%. The

evaluations of the six machine learning techniques suggest that

the generated CHLI indices serve as promising variables for

estimating the chlorophyll content of maize. The predictive

results indicate the effectiveness of the selected features

(Table 6) in estimating the chlorophyll content of maize using

machine learning algorithms. The mNDVI705 index had the best

accuracy at 87.50% followed by VREI2 at 86.90%.
Frontiers in Plant Science 15
The findings indicate that incorporating TNN, which exhibited

the second lowest R2 and the highest metrics for chlorophyll

content within the dataset, proved less effective in estimating

chlorophyll content in contrast to successful crop classification

and yield prediction studies (Subbarao et al., 2023; Lagrazon and

Tan, 2023) Moreover, these results underscore the effectiveness of

employing hyperspectral reflectance combined with machine

learning algorithms. This approach not only enables the

prediction of chlorophyll content, as previously documented by

Singh et al. (2022), but also facilitates the non-destructive

estimation of nitrogen (N) content in maize leaves using the

PROSPECT-PRO model (Féret et al., 2021).

When compared with the classical vegetation indices used in

practice, neither the univariate nor linear approaches achieved the

requisite computational performance to surpass the ML models.

The improved R2, MAE, and RMSE results in the independent

validation dataset could be attributed to reduced variability and the

absence of extreme values, demonstrating the robust generalization

capabilities of the machine learning (ML) models. In contrast,

various studies in the ML literature, such as Ciganda et al. (2009),

have reported R2 values ranging from 0.80 and 0.87 while analyzing

longitudinal time series of chlorophyll in maize leaves and canopy

respectively. Sudu et al. (2022) had a R2 using 0.81, 0.42, 0.65, and

0.82 using PLSR, RF, XGBoost, and the DNN ML. Authors such as

Angel and McCabe (2022) employed restraining vs sequential

learning models to predict chlorophyll variations, yielding R2

results ranging from 0.59 to 0.74. Similarly, Guo et al. (2022)

using RF for spatial predictions of chlorophyll using a SPAD

device, achieved the highest R2 value of R2 (0.81) and RMSE (0.14).

In precision agriculture, the evaluation of RMSE, R², and MAE is

often relative to the scale and variability of the measured variable. For
FIGURE 10

(A) Actual versus predicted values of chlorophyll for the ML developed models during the training period (A) Robust linear regression, (B) Stepwise
linear regression, (C) SVM, (D) Fine Gaussian SVM, (E) Matern 5/2 GPR, (F) Trilayered Neural Network.
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instance, when predicting crop chlorophyll, an RMSE that is small

relative to typical chlorophyll values—such as 5-10% of the mean—is

considered acceptable (Croft et al., 2015). In our study, the RMSE

values are indeed small relative to the typical chlorophyll values of

796.64 and 3257.03 μg/g, indicating satisfactory performance.

Similarly, while R² values closer to 1 are generally preferred in

agricultural applications, an R² of 0.7-0.9 is often deemed good for

complex biological systems with high variability, such as chlorophyll

predictions (Çalıs ̧kan et al., 2020). Our results fall within this

acceptable range. Likewise, the acceptability of MAE is context-

dependent, with values close to or below the typical variation

within the dataset considered good. For example, in predicting

plant chlorophyll, an MAE of a few mg/g per week is typically

acceptable, depending on the crop and growth stage (Prilianti et al.,

2020). In our case, the Stepwise LR MAE meets these acceptable

thresholds. These diverse performance metrics highlight the

variability in different methods’ effectiveness in predicting

chlorophyll levels, suggesting adaptability rather than superiority of

onemethod over another. TheMLmodels in this study demonstrated

their capacity for generalization and high accuracy, thereby offering

promising prospects for further application and refinement.

The main outcome of this study is the introduction of an

innovative methodology combining MRMR and hyperspectral

indices. Present results rely on active sensoring technique with

spectral measurements in standard light conditions. This can

facilitate the improvement of such new field portable devices for

rapid non-destructive chlorophyll measurement which are

measuring the reflectance of the canopy at the identified wavelengths

using the best performing ML method. To apply our method, such

type of sensor head is required, which can eliminate the environmental

background light circumstances, and uses active light source. However

standard light conditions can be a limitation as well in such cases

where the sensing would be done by passive sensoring techniques.

Considering potential field-based applications of the model with open

sensor head further sensitivity analysis is valuable exploring the effect

of environmental variability (e.g. albedo, irradiance) and even soil

conditions on the reflectance and the explored models. I is also has to

be considered, that an overreliance on specialized equipment (such as

hyperspectral sensors) and complex machine learning models may

limit the broader applicability of the method in regions lacking such

resources (Srivastava and Chinnasamy, 2021).
5 Conclusion

In conclusion, this research offers a new method for precisely

estimating crop chlorophyll levels in maize by combining the

Minimum Redundancy Maximum Relevance (MRMR) algorithm

with hyperspectral indices and sophisticated machine learning

algorithms. With an emphasis on real-time monitoring of crop

growth status and optimization of nitrogen fertilizer applications,

the study intends to address inadequacies in current chlorophyll

estimating methods by utilizing extensive hyper-spectral data. The

comprehensive character of the methodology is demonstrated by

the investigation of many hyperspectral indices, which includes the
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development of new spectral indices using a laboratory proximal

sensor customized to the concentration of chlorophyll in maize

leaves. To develop chlorophyll sensitive indices spectral bands were

identified by PCA and spectral characteristics. Six complex machine

learning models are used, together with the MRMR feature selection

method to build intricate correlations between hyperspectral indices

and chlorophyll concentration. Based on stringent evaluation

measures, including coefficient of determination (R²), mean

absolute error (MAE), and root mean square error (RMSE),

Using VI with different feature importance the Matern 5/2

Gaussian Process Regression model was found to be the most

accurate model for predicting the amounts of chlorophyll in

maize. The results show that new spectral indices coupled with

other VIs are effective for non-invasive crop chlorophyll estimation

using ML algorithms, with great potential for early interventions to

mitigate abiotic stress and optimize agricultural operations.
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Comparison of the effects of manure-based product and ammonium nitrate on
maize (Zea mays L.). Natural Resour. Sustain. Dev. 12, 73–86. doi: 10.31924/
nrsd.v12i1.091

Nagy, A., and Tamás, J. (2013). Non-invasive water stress assessment methods in
orchards. Commun. Soil Sci . Plant Anal. 44, 366–376. doi : 10.1080/
00103624.2013.742308

Negrisoli, M. M., Negrisoli, R., da Silva, F., Lopes, L. S., Souza Júnior, F. S. D., Velini,
E. D., et al. (2022). Soybean rust detection and disease severity classification by remote
sensing. Agron. J. 114, 3246–3262. doi: 10.1002/agj2.v114.6
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