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Young Rog Yeoung2 and Hyoung Seok Kim1*

1Smart Farm Research Center, Korea Institute of Science and Technology (KIST),
Gangneung, Republic of Korea, 2Department of Plant Science, Gangneung-Wonju National University,
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Introduction: In strawberry farming, phenotypic traits (such as crown diameter,

petiole length, plant height, flower, leaf, and fruit size) measurement is essential

as it serves as a decision-making tool for plant monitoring and management. To

date, strawberry plant phenotyping has relied on traditional approaches. In this

study, an image-based Strawberry Phenotyping Tool (SPT) was developed using

two deep-learning (DL) architectures, namely “YOLOv4” and “U-net” integrated

into a single system. We aimed to create the most suitable DL-based tool with

enhanced robustness to facilitate digital strawberry plant phenotyping directly at

the natural scene or indirectly using captured and stored images.

Methods: Our SPT was developed primarily through two steps (subsequently

called versions) using image data with different backgrounds captured with

simple smartphone cameras. The two versions (V1 and V2) were developed

using the same DL networks but differed by the amount of image data and

annotation method used during their development. For V1, 7,116 images were

annotated using the single-target non-labeling method, whereas for V2, 7,850

images were annotated using the multitarget labeling method.

Results: The results of the held-out dataset revealed that the developed SPT

facilitates strawberry phenotype measurements. By increasing the dataset size

combined with multitarget labeling annotation, the detection accuracy of our

system changed from 60.24% in V1 to 82.28% in V2. During the validation

process, the system was evaluated using 70 images per phenotype and their

corresponding actual values. The correlation coefficients and detection

frequencies were higher for V2 than for V1, confirming the superiority of V2.

Furthermore, an image-based regression model was developed to predict the

fresh weight of strawberries based on the fruit size (R2 = 0.92).

Discussion: The results demonstrate the efficiency of our system in recognizing

the aforementioned six strawberry phenotypic traits regardless of the complex
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scenario of the environment of the strawberry plant. This tool could help

farmers and researchers make accurate and efficient decisions related to

strawberry plant management, possibly causing increased productivity and

yield potential.
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1 Introduction

The cultivated strawberry Fragaria × ananassa Duchesne is the

most economically essential soft fruit worldwide, and its production

and consumption are increasing in many parts of the world, including

Korea (Simpson, 2018; Menzel, 2020). Given their significance in the

global market and mounting year-round demand, strawberries are

intensively grown under protected structures to ensure seasonal

earliness, high-quality yield, and a continuous annual supply.

Strawberry cultivation in Korea is primarily concentrated in

greenhouses and is significant in the country’s agricultural industry

and economy (Hwang et al., 2020). However, cultivating strawberries

under such conditions requires extensive input and labor (Ilyas et al.,

2021; Khammayom et al., 2022; Mbarushimana et al., 2022). To

generate higher outputs and make tangible profits, farmers should

optimize resource use efficiency through consistent and timely plant

monitoring and make accurate farm management decisions.

Early identification and timely quantification of key plant

phenotypes may provide valuable insights that can predict

subsequent stages of plant development and critical outcomes

such as yield. In the case of strawberry farming, the measurement

of phenotypic traits, such as crown diameter (CD), petiole length

(PL), plant height (PH), flower, leaf, and fruit size, is common

among growers and researchers, serving as phenotypic markers

employed to monitor plant growth balance and manage cultivation

conditions. The crown size of strawberry seedlings during the

transplanting stage has been established as a reliable indicator of

post-transplantation vigor, and transplants with initially larger CDs

are associated with high-yield strawberry components (Fridiaa

et al., 2016; Fagherazzi et al., 2021). PL and PH are used to assess

the overall growth potential of strawberries, and the petiole size can

be used as an indicator of plant dormancy, where the plant produces

shorter petioles in dormant conditions (Robert et al., 1999; Sønsteby

and Heide, 2006). Similarly, PH is considered an index of plant
; Fl. A, Flower Area; Fr.

af Width; mPA, mean

ngth; SPT, Strawberry

GG Image Annotator.
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management among strawberry producers (Takahashi et al., 2020).

The leaf size is vital as, and in addition to photosynthesis and

transpiration, it guides cultural practices, such as plant training,

pruning, irrigation, and nutrition supply (Takahashi et al., 2020;

Zheng et al., 2021). In addition, the analysis of leaf area and climatic

variables can be used to predict plant evolution and the quality of

strawberry fruits (de Castro et al., 2020). Similarly, it has been

argued that increased leaf size and number may cause an increased

fruit yield (Ahn et al., 2021). Flower and fruit size are significant

factors in strawberry plant productivity and yield predictions (Chen

et al., 2019; Menzel, 2020). To acquire growth information on the

abovementioned phenotypic traits, most growers rely on traditional

visual and manual phenotyping approaches, which are highly

criticized for being subjective, destructive, and error-prone (He

et al., 2017; Mahmud Sultan et al., 2020). Thus, to overcome these

limitations, farmers of intensive cash crops, such as strawberries,

and researchers need a robust, fast, and cost-effective phenotyping

tool to facilitate their daily farm management based on quantitative

phenotypic data during the plant’s life cycle.

Plant phenotyping combined with computer vision approaches

provide better non-destructive options for plant monitoring through

quantitative and qualitative analyses of complex plant traits, such as

plant morphology, plant stress, crop yield, and plant physiological

and anatomical traits (Costa et al., 2019). In the current state-of-the-

arts in plant phenomics, many plant phenotyping methods are

available, among which visible spectral imaging combined with

deep-learning (DL) techniques present reliable advantages

regarding affordability and quick measurement owing to the

availability of various plant phenotyping hardware and software

systems that facilitate image registration, processing, and data

extraction (Fiorani and Schurr, 2013). Neural network-based DL

techniques can be used to extract and analyze meaningful

information on various plant traits from many collected image

data; therefore, it is proposed that DL will dominate the future

trends in image-based plant phenotyping (Tsaftaris et al., 2016).

Among the recently published studies where DL techniques were

applied for plant phenotyping, it is notable that convolutional neural

networks, such as You Only Look Once (YOLO, also called single-

shot detectors) and U-net, are among the most extensively used

methods for object detection and segmentation (Zhang et al., 2018;

Zheng et al., 2019; Ni et al., 2020).
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Studies involving a combination of image processing techniques

and computational intelligence to acquire strawberry growth

phenotypic information in the field or laboratory settings using

various sensors and platforms of different scales have been

conducted focusing on detection (Gan et al., 2020; Zhou et al.,

2020; Shin et al., 2021), segmentation (Pérez-Borrero et al., 2020;

Perez-Borrero et al., 2021), classification (Feldmann et al., 2020;

Aish, 2021; Fatehi and Akhijahani, 2021), and quantification (Lee

et al., 2017; de Castro et al., 2020). However, most available

phenotyping methods for strawberries are research-scale, costly,

and unaffordable for ordinary profit-oriented farmers or researchers

with limited financial means. Additionally, although DL techniques

have been explored in strawberries, they are limited mostly to

qualitative fruit attributes, and extensive studies embracing major

strawberry growth and development indicators, such as CD, plant

height, leaf size, and fruit size, remain unavailable. Therefore,

developing a cheap, precise, and high-throughput phenotyping

tool that covers more parameters is essential and should

sustainably advance farming efforts in the strawberry sector.

In this study, we developed a Strawberry Phenotyping Tool

(SPT) based on deep learning (DL), which integrates two prominent

DL architectures notably “YOLOv4” and “U-net” into a single

system. This image-based tool was designed for phenotyping and

data analysis of strawberry plant phenotypic traits focusing on six

important growth and yield traits: plant height, petiole length,

crown diameter, leaf characteristics (area, length, and width), as

well as flowers and fruits. The accuracy and reliability of this tool

was enhanced by increasing the number of training images and

diversified annotation techniques. We expect that if SPT is

integrated into the current strawberry farming systems, it is likely

to alleviate various farm management existing challenges and boost

strawberry farmers’ productivity.
2 Materials and methods

2.1 Training image datasets acquisition

The strawberry-image-based SPT was developed using

strawberry images collected from the Korean domestic cultivar

‘Seolhyang’, which was grown in the greenhouse facility of the

Korea Institute of Science and Technology, Gangneung-si,

Gangwon-do, Republic of Korea. Images of six phenotypes

(crown, plant height, leaf, leaf petiole, flower, and fruit) of

agronomic significance for strawberry growth and yield were

acquired at variable distances using modern smartphones (iPhone

6S Plus, Apple Inc., United States and Galaxy S8 Samsung

Electronics, South Korea) with iOS and Android operating

systems for several days during the daytime (6:00–18:00)

throughout the winter growing season between September 2019

and May 2020. The sampling devices used (smartphones) had both

cameras of 12-megapixel, the exposure parameter was set

automatically, and the objective focus system was set to

autofocus mode.

In each instance, the image was acquired by steadily holding the

Quick Response (QR) marker beside (parallel to) the target object,
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with the smartphone camera held perpendicularly against it,

obtaining an image that included the target object and the QR

marker. Spatial calibration for our measurement algorithm was

conducted using a QR code (4.7 cm x 4.7 cm) as a reference. Both

the growth parameters and the QR code were captured in a single

image. The algorithm then recognized the QR code and its four

corner points in the image, and applied distortion correction and

length conversion based on those points for spatial calibration. The

correct positioning and pose of the QR marker are critical for

accurate image analysis (Teoh et al., 2022). Incorrectly positioned

QR markers can cause overestimation or underestimation of the

size of objectives captured in the same image (Data not shown).

Each phenotypic parameter has key areas detected or

segmented by the deep learning model. Once these areas are

detected, the distances between them are measured, and the

lengths are converted based on the pixel size calibrated by the QR

marker. Therefore, the parts that need to be parallel to the QR

marker vary slightly for each phenotypic parameter. When the leaf

area is calculated from the image, the entire leaf surface must be

aligned and flat, parallel to the QR marker in the same image. These

features also require hand support from the person taking the

measurements during the process of acquiring phenotypic images.

The SPT was designed for a single user to measure strawberry plants

independently. Therefore, one hand holds the camera while the

other hand holds the plant part parallel to the QR marker. This

operation works smoothly when the strawberry plants are managed

properly through the conventional pruning and defoliation. Our

experiment was conducted under conventional strawberry

cultivation practices where the SPT could operate smoothly. We

provide explanations and example photos in Appendix A on how to

position the QR marker for each phenotypic parameter during

strawberry phenotyping, as well as how to perform the necessary

hand support actions.

We initially collected 7,116 images to develop the first version of

SPT (V1), and 7,850 images were used to construct the second

version of SPT (V2). To obtain an RGB image dataset with a

thorough variability of strawberry phenotypes under their natural

habitat, the images were collected under different light intensity

conditions (cloudy or sunny) and interferences, different days, and

different growth stages. For each parameter, the shooting angle and

shooting distance were continuously changed to collect images with

various colors, postures, sizes, and backgrounds. The collected

images were in the JPEG format, manually transferred, and stored

in a computer for further processing. The detailed implications of

each target phenotypic trait for strawberry farming and

management are summarized in Table 1.
2.2 Image dataset construction,
annotation, and model training

Our SPT was developed primarily through two phases

subsequently named versions (V1 and V2). The primary

distinction between V1 and V2 lies in the volume of image data

and the specific annotation method employed during their

development. The number of images used to develop the two
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versions of the current phenotyping tool is presented in Table 2 and

the annotation principles adopted for each version are illustrated by

Figure 1. A batch of 7,116 images was initially collected and

manually classified according to their phenotypes before

annotation. Figure 2A shows the workflow of the two versions of

the model training process. The original dataset was divided into

training, validation, and test datasets at 8:1:1 ratio. Subsequently,

the test set was excluded from the training set. The VGG Image

Annotator (VIA) tool (version 1.0.5), an image annotation tool

developed by Dutta and Zisserman (2019), was used to manually

annotate the objects of interest to obtain ground truth information

for the subsequent training of V1. Because our system was built
Frontiers in Plant Science 04
based on YOLOv4 (Bochkovskiy et al., 2020) and U-net

(Ronneberger et al., 2015), an appropriate annotation technique

that suffices for training these two architectures was considered.

The YOLO algorithm series requires bounding box annotation for

object localization to identify and detect specific objects in images.

In contrast, U-net requires a class label and a pixel-level mask with

an outline annotation of an object for semantic segmentation.

Therefore, the annotation principle adopted to train these DL

architectures needed to satisfy the above conditions. For

phenotypic traits, such as crown, plant height, and petiole length,

the regions of interest were annotated using a bounding box,

whereas other phenotypes, such as leaves, flowers, and fruits, were

annotated using polygon-shaped regions (Figure 1). To annotate

the CD, a bounding box enclosing the thickest part of the

strawberry crown was drawn with the lower side passing through

the point of attachment of the leaves to the crown. To annotate the

PH, two bounding boxes were used, with each placed at the bottom

(crown) and the top (leaves) of the plant’s most extreme

boundaries. The PL was annotated by drawing two bounding

boxes, with each at the plant’s point of attachment of the leaves

to the crown and at the point of attachment of the three leaflets to

the petiole. The leaves, flowers, and fruits were annotated by

carefully drawing polygons around the middle leaflets, flowers,

and fruits, respectively. After annotation, the annotation

information was downloaded and saved in CSV format and used

to train and create the first version of our system.

Owing to the poor performance of V1, two approaches have

been adopted to improve and change it to V2. First, we increased

the number and variability of the training datasets. A total of 734

additional images were previously collected differently and added to

the previous batch to make up 7,850 images. The PH and PL were

targeted and acquired from a single image. Second, the annotation

method was changed using an updated VIA version (VIA 2.0.10).

Unlike V1, to annotate the second batch of images, all images were

mixed to make a single folder, and all the objects to be annotated

were pre-defined in the VIA 2.0.10 annotator and assigned class
TABLE 2 Number of images collected and annotated for each version of
the Strawberry Phenotyping Tool (SPT).

Phenotypic
trait

Number of
images used
for
model
development

Number of
images used
for validation

Version
1

Version
2

Version
1

Version
2

1. Crown 698 950 70 70

2. Plant height 804 940 70 70

3. Petiole 779 915 70 70

4. Leaf 1,490 1,560 70 70

5. Flower 853 923 70 70

6. Fruit 2,492 2,562 70 70

Total 7,116 7,850 420 420
fro
TABLE 1 Targeted strawberry phenotypes for imaging and
features extracted.

Target
phenotype

Features
extracted in
the image

Possible
application of
phenotyping
results

1. Crown Crown diameter (CD) Strawberry yield is
linked with the initial
crown size (Torres-
Quezada et al., 2015).
Continuous monitoring
of CD can provide early
signs (prediction) of a
plant’s vigor and yield.

2. Plant height Height of the
plant (PH)

Tracking strawberry
growth strength and
speed through PH
monitoring (Takahashi
et al., 2020).

3. Petiole Length of the
petiole (PL)

PL size is linked to plant
activity status (Robert
et al., 1997). Dynamic
size changes in PL of the
strawberry leaf can be
used to determine the
fate of strawberry plants
under field conditions.

4. Leaf -Leaf area (LA)
-Leaf length (LL)
-Leaf width (LW)

Leaf size attributes (LA,
LL, and LW) can assist
in the modeling of
photosynthesis,
evaporation, and
evaluation of crop
growth and productivity
(Takahashi et al., 2020;
Zheng et al., 2021; Jo
et al., 2022).

5. Flower Flower area (Fl. A) Non-destructive
prediction of strawberry
qualitative and
quantitative yield based
on flower number and
size (Chen et al., 2019).

6. Fruit Fruit area (Fr. A) Non-destructive
prediction of strawberry
qualitative and
quantitative yield based
on fruit number and
fruit size (Hortyński
et al., 1991).
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labels (Figure 1). Therefore, because more than one target objects

co-occur in a single image, more than one target could be annotated

in the same photograph (multitarget annotation). Similarly, to V1,

the training, validation, and testing sets were fixed at 8:1:1 ratio. The

resulting annotation information was downloaded, saved in JSON

format, and used for V2 training and construction.

The images, annotation results and DL models subjected to V1

and V2 of STP are available at https://github.com/kist-

smartfarm/SPT.
2.3 SPT SW architecture: YOLOv4 and
U-net-based detection and segmentation
pipeline and features extraction

The strawberry phenotype analysis pipeline workflow of the SPT is

displayed in Figure 2B. We measured the phenotypic traits of

strawberries in two ways using our system. First, the CD, PH, and

PL were measured based on object detection (i.e., rectangular boxes).

Second, the areas offlowers, fruits, and leaves were measured via object

detection and segmentation (i.e., rectangular boxes and pixel-wise

classification). As the U-net and YOLOv4 frameworks function
Frontiers in Plant Science 05
differently, we designed a combination of YOLO v4 and U-net

networks into a single system to build a robust and standalone SPT.

YOLOv4 (Bochkovskiy et al., 2020) is a high-precision, real-time, one-

stage object detection algorithm that involves using previous YOLO

algorithms (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018)

with CSPDarknet53, PANet, and mosaic data augmentation. YOLOv4

performance was improved in previous YOLO algorithms through

experiments and showed good performance in detecting small objects.

Thus, we adopted this algorithm because it is suitable for detecting

small objects, particularly strawberry fruits. For strawberry flower, fruit,

and leaf measurements using our system, U-net-based semantic

segmentation was adopted. U-net was designed to segment

biomedical images in the original study (Ronneberger et al., 2015).

The network is robust to small and thin objects, such as flowers, fruits,

and petioles. Segmentation (i.e., pixel-wise classification) was

performed using the object detection results, that is, a cropped

detection image. Subsequently, we used our system to calculate the

number of pixels (i.e., the area) based on the segmented results. Finally,

all measurement results (e.g., length and area) were converted from

pixels to actual distance or area using the detected QR code

information. Our SPT equipped with the V2 DL was implemented

on the web (https://www.cultigrowth.com) for the test of SPT with the
FIGURE 1

Annotation approaches for the six target phenotypic traits. (A) displays the raw images of six phenotypic traits: crown diameter, plant height, petiole
length, leaf size, flower size, and fruit size. (B) shows the annotations for Version 1 (V1), where traits are marked with bounding boxes for crown
diameter, plant height, and petiole length, and with polygons for leaf, flower, and fruit sizes. (C) illustrates the improved annotations for Version 2
(V2), which include descriptive labels for each trait and employ multi-target annotations within a single image when multiple traits are present.
frontiersin.org

https://github.com/kist-smartfarm/SPT
https://github.com/kist-smartfarm/SPT
https://www.cultigrowth.com
https://doi.org/10.3389/fpls.2024.1418383
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ndikumana et al. 10.3389/fpls.2024.1418383
independent datasets. The general information about how the SPT

analyzes the studied strawberry phenotypic traits is found in section

3.5. For more detailed instructions on using the cloud-based SPT on

the Cultilabs homepage, refer to the appendix A.
2.4 Ground truth data acquisition

To validate the functionality of our DL-based phenotyping tool,

70 plants (bearing flowers and fruits) were sampled from the

Korean Institute of Science and Technology strawberry smart

farm during the experimental period, and 70 images for each of

the six phenotypes (crown, petiole, plant height, leaf, flower, and

fruit) were captured using a smartphone camera and a QR marker.

The resultant image files were renamed sample-wise to facilitate

tracking and maintained for subsequent use as a validation dataset

for the developed phenotyping tool. On the same day, after

collecting digital images, the corresponding real data were

acquired from the same plant parts directly through manual

measurements or indirectly using phenobox-based methods

(Czedik-Eysenberg et al., 2018). Manual data were collected using

a measuring tape (PL and PH) and an electronic clipper (CD). The

values of the remaining parameters, such as leaf area, leaf length,

leaf width, flower area, and fruit area, were extracted from the

phonebox-captured images using the Plant Analysis tool (Korea

Scientific Technique Industry, Suwon, Republic of Korea).

Additionally, the fresh weight of strawberries from the fruit

cluster samples was recorded. The measured weight was used to

construct a prediction model for strawberry fresh weight based on
Frontiers in Plant Science 06
fruit size using our digital phenotyping tool. To evaluate the

effectiveness of the Strawberry Phenotyping Tool (SPT) in

monitoring and managing strawberry plants under greenhouse

conditions, 'Seolhyang' strawberry cultivar transplants were

sourced from a professional farmer in Pyeongchang, Gangwon-

do, Republic of Korea. These transplants were planted at the Korean

Institute of Science and Technology hydroponic greenhouse located

in Gangneung-si, Gangwon-do, during the winter season from

September 24, 2021, to April 30, 2022. The plants were cultivated

in rectangular multi-potted containers measuring 20 cm x 15 cm x

60 cm, each equipped with six holes. The pots, filled with a soilless

commercial medium and planted with ‘Seolhyang’ seedlings, were

placed on 1-meter-high raised beds to enhance management

accessibility. Cultivation was conducted using a standard

hydroponic system, in compliance with established protocols for

Korean strawberry farming within controlled environments.

Weekly data on crown diameter, petiole length, plant height, and

the sizes of leaves, flowers, and fruits were collected using both SPT

and conventional tools on 27 randomly selected samples

throughout the cultivation period.
2.5 Statistical analysis

After the completion of training, both models underwent

consistent validation using a reserved subset of the dataset that

had not been used during training. To evaluate the accuracy and

reliability of the Strawberry Phenotyping Tool (SPT) throughout

the development process, Pearson correlation coefficients and
FIGURE 2

Flowchart of the deep learning-based phenotyping tool (SPT), which comprises two primary models: YOLOv4 and U-Net. (A) Illustration of the
image acquisition, processing, and training procedures of the models for both versions. In Version 1, the models were trained through six processes
(1–6), while in Version 2, they were trained through five processes (1, 2, 4–6). (B) (a–f) depicts the strawberry phenotyping analysis pipeline workflow
using SPT, which involves image acquisition, detection, classification, segmentation and/or feature extraction, and results visualization.
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visualization techniques were utilized to compare measurements

obtained from the SPT with those obtained conventionally.

Paired t-tests were then employed to statistically validate the

improvements achieved by different versions of the SPT,

determining which version produced values most comparable to

those obtained conventionally. These tests were crucial for assessing

whether the enhancements in phenotypic detection by each version

of the SPT were significantly different from those obtained through

conventional measurements.

During the field validation stage, the impact of phenotypic

variations on fruit yield was explored by categorizing data collected

from various phenotypic traits into distinct size clusters before fruit

harvesting. For example, at the transplantation stage, crown diameter

(CD) was categorized into three clusters: Cluster 1 for samples with

large crowns, Cluster 2 for samples with medium crowns, and Cluster

3 for samples with small crowns. The K-means clustering algorithm

was utilized to ensure effective categorization based on phenotypic

sizes. Similarly, critical phenotypic parameters such as total flower

area per plant, total weight of unripe fruits per plant, and leaf area per

plant were also clustered. This clustering facilitated structured

comparisons of weekly yields across different phenotypic categories.

The comparisons were conducted using analysis of variance

(ANOVA) and Tukey’s Honestly Significant Difference (HSD) test

to determine the statistical significance among the groups at a

significance level of p<0.05. These comparisons allowed us to

explore whether larger phenotypic sizes correlated with higher yields.
3 Results

3.1 Dataset size and annotation method
effect on DL performance

The DL-based strawberry phenotyping digital tool was

developed in two primary steps (subsequently called versions).

The difference between these two versions is primarily owing to

the different numbers of images and annotation techniques used

during the development process. Table 2 presents the different

numbers of images collected per phenotypic trait and used to

develop the two SPT versions, and Figure 1 shows the annotation

principle adopted correspondingly. V1 was initially developed using

7,116 images representing various phenotypic traits of interest.

Annotation was performed by drawing a bounding box

encompassing the target part for the CD, PL, and PH, and a

polygon was drawn to include leaf, flower, and fruit areas.

Because of the low detection frequency and precision of SPT-V1,

we increased the number of images to 7,850 and changed the

annotation techniques which led to V2. In V1, the bounding boxes

for annotating the upper boundaries for PH and PL were drawn

such that all leaves were enclosed inside the boxes; in V2, these

boxes were reduced to include only the highest leaf part for PH and

the junction point of the petiole and its leaflets for PL. Additionally,

while in V1, each phenotype was annotated individually for each

image without labels, in V2, more than one phenotype was

annotated in one image. The resulting V2 of SPT showed higher

detection precision (Figure 3) and frequency (Figure 4).
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3.2 Ground truth versus image-based plant
phenotype measurements

The measurements obtained through conventional methods

(measured values) were systematically compared with those

predicted using the two versions of the Strawberry Phenotyping

Tool (SPT) (predicted values). Two analytical approaches were

utilized to ensure robust evaluation and avoid potentially

misleading conclusions based on the data presented in Table 3.

Initially, the analysis was conducted using Pearson correlation

analysis (Figure 5), which confirmed the positive correlation

between the measured and predicted values for all examined

phenotypic traits. The analysis revealed that the fruit area

exhibited the highest linear correlation, demonstrating

exceptional precision in predictions with the highest R² and

relatively low RMSE values, emphasizing the tool’s accuracy in

capturing this trait’s variability. On the other hand, crown diameter

displayed the lowest linear correlations in both SPT versions.

Highly statistical significance was confirmed for the correlations

across all variables (p<0.001), reinforcing the reliability of the

predictions made by the Strawberry Phenotyping Tool (SPT).

Comparative analysis showed that Version 2 (V2) consistently

demonstrated higher correlation coefficients (R²) and generally

lower RMSE values than Version 1 (V1) across most phenotypic

traits. This improvement highlights V2’s enhanced algorithmic

performance and overall efficacy in predicting phenotypic traits

more accurately. The results collectively underline the significant

advancements in V2, offering more reliable and precise

measurements critical for strategic strawberry plant monitoring

and management under controlled farming systems

Furthermore, measured values were compared against the

predictions made by SPT, focusing on the average values calculated

for each phenotypic trait. Similarly, across both versions of the SPT,

the predicted averages generally approximated the conventionally

measured values closely. Specifically, except for leaf length, the

average values predicted by SPT Version 2 did not significantly

differ from the real values, as shown by p-values greater than 0.05.

However, in SPT V1, notable differences were observed in traits such

as crown diameter, plant height, leaf length, and leaf width where the

average values differed significantly from the ground truth values, as

indicated by p-values less than 0.05. This differential accuracy

highlights the variations in the effectiveness of the two SPT

versions when estimating specific phenotypic traits.
3.3 DL-based regression model for
predicting strawberry fresh weight

As previously detailed in the methodology section, our study

employed a specialized dataset comprising 420 images, distributed

evenly among the six target phenotypic traits, with 70 images

dedicated to each trait. This dataset was intentionally prepared to

evaluate the performance of the Strawberry Phenotyping Tool

(SPT) across different developmental phases. Specifically targeting

the ‘fruit size’ trait, strawberries from the samples corresponding to

the fruit size image batch were harvested immediately after imaging
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to ensure data accuracy and freshness and, subsequently,

measurement of each strawberry’s fresh weight was conducted

using an HR-200 electronic balance (A&D Company, Limited,

Tokyo, Japan) by ensuring that each fruit’s weight and its precise

position within the images were carefully maintained. These fruits

included fruits of various sizes and developmental stages and they

were used to develop a regression model to predict strawberry fruit
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fresh weight based on the measured fruit area. The results are

illustrated in Figure 6 and show a strong positive correlation

between the predicted fruit sizes from SPT and the actual

measured weights. Both Version 1 and Version 2 demonstrated

relatively similar results, with Version 1 achieving an R2 value of

0.90 while Version 2 showed a slight improvement with an R2 value

of 0.91
FIGURE 3

Change in training loss and validation mean precision average with the number of epochs of (A) Version 1 and (B) Version 2 using the
training dataset.
FIGURE 4

Detection frequencies of various strawberry target phenotypic traits using different SPT versions (V1 and V2) (n=70) displayed as percentages. Error
bars shows the standard error of the detection frequencies.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1418383
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ndikumana et al. 10.3389/fpls.2024.1418383
3.4 SPT can be used to monitor strawberry
growth and predict yield under
greenhouse settings

The Strawberry Phenotyping Tool (SPT) was successfully

utilized at the Korean Institute of Science and Technology

hydroponic greenhouse to monitor the ‘Seolhyang’ strawberry

cultivar. The tool proved to be as effective as traditional methods

in tracking the growth and yield phenotypic parameters across 27

samples from September 24, 2021, to April 30, 2022. Figures 7A–D

depicts how SPT accurately captured the temporal dynamics and
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patterns of crown diameter, plant height, leaf length, and leaf width,

while also providing additional insights beyond the capabilities of

conventional methods. Notably, SPT excelled in measuring leaf area

and monitoring the occurrence and sizes of flowers and fruits.

Figure 7E illustrates SPT’s ability to track the decrease in leaf area as

plants matured, offering valuable insights into the leaf-changing

pattern during the crop cycle. Furthermore, Figure 7F demonstrates

SPT’s unique capability to monitor the sizes offlowers, unripe (non-

harvestable), and ripe (harvestable) fruits over time, a feature

unavailable with manual measurement methods. These advanced

functionalities highlight the comprehensive understanding of
TABLE 3 Comparison of strawberry phenotypic traits measured conventionally and with SPT-V1 and SPT-V2.

Phenotypic trait Measurements of phenotypic trait P-values

Conventional SPT-V1 SPT-V2 Conventional vs.
SPT-V1

Conventional
vs. SPT2

1. Crown diameter (mm) 14.36 ± 2.62 14.84 ± 2.56 15.23 ± 2.62 0.027* 0.058

2. Plant height (cm) 24.62 ± 5.36 22.95 ± 5.01 23.17 ± 5.09 0.038* 0.051

3. Petiole length (cm) 15.09 ± 4.49 14.61 ± 4.06 14.87 ± 4.10 0.192 0.322

4.1. Leaf area (cm2) 25.67 ± 8.65 25.9 ± 7.26 27.10 ± 9.49 0.437 0.187

4.2. Leaf length (cm) 7.04 ± 1.29 6.39 ± 1.08 6.56 ± 1.18 0.001* 0.015*

4.3. Leaf width (cm) 5.51 ± 1.02 5.11 ± 0.77 5.31 ± 0.94 0.007* 0.17

5.1. Flower area (cm2) 3.26 ± 1.04 3.05 ± 1.08 3.06 ± 1.04 0.287 0.311

6. Fruit area (cm2) 6.52 ± 3.73 6.32 ± 3.68 6.41 ± 3.72 0.311 0.372
Means ± standard deviation (SD) are shown for each variable, along with corresponding P-values for paired t-tests for comparing conventional measurements with the two SPT versions (SPT-V1
and SPT-V2) measurements. The p-values are presented in the last two columns. A p-value less than 0.05 (*) indicates a statistically significant difference between the two means.
A B C D

E F G H

FIGURE 5

Correlation between real and predicted values (using V1 and V2 of SPT) for the six phenotypic traits. (A) Crown diameter, (B) Plant height, (C) Petiole
length, (D) Leaf area, (E) Leaf length, (F) Leaf width, (G) Flower area, (H) Fruit area. Except for fruit where n=312. For the rest of the variables, n=70.
Asterisks denote statistical significance at p=0.05 (*** p<0.001).
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phenotypic changes provided by SPT, crucial for effective

crop management.

Subsequently, we conducted an analysis using Analysis of

Variance (ANOVA) and Tukey’s Honestly Significant Difference

(HSD) test to explore the impact of early phenotypic size

variation on strawberry fruit yield. For example, data

segmentat ion based on crown diameter (CD) at the

transplantation stage, categorized as large, medium, and small,
Frontiers in Plant Science 10
showed that early crown sizes were statistically significant

predictors of yield outcomes (Figure 8A). Additionally, when

samples were categorized based on other important phenotypic

parameters such as flower area, unripe fruits, and leaf area into

different size-based clusters at specified times before fruit

harvesting, a notable trend emerged: an increase in the size of

these phenotypes was associated with a substantial increase in

yield (p<0.05) (Figures 8B–D).
A B C

D E F

FIGURE 7

Illustrates the temporal dynamics of various phenotypic traits related to growth and yield in strawberry plants over the growing season. The
phenotypic data plotted include, (A) crown diameter, (B) plant height, (C) leaf length, and (D) leaf width collected by both conventional and SPT
methods. Additionally, (E, F) depict the evolution of leaf area, flower size, the area of unripe (non-harvestable) and ripe (harvestable) fruits using data
exclusively collected by SPT. (n=27). Error bars represent the standard error of the mean.
FIGURE 6

Relationship between strawberry fruit size (area) measured using SPT (Versions 1 and 2) and fruit weight (n=310) Asterisks denote statistical
significance at p=0.05 (*** p<0.001).
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3.5 Data analysis and visualization
using SPT

In this section, we describe the details related to the

functionality of the SPT focusing on image data analysis and

results visualization. Our phenotyping tool is used to analyze

strawberry images and provides quantitative data in two

alternative ways, and both require registration of the user as well

the plant samples before usage. In addition, both methods require

internet access. The one is a direct real-time method and operates

on mobile phones. To acquire phenotypic data using this method,

the user needs a smartphone and a QR code. Then chooses the plant

ID and take the image of the target phenotype so that both the

object and the QR code appear in the same image and confirm the

task by clicking ok. The detected and analyzed phenotype is

displayed along with the results within a short time (Figure 9).

The second method is an indirect and works on both smartphone

and computer. To analyze an image using this method, you choose

the plant ID and the corresponding image to be analyzed is

uploaded to the system from the computer or smartphone
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storage. The image should contain the target phenotype and the

QR code. Once the image enters the system, the target objects are

immediately detected and analyzed, and the results are displayed, in

a manner similar to that of direct methods. The results can be

downloaded as CSV files for further processing.
4 Discussion

In this study, we propose an image-based digital phenotyping

tool, utilizing deep learning (DL), for analyzing strawberry

phenotypes focusing on six essential parameters for strawberry

growth and yield analysis. These images can be acquired using

modern smartphones and analyzed directly at the field level or

stored for subsequent analysis. Several machine-learning-based

solutions for strawberry plant phenotyping to acquire growth and

yield information have been proposed, most of which have

concentrated on fruit detection, classification, segmentation

(Chuah, 2018; Kirk et al., 2020; Basak et al., 2022; Wu et al.,

2022), fruit size (Lee et al., 2017; Yue et al., 2020), and leaf area
A B

C D

FIGURE 8

Illustrates the yield of strawberry fruits derived from plant samples sorted into phenotypic clusters based on size at critical growth stages. (A)
showcases total yield per plant among crown size-based clusters, measured 2 weeks post-transplanting (n=22). (B) displays weekly yield per plant
across flower size-based clusters, taken 5 weeks prior to harvest (n=125). (C) reveals weekly yield per plant for clusters categorized by the weight of
unripe fruits, recorded 2 weeks before harvest (n=198). Lastly, (D) illustrates weekly yield per plant for leaf area-based clusters, assessed 4 weeks
pre-harvest (n=80). The error bars represent the standard error, and groups labeled with the same letters within the same subfigure are not
statistically different according to Tukey’s Honestly Significant Difference test, p<0.05.
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(de Castro et al., 2020). However, a comprehensive digital

phenotyping tool to measure most agronomic traits of strawberry

growth, such as CD, PH, and PL, remains unreported in the existing

literatures. Therefore, the efficiency of this tool in the non-

destructive extraction of strawberry growth and yield phenotypic

data, including those that were not attempted digitally, makes it a

promising tool that can assist farmers and ordinary researchers in

proper decision-making. The core robustness of our system was

rendered by integrating two DL architectures, YOLOv4 and U-net,

which are reportedly efficient regarding high-precision and real-

time object detection (Bochkovskiy et al., 2020) and image

segmentation (Ronneberger et al., 2015), respectively. The

combination of YOLO and U-net series together or with other

architectures to build a more robust phenotyping system or for

comparison purposes has also been successfully performed in other

crops such as grape (Barbole and Jadhav, 2021), wheat (Ullah et al.,

2021), and mango (Koirala et al., 2019).

During the development, the real data values of the six

phenotypes were acquired using conventional approaches, and

the corresponding images were maintained. The latter served as

the benchmark dataset for evaluating the performance of our digital

system throughout the development process. Upon completion of

V1, most of the performance metrics assessed, such as the mean

precision average, detection frequency and Pearson correlation

coefficients, were relatively poor in V1. However, by increasing

the number of training datasets and changing the annotation

method from single-target no-labeling annotation to multi-target

labeling annotation, the abovementioned metrics improved for
Frontiers in Plant Science 12
most of the various phenotypic parameters studied, making up

V2. Such improvements in the performance and robustness of our

DL framework in V2 can be attributed to the consistency and multi-

target labeling annotations. During data collection, several objects,

including nontarget objects, may be included in the image. In such

cases, if the nontarget object is similar to the target, it confuses the

annotator. Therefore, the annotation criteria should be pre-defined

and consistently maintained throughout the annotation process.

For example, if the target strawberry fruit and the fruit next (not

the target) to it are of the same size or distance (distance from the

camera), both fruits need to be annotated; however, if it is blurred

and not clearly visible or it is distant from the camera, only the

target fruit should be annotated. By creating such consistent criteria

to avoid annotating far or invisible targets, it is possible to prevent

the model from being incorrectly trained on objects that look

almost similar when learning. In addition, in a single image, the

co-occurrence of more than one but different objects is normal. For

example, while capturing a fruit cluster, flowers may be captured

together, or petioles may be included while capturing plant height.

By labeling and annotating all the available objects in the image

(those investigated) and training the AI accordingly, the overall

performance and robustness of the system were increased. Low-

quality annotation severely affects training models (Guo et al.,

2020). According to Mullen et al. (2019), the annotation

technique impacts the deep neural network, and the inconsistency

of the annotation technique may cause incorrect conclusions

regarding model performance. Recently, Yun et al. (2021) applied

multiple labeling annotations on ImageNet (Russakovsky et al.,
A

B

C

D

E

F

FIGURE 9

Example of data analysis and visualization (screenshots) for the six strawberry phenotypic traits (A. Crown diameter, B. Plant height, C. Petiole length,
D. Leaf size, E. Flower size, F. Fruit size) using SPT. The left images (under input column) are the raw input images, and the right images (under
output column) show the output of the analyzed images, with quantitative results at the bottom.
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2015), and without modifying the models, they improved the

classification accuracy solely by revising the models from single-

object labeling annotations to multi-labeling, which is consistent

with our attempt to improve our phenotyping tool from V1 to V2.

These findings are consistent with those reported in other studies

(Barbedo, 2018; Shorten and Khoshgoftaar, 2019; Alhazmi et al.,

2021) that dataset size significantly affects the performance of DL

models. Furthermore, the strong correlation between strawberry

fruit weight and fruit area (R2>0.9) confirmed the efficiency of our

system for predicting strawberry fruit yield based on the measured

fruit area. Such options will help users forecast yields non-

destructively and accurately, which, in the case of professional

farmers, can assist in planning harvesting and marketing

activities. This model can also be applied to strawberry studies.

In this study, we evaluated the efficiency of the SPT in collecting

strawberry growth and yield data under real field conditions. The

results revealed that SPT was comparable to conventional approaches

in collecting growth information and could be used to monitor

phenotypic traits, such as leaf area, flower area, and fruit area,

which were previously challenging to obtain using traditional

methods. A relatively large increase in the size of the

aforementioned phenotypes before harvesting was associated with a

significant increase in the yield. These results underline the potential

of the SPT as a valuable tool for farmers engaged in professional and

smart farming and its significance in yield prediction. Accurate yield

prediction is crucial for farmers, as Kerfs et al. (2017) reported that

weekly strawberry yields can vary significantly and emphasized that

farmers should regularly monitor their fields for smooth planning of

farm operations, particularly postharvest activities, for adequate

resource distribution. These findings are consistent with those of

previous studies. For example, Abd-Elrahman et al. (2021)

investigated the integration of ground-based canopy images into

modeling approaches to improve strawberry yield. Using canopy

images captured with a handheld digital camera and machine-

learning algorithms caused a significant improvement in yield

prediction accuracy compared with traditional approaches. Yoon

et al. (2023) combined immature fruit information with AI

techniques to develop a strawberry yield prediction model. They

also concluded that DL-based strawberry fruit detection results could

contribute to yield prediction. In a previous study (Hassan et al.,

2018), hyperspectral remote sensing imagery was used to acquire leaf

area index parameters and six other vegetation indices to investigate

the relationship between these parameters and yield under different

growing conditions, which revealed that the leaf area index was highly

related to yield. These findings provide valuable insights into the

relationship between leaf indices and yield and contribute to a better

understanding of the factors influencing fruit productivity. Finally,

using the data collected through the SPT, we investigated the impact

of initial crown size on strawberry yield. Our analysis involved

comparing the total yields obtained from different crown classes,

including small, medium, and large crowns. Our results indicated that

strawberries with a larger initial CD produced significantly higher

yields than those with smaller crowns, confirming the findings of

previous studies (Torres-Quezada et al., 2015; Fridiaa et al., 2016;

Fagherazzi et al., 2021). These studies also reported similar results,

suggesting that the initial crown size is a factor that significantly
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affects strawberry yield. Therefore, if SPT is integrated into strawberry

farming, it will possibly alleviate various farm management-related

challenges and boost farm production.

Although the increase of the dataset and enhancement of

annotation techniques significantly improved the core models

(YOLOv4 and U-net) of our Strawberry Phenotyping Tool (SPT)

in terms of precise detection, measurement, and analysis of

strawberry phenotypic features, we encountered several challenges

that require improvements in future studies to maximize the full

potential of the SPT.

The two core models of our Strawberry Phenotyping Tool

(SPT), YOLOv4 and U-net, require a relatively large volume

of data, which necessitates extensive labor to annotate such a

dataset. Additionally, managing this large volume of image data

and the related logistics remains a challenge due to significant

computational resource requirements.

The current version of the SPT was unable to accurately detect

petiole length under field conditions, resulting in the omission of

these results from our report. Additionally, detecting and measuring

relatively small features poses a significant challenge, often

requiring multiple captures of the same object from different

angles to ensure target feature detection and accuracy. This issue

is more aggravated when the plant canopy becomes bushy in later

growth stages, especially if excessive leaves and side crowns are not

pruned and managed properly. If the plants overgrow too much,

their size may also exceed the capacity of a single person to acquire

the images effectively, especially for plant height Enhancing the

SPT’s performance to provide more precise analysis of very small

objects and operates well even in complex environments and

growth conditions is a crucial area for future improvement.

Additionally, the SPT does not currently support the automatic

categorization of fruits into different developmental stages, such as

distinguishing between ripe and unripe fruits. Addressing this

limitation could significantly enhance the tool’s utility and applicability.

Lastly, flower initiation is a critically important event for the

successful cultivation and production of june-bearing strawberry

plants, directly impacting fruit yield (Van Delm et al., 2014; Li

et al., 2021). This transient phenomenon is challenging to predict

and is traditionally confirmed through destructive sampling and

microscopic observation. By training our SPT models on potential

phenotypic traits speculated to be indicators offlower initiation at the

nursery stage, and supplementing this with robust statistical analysis,

we anticipate that the SPT will provide valuable insights into the key

phenotypic traits indicative of vegetative-to-reproductive changes.

We acknowledge that YOLOv8 has been released since the

completion of our study. YOLOv8 has been reported to achieve

high accuracy and fast inference speed (Liu et al., 2024). However,

we chose to use YOLOv4 in our work due to its well-established

performance and balance for server compatibility in our

application. YOLOv4 had been extensively tested and was well-

documented for deployment on servers. This was crucial for our

study as we had already established a YOLOv4-based server

infrastructure for our smartphone-based web application.

While YOLOv8 may offer potential performance gains,

YOLOv4 was a suitable choice considering these factors. We

provide the complete raw datasets (images subjected to YOLOv4),
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along with the results of annotation and deep learning at https://

github.com/kist-smartfarm/SPT, so that we and other research

groups can use these datasets with the advanced deep learning

architectures to develop more advanced practical phenotyping

methods in future study.

Conclusively, in this study, a DL-based phenotyping tool was

developed to collect, process, and analyze image-based strawberry

phenotypes of six essential agronomic traits (CD, PL, PH, flower,

leaf, and fruit size). The proposed approach involves integrating the

YOLOv4 and U-net architectures into one system to make it more

robust for better feature detection and extraction. An increased dataset

size with various backgrounds, coupled with multi-labeling object

annotation, improved the efficiency of our system in measuring

target phenotypic traits with greater precision and accuracy. The

evaluation of our phenotyping tool under real field settings showed

the same efficiency in collecting strawberry growth data as conventional

approaches, with additional capacity for predicting yield based on leaf,

flower, and fruit indices. Real-time strawberry phenotyping with the

current digitalized solution has potential applications in strawberry

smart farming, assisting researchers and farmers in making

appropriately informed decisions. In future studies, more phenotypic

features, such as strawberry fruit maturity stage and canopy area

quantification, should be added to the system to enable more in-

depth strawberry phenotyping.
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