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Response of solar-induced
chlorophyll fluorescence-based
spatial and temporal evolution of
vegetation in Xinjiang to
multiscale drought
Cong Xue1,2†, Mei Zan1,2*†, Yanlian Zhou3, Zhizhong Chen1,2,
Jingjing Kong1,2, Shunfa Yang1,2, Lili Zhai1,2 and Jia Zhou1,2

1School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China, 2Xinjiang
Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China, 3School of
Geography and Ocean Science, Nanjing University, Nanjing, China
Climate change and human activities have increased droughts, especially

overgrazing and deforestation, which seriously threaten the balance of

terrestrial ecosystems. The ecological carrying capacity and vegetation cover

in the arid zone of Xinjiang, China, are generally low, necessitating research on

vegetation response to drought in such arid regions. In this study, we analyzed

the spatial and temporal characteristics of drought in Xinjiang from 2001 to 2020

and revealed the response mechanism of SIF to multi-timescale drought in

different vegetation types using standardized precipitation evapotranspiration

index (SPEI), solar-induced chlorophyll fluorescence (SIF), normalized difference

vegetation index (NDVI), and enhanced vegetation index (EVI) data. We employed

trend analysis, standardized anomaly index (SAI), Pearson correlation, and trend

prediction techniques. Our investigation focused on the correlations between

GOSIF (a new SIF product based on the Global Orbital Carbon Observatory-2),

NDVI, and EVI with SPEI12 for different vegetation types over the past two

decades. Additionally, we examined the sensitivities of vegetation GOSIF to

various scales of SPEI in a typical drought year and predicted future drought

trends in Xinjiang. The results revealed that the spatial distribution characteristics

of GOSIF, normalized difference vegetation index (NDVI), and enhanced

vegetation index (EVI) were consistent, with mean correlations with SPEI at

0.197, 0.156, and 0.128, respectively. GOSIF exhibited the strongest correlation

with SPEI, reflecting the impact of drought stress on vegetation photosynthesis.

Therefore, GOSIF proves advantageous for drought monitoring purposes. Most

vegetation types showed a robust response of GOSIF to SPEI at a 9-month scale

during a typical drought year, with grassland GOSIF being particularly sensitive to

drought. Our trend predictions indicate a decreasing trend in GOSIF vegetation in

Xinjiang, coupled with an increasing trend in drought. This study found that

compared with that of the traditional greenness vegetation index, GOSIF has

obvious advantages in monitoring drought in the arid zone of Xinjiang.

Furthermore, it makes up for the lack of research on the mechanism of
Abbreviations: SPEI, standardized precipitation evapotranspiration index; SIF, solar induced chlorophyll

fluorescence; EVI, enhanced vegetation index; NDIV, normalised difference vegetation index; PDSI, palmer

drought severity index; SAI, standardized anomaly index; SPI, standardized precipitation index.
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vegetation GOSIF response to drought on multiple timescales in the arid zone.

These results provide strong theoretical support for investigating the monitoring,

assessment, and prediction of vegetation response to drought in Xinjiang, which

is vital for comprehending the mechanisms of carbon and water cycles in

terrestrial ecosystems.
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1 Introduction

Global warming is increasing the frequency of climate

anomalies, with particular concern surrounding the increased

occurrence of droughts (Liu et al., 2018b; Zuo et al., 2019; Zhong

et al., 2023; Janni et al., 2024; Zhou et al., 2024). Droughts disrupt

carbon and water cycle patterns in terrestrial ecosystems,

primarily by impacting ecosystem composition, structure, and

functioning. Piao et al. (2019) showed that prolonged drought

and high temperatures may lead to soil nutrient loss, NPP

reduction, and even vegetation death, with significant impacts

on the global terrestrial carbon cycle. The incidence of drought

disasters not only disturbs ecosystem balance but also poses a

serious threat to socioeconomic well-being (Varela et al., 2019;

Kaushik et al., 2023). Zhou et al. (2020) showed that drought in

northeastern China has a significant impact on local maize yields,

which are expected to reduce by 60% to 70% when water

availability is halved. Therefore, studying the characteristics of

vegetation response to drought holds substantial scientific value

and practical significance. It furnishes a crucial scientific

foundation for regional ecological environmental protection

and sustainable economic development.

The aridity index serves as an effective method for assessing

drought, simplifying the intricate phenomenon while gauging the

severity of drought events (You et al., 2022). Numerous drought

indices are currently utilized globally, regionally, and nationally.

Among them, the Palmer drought severity index (PDSI) is widely

used in long-term drought trend monitoring because of its

comprehensive consideration of meteorological factors such as

soil moisture and temperature (Jung-Ching et al., 2023), while the

standardized precipitation index (SPI) is commonly used for short-

term drought impact assessment because of its simplicity of

calculation and consideration of precipitation only (Maedeh et al.,

2023; Zhao et al., 2024). However, both of these indices have

limitations in arid zones with complex and variable climates,

especially in areas where droughts are frequent and of long

duration. Among these, the PDSI cannot accurately reflect the

dynamics of short-term droughts, and the SPI ignores the

potential effects of climatic factors, such as temperature and wind

speed, on droughts (Cao et al., 2023).
02
In the context of global warming, an increase in temperature

and evapotranspiration has become a trend that cannot be ignored

(Fang et al., 2019), and evapotranspiration has become crucial in

drought and vegetation studies (Han et al., 2023). The standardized

precipitation evapotranspiration index (SPEI) (Khalil et al., 2024;

Marzieh and Rassoul, 2023) incorporates the contribution of heat

factors to potential evapotranspiration based on the SPI (Xu et al.,

2021a), rendering SPEI a more comprehensive and accurate

measure of drought (Wang et al., 2020; Ma et al., 2023a).

Additionally, SPEI offers greater flexibility than PDSI regarding

timescales, adaptable to various requirements for drought

monitoring (Anderson et al., 2011). As a result, SPEI holds

evident advantages in drought monitoring and is now widely

adopted in drought assessment research.

Numerous scholars have utilized various vegetation indices in

exploring the mechanisms underlying vegetation responses to

drought (Yang et al., 2018; Zhang et al., 2019). Normalized

difference vegetation index (NDVI) is an early remote sensing

vegetation index used to monitor the effects of drought on

vegetation (AghaKouchak et al., 2015), which evaluates the

electromagnetic spectrum of red and spectral features reflected in

the near-infrared bands of the electromagnetic spectrum to assess

vegetation growth. Doughty et al. (2021) showed that NDVI

saturates with increasing LAI, whereas EVI improves the

sensitivity and accuracy of vegetation monitoring by optimizing

the ability to capture vegetation greenness signals (Aulia et al.,

2016). While NDVI and EVI effectively monitor vegetation growth

and “greenness,” they do not offer prompt responses to drought-

induced alterations in vegetation photosynthesis (Song et al., 2018).

Furthermore, albedo-based vegetation indices suffer from the

drawback of greenness saturation (Camps-Valls et al., 2021). Solar-

induced chlorophyll fluorescence (SIF) is increasingly garnering

attention from scholars as a novel indicator for monitoring

vegetation growth (Guanter et al., 2007). Unlike traditional

vegetation indices like NDVI and EVI, SIF can gauge the

intensity of fluorescent signals emitted by vegetation during

photosynthesis, offering a more direct and sensitive reflection of

vegetation’s health status and photosynthetic capacity (Doughty

et al., 2019). Mohammed et al. (2019) revealed that in the high

vegetation cover area of tropical rainforest, SIF can more accurately
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reflect the real condition of vegetation growth compared with

NDVI and EVI.

Many researchers have begun to explore the utilization of SIF

for monitoring the impact of drought on vegetation. For instance,

Jiao et al. (2019) discovered in their study that the sensitivity of SIF

to drought varied among different vegetation types in different

regions, with cultivated land exhibiting the highest sensitivity to

short-term drought. Meanwhile, Jiang et al. (2021) identified a

strong correlation between SIF and drought indices over long

timescales. Additionally, Xu et al. (2021b) investigated the

relationship between SIF and SPEI across various scales,

observing variations in correlation based on timescale.

As the Xinjiang Uygur Autonomous Region stands as one of

China’s most representative arid and semiarid regions, it possesses a

fragile and intricate ecological environment. Despite this, recent studies

in the region have predominantly relied on traditional greenness

vegetation indices (Li et al., 2019; Yuan et al., 2021; Liu et al., 2022b),

with only drought indices considering singular meteorological factors

being employed in research on vegetation response to drought (Chen

et al., 2015; Wu et al., 2022; Ruzi et al., 2023). In contrast, there is a

paucity of investigations into drought monitoring and assessment

utilizing SIF with SPEI across various timescales in Xinjiang’s arid

region. Furthermore, there is a noticeable dearth of studies examining

the response patterns of GOSIF across different vegetation types to

SPEI during typical drought years, along with predictions regarding

future SPEI trends in Xinjiang. Consequently, a lack of scientific

consensus persists regarding the mechanism underlying vegetation

GOSIF response to drought stress in Xinjiang’s arid zone.
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In summary, this paper focuses on the arid region of Xinjiang

and employs GOSIF and SPEI at various timescales to investigate

the distinct responses of different vegetation types to drought in the

area. Our study aimed to achieve the following objectives:

determine trends in GOSIF and annual-scale SPEI from 2001 to

2020, along with changes in drought classification in the study area;

evaluate the relationship between GOSIF and SPEI at different

timescales for various vegetation types during a typical drought year

in Xinjiang; and predict potential future changes in vegetation

indicated by GOSIF and SPEI trends in Xinjiang. This study

focuses on the applicability and superiority of GOSIF for drought

monitoring in the arid zone of Xinjiang and attempts to determine

the optimal timescale of vegetation GOSIF for drought monitoring

in the study area. The results of this study fill the research gap

regarding the response mechanism of vegetation GOSIF to drought

in arid zones. The outcomes of these investigations not only

contribute to ecological conservation efforts in Xinjiang but also

offer valuable insights for global arid zone research.
2 Materials and methods

2.1 Overview of the study area

Xinjiang is located in western China (73°40′–96°18′E, 34°25′–48°
10′N), with a land area covering approximately one-sixth of the

country’s surface area (Figure 1). Xinjiang, characterized as a classic

arid and semiarid region, harbors fragile ecosystems (Song et al., 2019;
FIGURE 1

Overview of the study area.
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Adila and Zan, 2022). Its topography is diverse, featuring a mosaic

distribution of mountains, oases, and basins. Situated far from the sea

and deeply inland, Xinjiang experiences a typical temperate

continental climate marked by significant temperature variations,

extended daylight hours, and pronounced evaporation effects.

Vegetation cover in the region is sparse, comprising primarily

cultivated land, forests, grasslands, and shrublands, with forests

exhibiting the lowest coverage. Carbon stocks vary considerably

among different vegetation types, with forests and grasslands

boasting higher carbon stocks compared to other vegetation types.

Rising temperatures lead to snow and ice melting, resulting in

decreased water availability and exacerbated drought conditions. On

average, Xinjiang witnesses approximately 0.5 drought disasters of

varying severity annually, with a higher frequency of droughts

observed in the Altay and Turpan regions. The period from 2001 to

2020 witnessed relatively severe drought conditions in Xinjiang,

particularly in the Tarim Basin, Junggar Basin, and the northern

slopes of the Tianshan Mountains, which experienced high incidences

of drought disasters. Notably, severe drought events occurred in

Xinjiang in 2006 and 2009, significantly impacting local agricultural

production and the ecological environment.
2.2 Data sources and preprocessing

In this study, we conducted a comprehensive analysis of the

spatiotemporal characteristics between GOSIF and SPEI in the

Xinjiang arid zone. We explored the sensitivities of GOSIF,

NDVI, and EVI to multiscale SPEI, assessed their responses to
Frontiers in Plant Science 04
drought across different vegetation types, and predicted the future

trends of vegetation GOSIF and SPEI in Xinjiang. The research

findings have provided theoretical evidence supporting the efficacy

of vegetation GOSIF in monitoring drought in Xinjiang’s arid zone,

thereby offering practical significance for ecological restoration and

vegetation enhancement in the study area. The technical framework

is depicted in Figure 2.

2.2.1 GOSIF data
Weutilized a global GOSIF dataset with high spatial and temporal

resolution (0.05° × 0.05°, 8 days) generated by Li and Xiao (2019)

based on discrete OCO-2 SIF sounding, MODIS remotely sensed, and

meteorological reanalysis data (http://globalecology.unh.edu/data/

GOSIF.html) as the solar-induced chlorophyll fluorescence

product. GOSIF is characterized by finer spatial resolution and

continuous global coverage compared to SIF, which is detected by

OCO-2. We obtained GOSIF data for the Xinjiang region by

cropping and resampling using the GOSIF annual-scale and 2009

monthly-scale products for China from 2001 to 2020.

2.2.2 SPEI data
The SPEI data utilized in this study comprised a collection of

raster datasets covering China from 2001 to 2020, featuring

different timescales and high spatial resolution (1 km × 1 km).

These datasets were calculated by Xia et al. (2023) using

meteorological station data and employing the random forest

method. Specifically, we selected SPEI12 (12-month scale) from

2001 to 2020 and SPEI01 (1-month scale), SPEI03 (3-month scale),

SPEI06 (6-month scale), SPEI09 (9-month scale), and SPEI12 (12-
FIGURE 2

Technical framework.
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month scale) data from 2009, which was deemed a typical

anomalous drought year, for the study area across five scales. The

SPEI drought classification is presented in Table 1.

To ensure consistency with the spatial resolution of the GOSIF

data, the SPEI data, known for its highly consistent spatial and

temporal distribution characteristics along with higher spatial

resolution and improved drought identification compared to the

widely recognized SPEI-based (v.2.6) dataset, were resampled to

0.05° × 0.05° (Xia et al., 2023).

2.2.3 Vegetation index data
In this study, the 8-day scale MOD13A3 NDVI and EVI data

from 2001 to 2020 were selected, and the 8-day scale NDVI and EVI

were computed to obtain annual-scale counterparts using the

maximum value synthesis (MVC) method on the Google Earth

Engine (GEE) platform (Didan, 2015). Subsequently, we resampled

the NDVI and EVI data to a spatial resolution of 0.05° × 0.05° to

maintain consistency with our analysis.
2.3 Methods

2.3.1 Trend analysis method
Theil-Sen is a statistical method for trend analysis of long-time

series data (Equation 1), the calculation is as follows (Liu et al.,

2016a; Kong et al., 2022).

w = Median
xb − xa
b − a

� �
     ∀ b > a (1)

The Mann–Kendall (MK) test, in combination with the Theil-

Sen method, can reflect the overall trend of the data more accurately

(Equations 2–5), avoiding the influence of errors to a large extent

and improving the reliability of the results:

T = o
k−1

a=1
o
k

b=a+1

sgn(xb − xa) (2)

Sgn() is the sign function, which is calculated as follows:

sgn(xb − xa) =

+1 xb − xa > 0

0 xb − xa = 0

−1 xb − xa < 0

8>><
>>: (3)

To perform the trend test, the test statistic Vwas calculated as follows:

V =

T−1ffiffiffiffiffiffiffiffiffiffi
Var(T)

p (T > 0)

0 (T = 0)

T+1ffiffiffiffiffiffiffiffiffiffi
Var(T)

p (T < 0)

8>>><
>>>:

(4)
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Var was calculated as follows:

Var(T) =
(k − 1)(2k + 5)

20
(5)

where xa and xb denote the image values of the image elements

a and b, respectively, and k means the length of the time series,

which was set as 20 in this study. When │V │ ≤ V1−a=2, the trend

is insignificant; when │V │ ≤ V1−a=2, the trend is considered

significant, and a significance level of a = 0.05 and a critical value

V1−a=2 = ± 1.96 were chosen. When the absolute value of V is greater

than 1.65, 1.96, or 2.58, the trend passes the test of significance with

a confidence level of 90%, 95%, or 99%, respectively (Tu et al.,

2021). We superimposed the trends of GOSIF, SPEI12, NDVI, and

EVI with the MK test results, and the resulting change trend was

classified into five levels based on the slope values, namely,

significant decrease, insignificant decrease, no change,

insignificant increase, and significant increase.

2.3.2 Standardized anomaly index
The SPEI trend was analyzed using linear regression, and the

impact of drought on SPEI was characterized using the standardized

anomaly index (SAI) (Equation 6) (Liu et al., 2016b; Kong et al., 2022):

SAIFP(y) =
FP(y) − FP

sFP
(6)

where SAIFP (y) is the variance value of SPEI12 in year y (y = 1,

2, 3···20), FP (y) is SPEI12 in year y, FP denotes the mean value of

SPEI12, and sFP denotes the standard deviation of SPEI12. The

SPEI12 standardized anomaly index is graded as normal (|SAI| ≤

0.5), mildly abnormal (0.5 < |SAI| ≤ 1), moderately abnormal (1 < |

SAI| ≤ 1.5), and severely abnormal (1.5 < |SAI| ≤ 2), and the

drought conditions are more severe when the absolute value of

SPEI12 is higher in the corresponding year.

2.3.3 Correlation analysis
The Pearson correlation coefficient (Equation 7) is a value

between [−1,1], and the closer its absolute value is to 1 or −1, the

stronger the linear relationship between the two variables and the

stronger the sensitivity between the two variables (Shi et al., 2002).

If the coefficient is positive, it represents a positive correlation, and

if the coefficient is negative, it represents a negative correlation. The

correlation coefficient between two variables is represented by Rxy

with the following formula (Qi et al., 2023).

Rxy =
o
m

a=1
½(xa − x)(ya − y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
m

a=1
(xa − x)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m

a=1
(ya − y)2

s (7)
TABLE 1 SPEI drought class classification.

Drought
type

Extreme
drought

Severe
drought

Moderate
drought

Mild
drought

Normal Moist

SPEI value ≤−2.0 −2.0 to −1.5 −1.5 to −1.0 −1.0 to −0.5 −0.5 to 0.5 ≥0.5
frontiersin.org

https://doi.org/10.3389/fpls.2024.1418396
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xue et al. 10.3389/fpls.2024.1418396
where m is the number of time series (20), and x and y are the

mean values of the variables. In this paper, Pearson correlation was

used to analyze the relationship between SPEI12 and GOSIF and

NDVI and EVI from 2001 to 2020, as well as the correlation

between GOSIF and SPEI at different scales during the 2009

growing season.

2.3.4 Hurst index analysis
The Hurst index H is used to predict whether GOSIF and SPEI

in Xinjiang will maintain the past trend in the future (Equations 8–

11). The calculation formula is as follows.

X(t, g ) =o
t

t=1
SPEI(t) − SPEI(g )
� �

1 ≤ t ≤ g (8)

R(g ) = maxX(t, g )
1≤t≤g

−minX(t, g )
1≤t≤g

g = 1, 2, · · ·, n (9)

S(g ) =
1
g o

g

t=1
(SPEI(t) − SPEI(g ))2

� �1
2

   g = 1, 2, · · ·, n (10)

Where X(t,g) is the cumulative deviation series, R(g) is the

extreme deviation series, S(g) is the standard deviation series, and

SPEI(t) and SPEI(g) denote SPEI data for year t and year g. We used

the ratio of R(g) to S(g) to invert the Hurst index, as follows (Tong

et al., 2018).

R=S = R(g )=S(g ) =
pg
2

� �H
(11)

Where H is the Hurst index and the value domain of H is [0, 1].

When 0 ≤H < 0.5, it means that the future GOSIF or SPEI in Xinjiang

may be opposite to the past trend; when 0.5 <H ≤ 1, it means that the

future GOSIF or SPEI in Xinjiang may continue to maintain the past

trend; and when H = 0.5, it means that there is no clear correlation

between the future trend and the past (Kong et al., 2022).
3 Results

3.1 Characteristics of spatial and temporal
distribution and trends of SPEI12, GOSIF,
NDVI, and EVI

The spatial distribution of the drought classification of the

2001–2020 SPEI12 minima in Xinjiang (Figure 3A) reveals that

moderate drought predominantly covered 53.07% of the total study

region, spanning the eastern part of Xinjiang, the Junggar Basin, the

Altai Mountains, and the vicinity of the Tarim Basin. Additionally,

10.44% of severe drought was concentrated in the southwestern part

of the Tarim Basin. Mild drought primarily occurred along the

northern portion of Tacheng, the Tianshan Mountains, and the

Kunlun Mountains region. Analyzing the SPEI12 trend over the last

20 years across the study region (Figure 3B), we observed that the

mean value of SPEI12 was the lowest in 2009 and the highest in

2003. For the last two decades, drought conditions in the study area

gradually diminished, transitioning toward progressively wetter

conditions. Examining the transfer of different drought classes of
Frontiers in Plant Science 06
SPEI12 in the study area in 2001, 2005, 2010, 2015, and 2020

(Figure 3C), we noted a decreasing tendency in moist and mild

drought areas, while areas classified as normal or severely and

moderately drought-ridden displayed an increasing tendency.

However, overall, the areas experienced a gradual shift toward

wetter conditions. The sums of the areas where all drought types

changed between the different years 2001–2005, 2005–2010, 2010–

2015, and 2015–2020 were 4.154 × 105 km², 7.178 × 105 km²,

7.652 × 105 km², and 4.640 × 105 km², respectively. Over the past 20

years, the rise in mild drought within the study area mainly

stemmed from the conversion of regions that were initially moist

or normal. Meanwhile, the escalation of moderate drought

primarily occurred in areas previously characterized as moist,

normal, or experiencing mild drought conditions.

The area that changed from moist to mildly and moderately arid

in the last 20 years spanned 0.146 × 105 km² and 0.018 × 105 km²,

respectively. Moderate drought during 2001–2005 and 2010–2015

primarily occurred in moist, normal, andmild drought areas covering

areas of 1.207 × 105 km² and 1.478 × 105 km², respectively. Compared

to that in 2001, the area in the moist and normal classes increased by

2.224 × 105 km² in 2020, suggesting that drought conditions in

Xinjiang have been alleviated to some extent in the last 20 years.

Spatial distribution of themean values of vegetation GOSIF, NDVI,

and EVI from 2001 to 2020 in the study area (Figures 4A–C) indicates

that the spatial distribution of the three indices has a good consistency

and the high values are largely distributed in areas around the Ili River

Valley. Among them, high NDVI values were concentrated in the Altai

Mountains, Ili region, and Tianshan Mountains. As depicted by the

curves illustrating the mean values of GOSIF, NDVI, and EVI for

vegetation in the study area over the last 20 years (Figure 4D), the

overall variation trend was largely similar across all three indices,

exhibiting clear fluctuations and increasing tendencies. Specifically, the

mean value of GOSIF peaked in 2019 at 0.042, with a rate of increase of

0.0003 per annum. Similarly, the mean value of NDVI also reached its

highest point in 2019, while the mean value of EVI achieved its

maximum in 2016. Collectively, these findings suggest a gradual

enhancement in the photosynthetic capacity and greenness of

vegetation in the arid zone of Xinjiang during the period from 2001

to 2020, accompanied by a partial alleviation of drought conditions.

We used the Sen+Mann–Kendal method to analyze the trends

and significance of SPEI12, GOSIF, NDVI, and EVI in Xinjiang from

2001 to 2020. As illustrated in Figure 5, all four variables—SPEI12,

GOSIF, NDVI, and EVI—exhibited increasing trends, with the area

of increase surpassing that of decrease (Figures 5A, D, G, J). Among

them, the areas with significant increases (p < 0.05) in SPEI12

accounted for 4.55% of the total study area, which was mainly

distributed in the eastern part of Ili Valley, southeastern part of

Tacheng, and central part of Bazhou, suggesting progressive wetness

in these areas (Figures 5B, C). The areas where the trends of GOSIF,

NDVI, and EVI changes passed the 95% significance test were mainly

in the Altai Mountains, Tacheng, Ili, and the northern slope of the

Tianshan Mountains (Figures 5E, H, K). Among them, the

percentages of areas with significant increases in GOSIF, NDVI,

and EVI in the total study area were 8.15%, 8.03%, and 4.32%,

respectively (Figures 5F, I, L), whereas southwest Tacheng and the

vicinity of the southern slope of the Tianshan Mountains showed a
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significant decreasing trend in GOSIF, NDVI, and EVI. The

significant increase in GOSIF, NDVI, and EVI of vegetation in

Xinjiang over the last 20 years indicated a gradual improvement in

vegetation productivity and cover in the study area. These changes

not only help improve the carbon storage capacity but also are

important for promoting the sustainable development of vegetation

resources in the study area.
3.2 Correlation of annual-scale vegetation
GOSIF, NDVI, and EVI with SPEI12

From the correlation analysis of vegetation GOSIF, NDVI, and

EVI with SPEI12 in Xinjiang over the past 20 years (Figure 6), it is
Frontiers in Plant Science 07
evident that the correlations of all three variables were consistently

positive across the spatial domain. The results showed a close

correlation between vegetation growth conditions and the degree

of drought. When the value of SPEI12 decreased, meaning that the

degree of drought increased, vegetation growth was stressed by

drought, and the values of GOSIF, NDVI, and EVI decreased

accordingly. The mean correlation values of GOSIF, NDVI, and

EVI with SPEI12 were 0.197, 0.156, and 0.128, respectively, with

their maximum values reaching 0.906, 0.894, and 0.902,

respectively. Moreover, the proportions of GOSIF pixels

significantly and positively correlated (p < 0.05) with SPEI12, as

well as NDVI and EVI pixels significantly correlated (p < 0.05) with

SPEI12, accounting for 11.73%, 8.40%, and 7.12% of the total study

area, respectively. The results suggest that these indices can serve as
B

C

A

FIGURE 3

(A) The synthetic spatial distribution of year-scale SPEI12 minima during 2001–2020. (B) The time series of 2001–2020 SPEI12 means. (C) The shifts
in annual-scale drought levels during 2001–2020.
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important indicators for drought monitoring and environmental

assessment in the study area. Notably, pixels significantly correlated

with SPEI12 by GOSIF and NDVI were predominantly situated in

the southern part of Tacheng and the northern part of Ili.

Conversely, EVI exhibited significant correlation mainly in the Ili

region. GOSIF demonstrated a higher correlation with SPEI12 and

appeared more sensitive to drought compared to NDVI or EVI.

This indicates that, for arid regions, GOSIF shows clear advantages

in drought monitoring and assessment.

Among the different vegetation types, the mean correlation

coefficients of grassland for GOSIF, NDVI, and EVI with SPEI12

were the highest (Figure 7). Specifically, the mean correlation of NDVI

with SPEI12 for forest and shrubland exceeded that of GOSIF and EVI

with SPEI12. However, themean correlation of GOSIF with SPEI12 for

forestland was only marginally lower than that of NDVI with SPEI12.

Notably, both the average and maximum correlation

coefficients between grassland GOSIF and SPEI12 were notably

higher, reaching 0.229 and 0.906, respectively, surpassing the

corresponding correlation coefficients of NDVI and EVI with

SPEI12. Figures 1, 6, 7 collectively illustrate that the high

correlation values of GOSIF, NDVI, and EVI with SPEI12 for

grassland were predominantly concentrated in the Tacheng and

Ili regions, with correlations diminishing toward the periphery of

the Tarim Basin. Among all vegetation types, shrubland exhibited

the lowest correlation of GOSIF, NDVI, and EVI with SPEI12.

Consequently, GOSIF emerged as a practical and superior indicator

for assessing drought responses.
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3.3 Response of GOSIF to different scales
of SPEI in a typical drought year

3.3.1 Sensitivity of growing season GOSIF to SPEI
at different scales

Based on the definition of moderately anomalous years by the

SAI (1 < |SPEIanomaly| < 1.5), the moderately anomalous years of the

SPEI in the study area were identified as 2003, 2006, and 2009

(Figure 8A). When considering the trend of annual-scale changes in

the SPEI12 from 2001 to 2020 in the study area, it became apparent

that 2009 stood out as the most typical anomalous drought year.

Therefore, we further analyzed GOSIF with SPEI at different scales

during the 2009 vegetation growing season (April–October). From

the mean values of different scales of SPEI (Figure 8B), the mean

value of SPEI06 in July was −1.01, indicating moderate drought; the

area was relatively moist in September, whereas SPEI01 and SPEI03

in July indicated mild drought, with the mean values of −0.855 and

−0.753, respectively; and SPEI09 and SPEI12 of the growing season

indicated normal conditions, overall.

From Figure 8C, it is evident that compared to the 2009 growing

season, the mean values of GOSIF, NDVI, and EVI exhibited a

decreasing trend in the 2010 growing season followed by an

increasing trend in the 2011 growing season, thereby affirming

the classification of 2009 as a typical drought year. Due to the lag

effect of vegetation on the impact of drought, following the

occurrence of drought in 2009, the GOSIF of vegetation during

the growing season of 2010, particularly in April–June, experienced
B C

D

A

FIGURE 4

The spatial distribution of multiyear means of GOSIF (A), NDVI (B), and EVI (C, D) a time series of GOSIF, NDVI, and EVI changes from 2001 to 2020.
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a rapid decline with a rate of decline of 16.667%. In contrast, the rate

of decline of NDVI was only 2.333%, while EVI began to show a

declining trend only in May. Vegetation growth resumed from

April to June 2011, during which GOSIF, NDVI, and EVI exhibited

an increasing trend. Notably, the average growth rate of GOSIF

reached 17.133%, significantly surpassing the growth rates of NDVI

(3.351%) and EVI (1.827%).

In summary, both the impact period following drought onset

and the recovery period after drought highlighted the rapid increase

and decrease characteristics of vegetation GOSIF in response to

drought impacts when compared to NDVI and EVI.

From the spatial distribution of GOSIF with different scales of

SPEI during the growing season (Figures 9A–E), it is evident that

GOSIF exhibited the highest mean correlation (0.460) with SPEI09,

followed by SPEI06, while the lowest correlation was observed with

SPEI01, displaying an overall weak negative correlation. Figure 9E
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illustrates that approximately 90.050% of the total vegetation area in

Xinjiang exhibited a positive correlation between GOSIF and SPEI,

with 22.070% of the vegetation areas passing the 95% significance test.

Analyzing the spatial distribution of the maximum values of the

correlation coefficients between vegetation GOSIF and SPEI at

different timescales (Figure 9F), it can be observed that the

maximum correlation coefficients ranged from 0.450 to 0.997,

with a mean value of the maximum positive correlation

coefficients estimated at 0.535. Areas with correlation coefficients

greater than 0.550 were concentrated in the Altai Mountains,

southern Tacheng, northern slopes of the Tianshan Mountains,

and the northwestern Tarim Basin. Meanwhile, areas with positive

correlation coefficients ranging between 0.450 and 0.550 were

primarily distributed in the Ili region. Additionally, regions

displaying a negative correlation between GOSIF and SPEI were

observed within the Ili Valley.
B C

D E F

G H I

J K L

A

FIGURE 5

The spatial distribution of SPEI12, GOSIF, NDVI, and EVI trends (A, D, G, J) and significance tests (B, E, H, K); (C, F, I, L) in the five classes, namely,
significant decrease, insignificant decrease, no change, insignificant increase, and significant increase spatial distributions.
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3.3.2 GOSIF response to SPEI for different
vegetation types

The mean correlation coefficients between GOSIF and SPEI at

different timescales during the growing season (Figure 10) indicate

that, for most vegetation in the study area, the largest mean

correlation coefficients were observed between GOSIF and SPEI09.

On average, the correlation coefficients between GOSIF and SPEI

tended to increase with longer timescales, except at the annual scale.
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Interestingly, GOSIF for cultivated land exhibited a negative

correlation with SPEI at the 1-, 3-, and 6-month scales.

Conversely, the correlations between GOSIF and SPEI at the 6-

and 9-month scales were more positive for shrubland compared

to other land types. Additionally, the mean correlation

coefficients between GOSIF and SPEI at different timescales

were generally higher for grassland compared to the other three

vegetation types.
B C

D E F

A

FIGURE 6

The spatial distribution of GOSIF, NDVI, EVI, and SPEI12 correlations (A–E) and significance (D–F).
FIGURE 7

The mean and maximum values of EVI, NDVI, and GOSIF for different vegetation types on an annual scale.
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3.4 Future projections of GOSIF and
annual-scale SPEI in Xinjiang

The trends of GOSIF and SPEI in the study area were assessed

using the Hurst index (Figure 11). It was found that the area of

future Xinjiang vegetation GOSIF, with sustainability trends

consistent with the past, accounted for 37.78% of the total area.

This trend is projected to further increase in regions such as the

Altai Mountains, near the Tian Shan Mountains, and in the oasis

area of the northwestern Tarim Basin, while a decrease is

anticipated near the Ili River Valley. Combining the Sen trend

in GOSIF from 2001 to 2020 with the overall Hurst average

suggests a potential decrease in GOSIF for vegetation in

the future.

Furthermore, approximately 85.93% of Xinjiang’s area

exhibited a future vegetation SPEI trend opposite to that of the

past. Combining the 2001–2020 SPEI Sen and Hurst means (0.413)

suggests a likelihood of increased aridity in Xinjiang in the future,

with these areas primarily distributed in the Altai Mountains, near

the Ili Valley, and in the central Tarim Basin.
Frontiers in Plant Science 11
4 Discussion

4.1 Comparison with relevant studies

Based on the analysis of GOSIF, vegetation index, and

multiscale SPEI drought data from 2000 to 2020, this study

extensively investigates the spatial and temporal variations of

GOSIF and SPEI12, along with the sensitivity of GOSIF to

multiscale SPEI. Additionally, it explores the response mechanism

of GOSIF to drought in different vegetation types. Notably, the

distribution of drought in Xinjiang exhibits significant regional

differences attributed to its unique geographical location and

climatic conditions. The study reveals that southern and eastern

Xinjiang are predominantly affected by severe and moderate

droughts, while mild droughts prevail in the west (Figure 3A).

Cao et al. (2021) conducted anMK trend analysis of SPEI and found

that the eastern part of Xinjiang was more arid than the western

region. Based on the data such as measured precipitation and

runoff, Wang (2023) constructed an aridity distribution map of

Xinjiang, indicating that the southern border was more arid than
B

C

A

FIGURE 8

(A) The standardized anomaly index (SPEI) from 2001 to 2020. (B) The trend of SPEI at different scales during the growing season of 2009.
(C) The mean values of GOSIF, NDVI, and EVI during the growing season from 2009 to 2011.
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the northern border and that the plains were more arid than the

mountains. These conclusions are consistent with the results of this

study. Such findings underscore the severity and complexity of the

drought issue in Xinjiang. It is noteworthy that over the past 20

years, there has been a discernible downward trend in the degree of

drought in the Xinjiang region, indicating an alleviation of the

drought situation (Bai et al., 2019). This trend could be attributed to
Frontiers in Plant Science 12
factors such as global climate change, water resource management

strategies implemented in Xinjiang, and efforts toward ecological

conservation measures.

The overall trend of SPEI spatial distribution is primarily

characterized by a non-significant increase, particularly evident in

the south and east (Figure 5). This observation further validates

the trend of drought mitigation in Xinjiang and aligns with the
B

C D

E F

A

FIGURE 9

The spatial distribution of the correlation of GOSIF with SPEI01 (A), SPEI03 (B), SPEI06 (C), SPEI09 (D), and SPEI12 (E) for vegetation during the
growing season of 2009. (F) The spatial distribution of the maximum synthetic value of the correlation coefficients of GOSIF and the multiscale SPEI.
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perspectives of other scholars (Shi et al., 2002; Huang et al., 2020;

Yu et al., 2023). Peng et al. (2018) highlighted an increasing trend

in the frequency of droughts in the Northwest Arid Zone

(including Xinjiang) from 1948 to 2012 based on the scPDSI

index and copula method, which is slightly different from the
Frontiers in Plant Science 13
results of this study. This is because the study period, selected

drought indicators, and the methods of this study are different

from ours. This discrepancy may also be attributed to the

multitemporal scale nature of the SPEI drought index utilized in

this study. The multiscalar characteristic of SPEI enables it to
BA

FIGURE 11

The spatial distribution of predicted sustained changes in GOSIF (A) and SPEI12 (B) in the future arid zone of Xinjiang.
B

C D

A

FIGURE 10

The mean values of correlation coefficients between GOSIF and SPEI at different scales in 2009 for cultivated land (A), forestland (B), grassland (C),
and shrubland (D).
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more accurately capture the complexity and dynamics of droughts

(Cao et al., 2021).

The findings of this study demonstrate that GOSIF exhibits

higher sensitivity in drought monitoring compared to traditional

vegetation indices such as NDVI and EVI (Figures 6, 7). GOSIF

showed a more rapid and significant response to SPEI, both at the

annual scale and during the growing season of a typical dry year.

Similar observations were reported in northwest India, where

Song et al. (2018) found that SIF responded to drought earlier

than traditional vegetation indices like NDVI and EVI, facilitating

the early monitoring of drought stress in wheat. Furthermore, Liu

et al. (2018a) classified wheat plots into four different drought

levels and observed that SIF remained sensitive and highly

responsive to severe and extreme drought conditions, whereas

NDVI exhibited sensitivity only to extreme drought.

While some studies have investigated the capability of GOSIF

in drought monitoring and estimating total primary productivity

(Jiao et al., 2019; Zhao and Wang, 2021), there remains a scarcity

of research focusing on the response of GOSIF to drought across

various vegetation types during typical dry years. In this study, we

examined the characteristics of GOSIF response to drought in

different vegetation types, including grassland, shrubland, and

cultivated land, during the growing season of 2009 in the typically

arid region of Xinjiang. Our findings revealed significant

variations in the mean values of GOSIF–SPEI correlation among

different vegetation types (Figure 10), consistent with previous

research (Xu et al., 2018; Cao et al., 2022). These differences are

primarily attributed to the adaptive capacity and physiological

mechanisms of distinct vegetation types in response to

drought stress.
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4.2 Causes behind the changes in
drought trends

An in-depth study presented in this paper reveals that

Xinjiang’s overall trend has slowly shifted toward increased

moisture and reduced aridity over the past 20 years (Figures 3C,

12). This change is influenced by a combination of factors. First, this

may be related to the increase of water vapor content into Xinjiang

due to global warming. Gao et al. (2023) systematically analyzed the

spatial and temporal characteristics of water vapor content,

precipitation, and other elements in the Central Asian arid zone

from 1979 to 2018 based on reanalysis data and found that a

tendency of an increase in water vapor content and precipitation

exists in Xinjiang, which are 0.09 mm·(10a)−1 and 4.14 mm·(10a)−1,

respectively. Additionally, this phenomenon has accelerated the rate

of glacier ablation. Glaciers, serving as vital water sources in

Xinjiang, play a crucial role in augmenting river water volume

through the recharge of their meltwater (Lu et al., 2021).

As a consequence, Xinjiang has experienced a sustained period

of relative water abundance in the last 30 years (Wang, 2023),

creating favorable conditions for mitigating drought severity.

Besides natural factors, anthropogenic activities driven by policy

have also contributed positively to climate dynamics in Xinjiang.

Since 1978, China has implemented many ecological restoration

and protection measures. Among them, Xinjiang has completed a

total of 15,171.54 km2 of artificial afforestation based on key

projects such as the “Three Norths” protection forest, returning

farmland to forests and grassland, and preventing and treating sand

around the Tarim Basin, raising the forest coverage rate from 1.03%

to 5.06% (https://t.m.china.com.cn/convert/c_vlEkj317.html).
B

C

A

FIGURE 12

(A) The shift in aridity from 2001 to 2020. (B) The time series of mean annual precipitation from 2001 to 2020. (C) The time series of mean annual
temperature from 2001 to 2020.
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These efforts have led to increased vegetation cover, enhanced

vegetation photosynthetic rates, and improved soil moisture

conditions, consequently alleviating the extent of drought.

Nevertheless, despite evidence suggesting a trend toward

warmer and wetter conditions in Xinjiang, this “warming and

wetting” phenomenon remains quite restricted. The spatial

distribution pattern of arid climates in Xinjiang has not

undergone fundamental changes, and the arid zone’s natural

environment continues to confront numerous challenges. Studies

such as that by Cao et al. (2021) have indicated a potential drying

trend in Northwest China in the future, while Li et al. (2021) and

their team have projected more severe and prolonged droughts in

Northwest China and even Central Asia. To gain a deeper

understanding of the future trend of drought in Xinjiang, this

paper employs the Hurst index for predictions. The results

suggest that Xinjiang’s SPEI trend may encounter a more severe

drought challenge ahead. This could be attributed to ongoing global

warming, resulting in annual temperature rises in Xinjiang.

Consequently, water dissipation from the ground and vegetation

becomes easier over time. Additionally, indiscriminate afforestation

in arid and semiarid areas may contribute to soil and water loss,

exacerbating soil erosion and land degradation (Ma et al., 2023b).

These effects not only impact agricultural production and the

ecological environment but also could escalate the frequency of

natural disasters such as sandstorms and dust storms (Li et al.,

2021). As the core region of the “Belt and Road” initiative, studying

drought characteristics in Xinjiang holds significant implications

for ecological transformations, water resource management, and the

sustainable development of human society in the region.

To summarize, a series of effective measures need to be

implemented to address the ecological and environmental

challenges faced by the arid areas of Xinjiang, such as vegetation

degradation and soil erosion. For instance, tree planting activities

can be carried out to enhance the water utilization efficiency of

vegetation. Simultaneously, promoting water-saving irrigation

techniques can significantly reduce water resource wastage.

Additionally, strengthening research and application of soil water

retention capacity is also crucial for addressing the drought

problem. By implementing these measures, the ecological

environment of Xinjiang can be gradually improved, and the

sustainable development of the region can be promoted.
4.3 Evaluation of the potential of GOSIF in
drought monitoring

GOSIF is a spectral signal emitted by chlorophyll molecules in

chloroplasts when plants are exposed to light, directly reflecting the

intensity and efficiency of photosynthesis. Contrastingly, the NDVI

assesses vegetation growth by measuring the difference in the

reflectance of red and near-infrared light, whereas the EVI considers

atmospheric scattering and incorporates a blue band to improve the

accuracy of monitoring vegetation growth. It has been shown that

GOSIF in high vegetation cover areas of tropical rainforests more

accurately reflects the real growth condition of vegetation than NDVI

and EVI (Mohammed et al., 2019). Additionally, Liu et al. (2022a)
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found that GOSIF was more sensitive than NDVI and EVI to drought

events for different vegetation types in China. Vegetation

photosynthesis and key physiological processes are affected by

drought (such as stomatal closure, reduced chlorophyll content, and

slowed photosynthetic rate); however, these physiological changes are

not immediately apparent in the spectral characteristics of the

vegetation canopy, resulting in a delayed response to drought in the

NDVI and EVI (Doughty et al., 2021). Therefore, the excellent

performance of GOSIF makes it a powerful tool for drought

monitoring and assessment.

The findings of this study highlight the significant role of

GOSIF in drought monitoring, particularly in Xinjiang’s arid

regions. The areas of high correlation between GOSIF and SPEI12

were mainly concentrated in the southern part of Tacheng,

northern part of Ili, and, to a lesser extent, in the east-central part

of the Tian Shan mountain range. This may be related to the higher

dependence of vegetation growth status on water conditions. GOSIF

and SPEI12 correlations were lowest at the edge of the Tarim Basin,

mainly due to the wide distribution of arable land in the region,

which supplies water to crops through artificial irrigation, resulting

in vegetation that is insensitive to drought (Yuan et al., 2021).

During a typical drought year, the mean correlation between GOSIF

and the drought index of grassland was higher compared to

forestland, shrubland, and cultivated land in Xinjiang. This

prominence can be attributed to the characteristics of grassland,

which typically possesses a shorter root system and lower water

storage capacity, rendering it more susceptible to drought (Liu et al.,

2022b). When drought occurs, the limited root system of grassland

inhibits effective water absorption from the soil, leading to

substantial impacts on vegetation’s physiological functions.

Moreover, degraded grasslands often experience a significant loss

of soil moisture, further diminishing their drought tolerance and

weakening their photosynthetic capacity. Consequently, the

drought’s impact on grassland ecosystems is exacerbated (Liang

et al., 2021). Cultivated land exhibits a less pronounced response to

drought sensitivity, primarily due to human activities significantly

influencing its water use efficiency. Zhu et al. (2021) showed that the

effect of drought on the growing season EVI of irrigated farmland

was 19.98% lower than that of natural vegetation EVI. This is

mainly because irrigation, fertilizer application, and advanced

planting techniques effectively improve the water absorption

capacity of the crop root system, thus mitigating the effects of

drought on crops (Liu et al., 2023).

In addition, the study showed that the GOSIF of different

vegetation types in the arid zone of Xinjiang showed a certain

pattern of response to SPEI, and the results of the study showed

that, among them, the GOSIF of different vegetation types in the

growing season had the most significant response to the SPEI at the

9-month scale (Figure 9), followed by the SPEI at the 6-month scale,

which suggests that photosynthesis in Xinjiang’s arid regions is

more influenced by medium- and long-term drought stresses

(Wang, 2023). It is noteworthy that glacial snowmelt in Xinjiang’s

arid regions, particularly in the Tianshan Mountains and the

Kunlun Mountains, supplies ample water resources for the local

vegetation, thereby mitigating the impacts of drought to some

degree. This observation aligns with the conclusions drawn by Liu
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et al. (2022a) and Sun et al. (2021). Moreover, several studies have

indicated that various vegetation types in Xinjiang exhibit a degree

of adaptability and resilience to drought stress. These plants adjust

their growth strategies and enhance the water absorption capacity of

their root systems to adapt to drought conditions.
4.4 Limitation analysis

The GOSIF data used in this study were obtained via a data-

driven approach using OCO-2, MODIS, and meteorological

reanalysis data. Although the data are characterized by high

spatial and temporal resolutions, certain errors and uncertainties

are introduced during data acquisition and processing due to

external factors (such as light conditions, precipitation, and soil

moisture) and different selection methods. Moreover, it is

important to recognize the complexity and variability of drought

issues, often challenging for a single monitoring indicator and

methodology to fully capture. Therefore, future research should

combine multiple data sources and research tools, such as

multisource remote sensing data, ground observation data, radar

data, and model simulation methods, to construct a more accurate

drought monitoring and simulation system. Simultaneously, we

need to strengthen our research on the mechanisms of drought

occurrence to provide a theoretical basis for the formulation of

effective drought strategies.
5 Conclusions

From 2001 to 2020, we investigated the correlation between

GOSIF, NDVI, and EVI with SPEI12 of vegetation and the variation

in drought class in Xinjiang. This analysis utilized the Sen+Mann–

Kendall trend analysis, SAI, Pearson correlation, and Hurst index

analysis methods applied to time-series data. Furthermore, we

examined the response relationship between vegetation GOSIF

and SPEI at different scales during the growing season of 2009, a

representative drought year in the study area. Finally, we forecasted

the future trends of vegetation GOSIF and SPEI in Xinjiang. The

main conclusions are as follows:
Fron
1. During the period from 2001 to 2020, the study area

experienced predominantly moderate drought conditions,

primarily observed in the Tarim Basin, Junggar Basin, and

near the Altay Mountains in Xinjiang. Regions classified as

wet or normal showed an increasing trend in

drought occurrence.

2. GOSIF exhibited a higher correlation with SPEI12

compared to NDVI or EVI, with a maximum correlation

coefficient of 0.906, indicating its superior efficiency in

drought monitoring. Among different vegetation types,

grassland GOSIF showed the highest sensitivity to drought.

3. Vegetation GOSIF exhibited the highest correlation with

SPEI09, indicating greater sensitivity, followed by SPEI06, and

the lowest correlation with SPEI01. Among various vegetation
tiers in Plant Science 16
types, grassland GOSIF showed the highest correlation

coefficient with SPEI09.

4. Combined with the trend of SPEI during 2001–2020 and

the average Hurst mean value of SPEI at 0.413, our findings

suggest that drought in Xinjiang will likely increase in the

future, primarily concentrated in the Altai Mountains, near

the Ili Valley, and in the central part of the Tarim Basin.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

CX: Conceptualization, Investigation, Methodology, Resources,

Visualization, Writing – original draft. MZ: Conceptualization, Data

curation, Funding acquisition, Project administration, Writing –

review & editing. YZ: Funding acquisition, Investigation,

Supervision, Writing – review & editing. ZC: Validation,

Visualization, Writing – review & editing. JK: Data curation,

Project administration, Writing – review & editing. SY: Validation,

Visualization, Writing – review & editing. LZ: Resources, Writing –

review & editing. JZ: Data curation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the National Natural Science Foundation

of China (grant numbers 42261013 and 42077419) and the Natural

Science Foundation of Xinjiang Uygur Autonomous Region (grant

number 2023D01A49).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1418396
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xue et al. 10.3389/fpls.2024.1418396
References
Adila, A., and Zan, M. (2022). Analysis of drought change in Xinjiang based on SPEI.
J. Anhui Agric. Sci. 50, 178–183. doi: 10.3969/j.Issn.0517–6611.2022.11.046

AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C.,
Wardlow, B. D., et al. (2015). Remote sensing of drought: progress, challenges and
opportunities. Rev. Geophys. 53, 452–480. doi: 10.1002/2014RG000456

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., and Kustas,
W. P. (2011). Evaluation of drought indices based on thermal remote sensing of
evapotranspiration over the Continental United States. J. Clim. 24, 2025–2044.
doi: 10.1175/2010JCLI3812.1

Aulia, M. R., Liyantono Setiawan, Y., and Fatikhunnada, A. (2016). Drought
detection of west java’s paddy field using MODIS EVI satellite images (case study:
rancaekek and rancaekek wetan). Proc. Environ. Sci. 33, 646iron. doi: 10.1016/
j.proenv.2016.03.119

Bai, Q., Yan, P., Cai, D., Jin, H., Feng, G., and Zhang, T. (2019). Inter-decadal change
characteristics of different grades drought in northwest China in recent 56 years. J. Arid
Meteorol. 37, 722–728. doi: 10.11755/j.issn.1006-7639(2019)-05-0722

Camps-Valls, G., Campos-Taberner, M., Moreno-Martı ́nez, Á., Walther, S.,
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