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High-quality cottonseed is essential for successful cotton production. The

integrity of cottonseed hulls plays a pivotal role in fostering the germination

and growth of cotton plants. Consequently, it is crucial to eliminate broken

cottonseeds before the cotton planting process. Regrettably, there is a lack of

rapid and cost-effective methods for detecting broken cottonseed at this critical

stage. To address this issue, this study developed a dual-camera system for

acquiring front and back images of multiple cottonseeds. Based on this system,

we designed the hardware, software, and control systems required for the online

detection of cottonseed breakage. Moreover, to enhance the performance of

cottonseed breakage detection, we improved the backbone and YOLO head of

YOLOV8m by incorporating MobileOne-block and GhostConv, resulting in

Light-YOLO. Light-YOLO achieved detection metrics of 93.8% precision, 97.2%

recall, 98.9% mAP50, and 96.1% accuracy for detecting cottonseed breakage,

with a compact model size of 41.3 MB. In comparison, YOLOV8m reported

metrics of 93.7% precision, 95.0% recall, 99.0%mAP50, and 95.2% accuracy, with

a larger model size of 49.6 MB. To further validate the performance of the online

detection device and Light-YOLO, this study conducted an online validation

experiment, which resulted in a detection accuracy of 86.7% for cottonseed

breakage information. The results demonstrate that Light-YOLO exhibits

superior detection performance and faster speed compared to YOLOV8m,

confirming the feasibility of the online detection technology proposed in this

study. This technology provides an effective method for sorting

broken cottonseeds.
KEYWORDS
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1 Introduction

Cotton plays a pivotal role in daily life, closely intertwined with essential sectors such as

clothing, medicine, and agriculture. The significance of cotton production extends beyond

mere economic implications; it is paramount in ensuring the sustenance and development

of human life (Zhang et al., 2022). The quality of cottonseeds emerges as a pivotal
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determinant in the cotton production process. Intact cottonseed

hulls not only mitigate nutrient loss during storage but also act as a

barrier against microbial infestation, thereby creating favorable

conditions for the germination and growth of cotton (Liu et al.,

2022). Despite the advantages of intact cottonseed hulls in

facilitating the germination and growth of cotton, the series of

processes such as ginning, fluffing, and polishing in cottonseed

production lead to substantial breakage (Tostes et al., 2023). Broken

cottonseeds exhibit reduced germination rates and diminished

vitality of cotton seedlings (Zhang et al., 2022). If not promptly

removed, they can lead to widespread replanting in cotton fields,

thereby increasing the overall cost of cotton cultivation.

Consequently, the removal of broken cottonseeds before planting

becomes imperative. Currently, in Xinjiang, the predominant

method for detecting broken cottonseeds involves iron powder

adsorption followed by magnetic separation. However, with an

annual cotton planting area exceeding 2500 hectares in Xinjiang,

this method leads to considerable resource wastage (Lu et al., 2022).

Furthermore, this sorting method falls short of the desired

effectiveness, resulting in a significant portion of cotton requiring

replanting (Li et al., 2023a). Hence, there is an urgent demand for a

rapid and cost-effective solution for detecting and sorting

broken cottonseeds.

To address the challenge of detecting broken cottonseeds,

researchers have explored various technical approaches, including

machine vision, color sorting, and spectral imaging technology. In

the domain of color sorting technology, Shuhua et al. (2015) utilized

dual CCD cameras to capture image information of both broken

and intact cottonseeds. Their method distinguished these types by

differences in pixel area, achieving a detection accuracy of 97.8%. In

spectral imaging, Gao et al. (2018) achieved breakage recognition

of cottonseeds by capturing hyperspectral data in the range of

874~1734 nm. By combining the image and spectral features of

cottonseeds, they attained a recognition accuracy of 91.50%. In the

field of machine vision, Wang et al. (2023) employed a high-speed

camera to capture images of falling cottonseeds and integrated it

with YOLOv5S, resulting in a 99% accuracy in recognizing broken

and moldy cottonseeds. Similarly, Liu et al. (2022) utilized

YOLOv5S for the detection of broken cottonseeds in images of

multiple cottonseeds, achieving an accuracy of 92.4%. Additionally,

Du et al. (2023) utilized the ResNet50 network with an added
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attention mechanism to classify both broken and intact cottonseed

images, achieving an accuracy of 97.23%. Furthermore, Zhang et al.

(2022) employed air-coupled ultrasound with a sound-to-image

encoding technique for detecting slightly cracked cottonseeds,

achieving a recognition accuracy of 90.7%. Table 1 provides a

detailed and systematic comparison of the strengths and

weaknesses identified in the previously mentioned studies.

Despite these advancements, current methods still face several

technical gaps. The iron powder adsorption and magnetic

separation method used in Xinjiang is resource-intensive and

inefficient. Although accurate, color sorting and spectral imaging

are costly. Furthermore, most existing studies focus on detecting

single cottonseeds and cannot simultaneously process multiple

cottonseeds, which is crucial for large-scale operations. Only Liu

et al. (2022) and Gao et al. (2018) achieved simultaneous detection

of multiple cottonseeds; however, their methods only detected one

side of the cottonseeds. Other methods have concentrated solely on

single cottonseed detection, which does not fully meet the practical

needs of the cottonseed industry.

The preceding study demonstrates that machine vision

technology is proficient in detecting cottonseed breakage, offering

notable advantages in cost-effectiveness and stability over

hyperspectral imaging, high-speed cameras, and air-coupled

ultrasound devices. Moreover, machine vision systems exhibit the

capability to detect multiple cottonseeds simultaneously. Notably,

among the studies discussed earlier, only Liu et al. (2022) achieved

simultaneous detection of multiple cottonseeds, whereas other

studies focused solely on single cottonseeds. Simultaneously

achieving rapid detection of multiple cottonseeds breakage would

not only enhance efficiency but also align more closely with the

practical requirements of the cottonseed industry. Achieving

simultaneous detection of multiple cottonseeds typically

necessitates the application of object detection algorithms (Zhao

et al., 2020). Recently, object detection has witnessed numerous

successful applications in the field of seed research (Zhou et al.,

2023). Examples include the identification of barley seed varieties

(Shi et al., 2022), assessment of rice seed vitality (Qiao et al., 2023),

measurement of rice seed size (Zhao et al., 2023), and detection of

defective lotus seeds (Lu et al., 2022).

In conclusion, this study comprehensively reviews previous

research on cottonseed breakage detection, extracting valuable
TABLE 1 Summary of research.

Technology Study S/M Detection Content Results Disadvantages

Color sorting Shuhua et al., 2015 S Broken cottonseeds 97.8% High cost

Machine vision

Wang et al., 2023 S
Broken and

moldy cottonseeds
99% Low detection efficiency

Liu et al., 2022 M Broken cottonseeds 92.4%
Only detect single-sided cracks in cottonseeds,
unable to adapt to actual production conditions

Du et al., 2023 S Broken cottonseeds 97.23% Only detect single-sided cracks in cottonseeds

Spectral imaging Gao et al., 2018 M Slightly cracked cottonseeds 91.5%
High cost, only detect single-sided cracks

in cottonseeds

Others Zhang et al., 2022 S Slightly cracked cottonseeds 90.7% Difficult to apply in production
S, Single cottonseed; M, Multiple cottonseeds.
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insights and leveraging their respective strengths. To enable

simultaneous detection of breakage on both sides of cottonseeds

and to efficiently and rapidly detect multiple cottonseeds at once,

thus providing an effective solution and technology for the

cottonseed industry’s broken cottonseed detection, this study

proposes constructing an image acquisition device capable of

capturing images of both sides of 15 cottonseeds simultaneously.

The collected cottonseed images are enhanced using data

augmentation algorithms, and the YOLOV8 algorithm is

employed to detect broken cottonseeds in these images. To

improve detection speed and accuracy, we introduce modules like

MobileOne and GhostConv to develop a Light-YOLO, which is

based on YOLOV8. Finally, to facilitate the rapid application of this

method in practical production, a software, hardware, and control

system for the online detection of broken cottonseeds is developed

and the online detection device is validated. Compared to existing

studies on broken cottonseed detection, which are either limited to

laboratory settings or involve high detection costs, the proposed

methods and techniques in this study offer the following

advantages: (1) detection of damage on both sides of the

cottonseeds; (2) simultaneous detection of 15 cottonseeds,

resulting in high detection efficiency; (3) direct application of the

techniques and methods in devices, enabling these technologies to

address practical production issues.
2 Materials and methods

2.1 Sample preparation

We sourced the cottonseeds for this study from Xinjiang Tahe

Seed Company, selecting a total of 3120 seeds, consisting of 1424

broken seeds and 1696 intact seeds. The specific variety of

cottonseed used was Xinhai-63. All cottonseed surfaces

underwent corrosion treatment with dilute sulfuric acid, resulting

in smooth cottonseeds devoid of cotton fibers. To maintain

randomness and systematic organization, this study assigned

unique sequential numbers to each cottonseed and divided them

into 208 groups of 15 seeds each. The broken cottonseed types

within the test material selected for this study predominantly

consisted of seeds exhibiting defects such as surface cracks, pits,

damage, deformities, and fractures. These defects were often

associated with the exposure of white seed flesh, as illustrated in

Figure 1. In comparison to intact cottonseeds, these flawed

cottonseeds are uniformly categorized as broken cottonseeds.
2.2 Image acquisition system

The image acquisition system is primarily composed of two

CCD cameras, two LED ring light sources, a computer, a turntable,

and a cottonseed placement module, as depicted in Figure 2. The

utilization of two CCD cameras aims to capture information from

both the front and back sides of the broken cottonseed. The camera

model employed is the Green Vision Forest USB1080P, featuring an

adjustable resolution of 1280 pixels × 720 pixels and an exposure
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degree of -9. The lens has a 5 ~ 50 mm zoom capability and utilizes

an F1.4 industrial lens with the largest aperture. The LED ring light

sources serve to mitigate the impact of ambient light on the

cottonseed images, each having a power of 20W LED cool white

light. The cottonseed placement platform, with a diameter of 600

mm, is made of lightweight aluminum and is designed for the

transportation of cottonseeds used to simulate the image acquisition

conditions of cottonseeds in the subsequent design of the device.

The cottonseed placement module on the turntable is constructed

using acrylic panels and is comprised of 15 cottonseed grooves.

Each groove measures 10 mm in length, 6 mm in width, and 5 mm

in depth. Arranging the grooves in a 3×5 grid optimizes imaging

with the camera positioned beneath the seed placement platform.

This arrangement allows for the simultaneous capture of up to 15

images of the cottonseeds. To operate the system, place 15

cottonseeds in the cottonseed placement module. Rotate the

turntable to move the slot directly under the first camera, then

stop the turntable and capture the top image of the cottonseeds.

Next, rotate the turntable to move the slot directly above the second

camera, stop the turntable again, and capture the bottom image of

the cottonseeds. This process completes the two-sided image

detection of the 15 cottonseeds.
2.3 Dataset preparation

2.3.1 Data annotation and augmentation
The image acquisition system collected data for 3120 cottonseeds.

Since the system captures 15 cottonseeds at a time and records both

front and back images, we obtained a total of 416 images. Each image

includes 15 cottonseeds, creating a dataset of 6240 cottonseed images.

To tailor the collected image data to the training specifications of the

object detection algorithm, this study utilized the LabelImg

annotation tool. Based on the sample collection number and the

actual label indicating whether the cottonseed is broken or intact, the

broken and intact cottonseeds in the images are manually annotated.

The annotations categorize intact cotton seeds as “intact” and broken

cotton seeds as “broken”. Afterward, the 416 multiple cottonseeds

images were partitioned into a training set, a test set, and a validation

set. The training set was used to train the model parameters for

distinguishing between intact and broken cottonseeds. It comprised

330 images containing a total of 4,950 cottonseeds, with 2,248 being

broken and 2,702 being intact. The validation set, used for evaluating

the model parameters during training, consisted of 42 images with

630 cottonseeds, including 318 broken and 312 intact cottonseeds.

The test set was utilized to verify the model’s performance and

included 44 images containing 660 cottonseeds, with 282 broken and

378 intact cottonseeds. The detailed distribution of the data is

presented in Table 2.

The greater the difference in image characteristics between

intact and broken cottonseeds, the higher the detection accuracy

of the subsequent detection model (Rangaswamy et al., 2022). To

quantify the image differences between broken and intact

cottonseeds, this study extracted color and texture features from

each cottonseed in the dataset. The color features primarily include

the mean pixel values of the R, G, and B color components. Texture
frontiersin.org
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FIGURE 2

Schematic diagram of the cottonseed image acquisition system.
FIGURE 1

Types of broken cottonseeds.
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features were extracted using the gray-level co-occurrence matrix

(GLCM), including contrast, dissimilarity, homogeneity, energy,

and correlation metrics. Subsequently, the mean values of R, G, and

B color components, as well as contrast, dissimilarity, homogeneity,

energy, and correlation for all broken and intact cottonseeds were

calculated. The results, as shown in Figure 3, indicate significant

differences in contrast, dissimilarity, homogeneity, and energy

between broken and intact cottonseeds, while the differences in

the mean pixel values of R, G, and B components and correlation

are relatively small. This demonstrates that there are significant

differences in image characteristics between intact and broken

cottonseeds, allowing for the detection of broken cottonseeds

based on these differences.

In theory, a larger dataset size with a more realistic sample

distribution enhances the performance of trained deep learning

models (Guo et al., 2023). To augment the dataset size, this study

implements data augmentation on the training set. This involves

random rotations, cropping, and the addition of perturbing noise to

the images of multiple cottonseeds in the training set, as illustrated

in Figure 4. After data augmentation, the training set comprises 990

images, encompassing a total of 14850 cottonseeds, maintaining the

original proportion of intact and broken cottonseeds. The sample

size in the validation and test sets remains unchanged. The dataset is

ultimately formatted in YOLO format.
2.4 YOLOV8

2.4.1 Input
YOLOV8 is a real-time detection algorithm known for its

enhanced accuracy and rapid processing speed (Reis et al., 2023),

widely used in industrial and agricultural applications (Wang et al.,

2023; Yang et al., 2023). In this study, we utilized YOLOV8 to detect

intact and broken cottonseeds within multiple seeds, to swiftly scale

up the technology in the cottonseed industry due to its superior

detection speed and accuracy. It comprises three components:

input, backbone, and YOLO-Head. In the input layer of YOLOv8,

it is imperative to uniformly resize the multiple cottonseeds image

to 640 pixels × 640 pixels. Similar to YOLOV4 and YOLOV5, data

preprocessing methods such as Mosaic and Mixup are employed for

augmenting the input image. The distinction lies in the fact that the

YOLOV8 input layer does not incorporate anchor frame

technology, and data augmentation is disabled ten epochs before

the conclusion of training.
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2.4.2 Backbone
The backbone of YOLOV8 plays a primary role in automatically

extracting image features at various scales. It comprises CBS

modules, C2F modules, and SPPF module. The CBS module is

primarily responsible for computing image features and includes a

convolutional layer (with a kernel size is 3×3), Batch Normalization,

and a SiLU layer. The convolutional layer computes features, the

Batch Normalization layer accelerates the network’s convergence

speed, and the SiLU layer functions as an activation function using

the SiLU function, implemented as shown in Formula 1. The

incorporation of the CBS module notably improves the model’s

detection accuracy, particularly in effectively discerning small

targets (Rong et al., 2023).

SiLU(x) =
x

1 + ex
(1)

The C2F module is designed to introduce additional branches

for enhancing tributaries during gradient backpropagation. It

comprises 2 CBS modules with a 1×1 convolution kernel size and

multiple Bottleneck modules, as depicted in Figure 5. Assuming the

input image feature size is H×W×C, after the first CBS module, the

feature size remains unchanged. Subsequently, it is split into 2

branches, each with a feature size of H×W×0.5C. One branch is

directly inputted to Concat for fusion, while the other branch is

inputted to the Bottleneck module. However, before inputting to the

Bottleneck module, Concat fusion is also required. Each Bottleneck

module is likewise inputted to Concat for fusion. If the C2F module

contains n bottleneck modules, then the output feature size after

Concat is H×W×0.5(n+2) C. The feature is then input to the second

CBS module, and the final output image feature size is also

H×W×C. In the Bottleneck module, which comprises two CBS

modules, if the “shortcut” is set to True, it necessitates the addition

of the input features and output features. The C2F module facilitates

the fusion of low-level and high-level features in an image, enabling

the model to leverage both detailed and semantic information. This

enhancement contributes to improved accuracy and robustness in

target detection (Zhang et al., 2023).

The SPPF module adopts the concept of spatial pyramid

pooling to combine feature maps at various scales, thereby

creating more comprehensive feature representations. Comprising

two CBS modules with a 1×1 convolution kernel size and three

maximum pooling layers, as illustrated in Figure 6, these layers

execute maximum pooling operations on feature maps at different

scales to extract the most significant features from each scale.

Subsequently, these essential features are concatenated to produce

a fused feature map incorporating multi-scale information. The

SPPF module’s advantage lies in its ability to enhance target

detection accuracy through multi-scale feature fusion, particularly

beneficial for targets with substantial size variations. Moreover, this

module effectively mitigates issues related to image distortion

caused by cropping and scaling operations on image regions. It

also addresses the problem of redundant feature extraction in

images by convolutional neural networks, thereby improving

the speed of generating candidate frames and reducing

computational costs.
TABLE 2 The distribution of data.

Number
of images

Intact broken Total

Training set 330 2702 2248 4950

Validation set 42 312 318 630

Test set 44 378 282 660

Total 416 3392 2848 6240
“Intact”, and “broken” represent the respective counts of each type of object in the dataset.
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2.4.3 YOLO head
The network structure of YOLOV8 is illustrated in Figure 7.

The YOLO head continues to employ the PAFPN (Path

Aggregation Feature Pyramid Network) structure seen in previous

YOLO versions. This structure enables the fusion of high-level and

low-level features in the image, thereby enhancing the model’s
Frontiers in Plant Science 06
detection performance for targets of varying sizes (Xu et al., 2021).

Furthermore, the output section of the YOLO head adopts the

Decoupled-Head structure, segregating the detection head for

classification and localization information. The YOLO head

encompasses the Upsample, C2F, CBS (with a 3×3 convolution

kernel), and Conv modules (with a 1×1 convolution kernel). The
FIGURE 4

Data augmentation.
FIGURE 3

Differences in color and texture between broken and intact cottonseeds.
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Upsample module primarily performs upsampling operations on

image features, facilitating the fusion of high-level and low-level

features. The Conv module provides convolution operations for the

output segment of the network. The C2F and CBS modules

maintain consistency with their counterparts in the backbone. In
Frontiers in Plant Science 07
the diagram, “w” and “r” represent the coefficients for the width and

depth of the network, which categorize YOLOV8 into five versions:

“n”, “s”, “m”, “l”, and “x”. Each version corresponds to a distinct

number of model parameters. In this study, YOLOV8 was

employed for the detection of intact and broken cottonseeds. The
FIGURE 6

SPPF module.
FIGURE 5

C2F module.
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YOLO head outputs category information as “intact” and “broken”,

along with position information represented by the coordinates of

cottonseeds in the image.

2.4.4 Loss function
The model training process necessitates the application of a loss

function to quantify the disparity between the predicted and actual

values of the model. YOLOV8’s loss function comprises

classification loss and regression loss. The classification loss

function is VFL (Varifocal Loss), while the regression loss is

represented as CIoU Loss + DFL (Distribution Focal Loss). CIoU

considers the similarity in center distance, overlap area, and aspect

ratio between the predicted frame and the actual frame, as seen in

Formulas 2–4, and is implemented using the following formulas:

CIoU = IoU −
r2(b, bgt)

c2
+ av

� �
(2)

v =
4
p2 ( arctan

wgt

hgt
− arctan

w
h
) (3)

a =
v

1 − IoU + v
(4)

where IoU represents the intersection over union ratio between

the ground truth and the prediction box. r represents the Euclidean

distance between the centroids of the ground truth and the

prediction box. b represents the centroids of the prediction box.

bgt represents the centroids of the ground truth. c represents the

Euclidean distance between the prediction box and the ground

truth’s diagonal. v represents the similarity of the prediction box to

the aspect ratio of the ground truth. a represents a weight function.

wgt , hgt represent the width and height of the ground truth. w, h

represent the width and height of the prediction box.

The Varifocal Loss function addresses the issue of positive and

negative sample imbalance through the application of an

asymmetric weighting operation, achieved by the Formula 5:
Frontiers in Plant Science 08
VFL(p, q) =
−apg log (1 − p) q = 0

−q(q log (p) + (1 − q) log (1 − p)) q > 0

(
(5)

q represents the label, and q corresponds to the IoU value for

positive samples, and vice versa when q is 0. The hyperparameter a
governs the weighting of positive and negative samples.

Additionally, g is a hyperparameter that fine-tunes the weights of

positive and negative samples, while p denotes the probability

predicted by the model.

The Distribution Focal Loss function holds a distinct advantage

in addressing target overlap, enabling the network to rapidly

concentrate on the distribution of locations proximate to the

target location. This is implemented with the Formula 6:

DFL(Si, Si+1) = −((yi+1 − y) log (Si) + (y − yi) log (Si+1)) (6)

Here, y represents the position information of the target, and yi,

yi+1 denote the neighboring intervals closest to the target y, yi < y <

yi+1. Si, Si+1 represent the outputs of the Softmax function for the

surrounding intervals closest to the target y.
2.5 Light-YOLO

2.5.1 MobileOne
The MobileOne network is a feature extraction network

specifically designed for mobile applications, offering the dual

advantages of speed and accuracy (Vasu et al., 2023). Traditional

feature learning models, which include convolution, batch

normalization (BN), and activation functions, often face

degradation challenges as network depth increases. MobileOne

addresses this issue by introducing a novel approach that uses three

parallel branches. Its innovative design incorporates the concept of

reparameterization, employing distinct network structures during the

training and inference phases. During the training phase, a more

complex structure is utilized to enhance learning. The input features
FIGURE 7

YOLOV8.
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are processed through three branches before concatenation and ReLU

activation. The first branch consists of a 1×1 pointwise convolution

followed by a BN layer. The second branch is composed of a 3×3

deepwise convolution followed by a BN layer, and this branch is

replicated three times in this study. The third branch consists of a BN

layer. After concatenation and ReLU activation, the features are input

into two branches. One branch consists of a 1×1 pointwise

convolution followed by a BN layer, which can be replicated

multiple times, and the other branch consists of a BN layer. Finally,

the features are concatenated and activated with ReLU before being

output. During the inference phase, a simpler structure is employed

to enhance efficiency. The features only need to pass through a 3×3

deepwise convolution followed by a BN layer and a ReLU activation

function. Subsequently, they go through a 1×1 pointwise convolution,

again followed by a BN layer and a ReLU activation function. This

structure effectively reduces the model’s parameter count while

enhancing feature extraction capabilities, as shown in Figure 8.

2.5.2 GhostConv
The conventional approach to feature extraction typically

involves using multiple convolutional kernels for convolutional

mapping operations across all channels in the input feature map.

In deep networks, stacking numerous convolutional layers increases

parameter counts and computational requirements, resulting in
Frontiers in Plant Science 09
many rich or even redundant feature maps. Simplifying the network

by merely reducing computational efforts would entail sacrificing

valuable features. To address this challenge, Han et al. (2020)

introduced GhostConv, a novel approach that combines

conventional convolutional operations for extracting rich feature

information with cost-effective linear transformation operations to

generate redundant features. This method effectively reduces the

computational resources required by the model while maintaining a

straightforward and easy-to-implement design. The GhostConv

network structure, depicted in Figure 9, follows a distinctive two-

step process: First, it executes conventional convolution with a

controlled number of operations. The kernel size is 5×5. Second, it

uses the intrinsic feature maps from the convolution to perform

simple linear operations, generating additional feature maps. These

feature maps from both steps are then concatenated to form a new

output. This innovative design significantly reduces the network’s

parameter count without sacrificing crucial image features, thereby

enhancing the model’s detection speed.

2.5.3 Backbone
The primary objective of this study is to achieve rapid and

accurate prediction of the location and category information for 15

cottonseeds in a given cottonseed image. Recognizing the potential

of integrating the MobileOne-block and GhostConv to expedite
FIGURE 8

MobileOne-block.
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model convergence without compromising detection performance,

we aim to optimize the YOLOV8 backbone by incorporating these

enhancements. The enhanced YOLOV8 backbone is depicted in

Figure 10. In this optimization, the input image of multiple

cottonseeds maintains a size of 640 × 640 pixels. The CBS

module, integral to the YOLOV8 backbone, is replaced with the

GCBS module, which comprises GhostConv, Batch Normalization,

and SiLU. Additionally, the C2F module is substituted with the

MobileOne-block module, maintaining an equivalent number of

modules. The processed image then passes through the SPPF

module for the final output. Similar to YOLOv8, the parameters

“w” and “r” in the figure determine the network’s parameter count,

corresponding to different Light-YOLO versions. Additionally, the

input image size for Light-YOLO is the same as that for YOLOV8,

which is 640 pixels × 640 pixels.

2.5.4 YOLO head
The YOLO head plays a pivotal role in detecting category and

location information for cottonseeds. In this study, considering that

the C2F module enhances the gradient information of the network,

it is retained in the YOLO head. However, we have replaced all CBS

modules in the YOLO head of YOLOv8 with the more lightweight

GCBS modules, while keeping other components unchanged, as

illustrated in Figure 11. The YOLO head continues to extract

features at three different scales (80×80, 40×40, and 20×20) from

the backbone, facilitating the fusion of high and low-level features
Frontiers in Plant Science 10
for the detection of targets of various sizes. Similar to YOLOV8, the

Light-YOLO network outputs categories as “intact” and “broken,”

with position outputs representing the coordinates of the 15

cottonseeds in the image. The loss function of Light-YOLO

remains consistent with that of YOLOV8.
2.6 Indicators for model evaluation

Evaluation metrics for object detection play a crucial role in

assessing the performance of detection models. They provide

insights into the model’s effectiveness in identifying and localizing

cottonseeds in an image. These metrics are instrumental in

analyzing and comparing performance variations across different

models (Li et al., 2023b). Commonly used evaluation metrics for

object detection algorithms encompass Accuracy (Acc), Precision

(P), Recall (R), and mAP (mean Average Precision). Accuracy

gauges the overall discriminative performance of a model by

determining the ratio of correctly predicted target instances to the

total number of instances. Precision reveals the proportion of

samples predicted as positive instances that are predicted

correctly, providing insights into the model’s ability to avoid false

positives. Recall represents the proportion of positive samples that

the model successfully identified out of the total positive samples,

reflecting the model’s proficiency in avoiding false negatives. mAP

involves the calculation of mean average precision for each
FIGURE 9

GhostConv.
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category, subsequently averaged across all categories, thereby

delivering a comprehensive assessment of the model’s detection

performance across multiple categories. This study uses these

evaluation metrics to assess the effectiveness and accuracy of the

proposed model in detecting intact and broken cottonseeds. The

formulas for these metrics are as Formulas 7–11:

Acc =
TP + TN

TP + TN + FP + FN
(7)

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)
Frontiers in Plant Science 11
AP =
Z 1

0
P(R) dR (10)

mAP =
AP1 + AP2 +⋯+APn

n
(11)

TP denote the number of positive samples correctly classified as

positive, TN denote the number of negative samples correctly

classified as negative, FN denote the number of positive samples

incorrectly classified as negative, FP denote the number of negative

samples incorrectly classified as positive, and n represent the total

number of categories. In this study, positive samples were defined as

cottonseeds labeled “broken”, while negative samples were labeled

as “intact”.
FIGURE 11

Light-YOLO.
FIGURE 10

Backbone of Light-YOLO.
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2.7 Online nondestructive detection
technique and device

2.7.1 Hardware of the device
In this study, we designed an online detection and sorting

device tailored to the characteristics of cottonseeds, as illustrated in

Figure 12. The device consists of electrical control equipment, a

turntable, a cottonseed placement block, two visual recognition

modules, a cottonseed rejection module, a motor, and various other

mechanical components. The central element of the electrical

control equipment is an S7–200 PLC controller, supplemented by

sensors and associated control circuits. The sensor model employed

is CR-10P photoelectric type sensors. The visual recognition

module encompasses a camera and a light source of the same

type as detailed in Chapter 2.2. The cottonseed reject module

comprises a cottonseed suction module, which is equipped with a

solenoid valve, a robotic arm, and an air compressor. The

cottonseed suction module employs a total of 15 suction lifting

groups to efficiently eliminate broken cottonseeds. The air

compressor extracts air from the cottonseed suction module,

creating a pressure differential, while the robotic arm facilitates

the movement and operation of the cottonseed reject module. The

motor in the vision, along with other mechanical modules, supplies

power and hardware support for the transportation of cottonseeds.

2.7.2 Software for online detection of
cottonseed breakage

To better suit the cottonseed inspection task, this study

developed an online inspection software system for cottonseed

breakage information using Qt, as illustrated in Figure 13. The

software’s key functionalities include camera activation and

deactivation, image saving, detection model invocation, display of

the original picture and detection results, as well as communication

parameter configuration. The core operations involve the activation

of two cameras, the invocation of the detection model, and

communication with the lower computer. Camera activation
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utilizes the VideoCapture API of OpenCV to manage the

camera’s on/off state efficiently. For operational efficiency, the

detection software exclusively displays the cottonseed images

captured on the front side. The detection model is invoked by

loading the torchscript.pt file using the C++ version of libtorch.

Communication with the lower PLC is facilitated through Qt’s

Serial Port class, enabling the adjustment of communication

parameters like baud rate, data bit parity, and stop bit. Chapter

2.2 also used this detection software to acquire cottonseed images.

2.7.3 Control system for online detection device
Figure 14 illustrates the workflow of the device employed in this

study. The process begins with the placement of 15 cottonseeds in

the cottonseed placement block, followed by the activation of the

device, which in turn activates both cameras in the detection

software. Motor 1 drives the turntable to rotate, and when the

cottonseed placement block reaches visual recognition module 1 (at

the position of sensor 1), motor 1 pauses its rotation for 0.5s.

Simultaneously, the PLC sends a signal to the detection software,

prompting the camera to perform front image acquisition of the

cottonseed and save it. The motor then resumes operation, and

upon reaching sensor 2 (vision acquisition module 2), it pauses

again for 0.5s. The PLC signals the detection software, which

activates the camera for reverse image acquisition of the

cottonseed and saves it. Subsequently, motor 1 continues its

operation until the cottonseed placement block reaches the

cottonseed reject module (at the sensor 3 position). At this point,

motor 1 stops for 2s, and the PLC signals the host computer

software, which triggers the detection model to discriminate

cottonseed breakage. For each of the 15 cottonseeds, two

detection results are obtained. If both results indicate intact

cottonseed, then the cottonseed is classified as intact; otherwise, it

is considered broken. The host computer software conveys the

discrimination results to the PLC, which activates the solenoid valve

in the cottonseed rejection module to remove the broken

cottonseeds, completing the cottonseed sorting process.
FIGURE 12

Online detection and sorting device.
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After determining the equipment’s workflow, the control

system can be developed, focusing on communication, input,

output, and storage of cottonseed discrimination results. The

communication mode selected is the serial port, with the online

detection equipment for cottonseed breakage information having 3

input ports and 17 output ports. Discriminatory results are input

into the register in a first-in-first-out (FIFO) manner.

2.7.4 Validation experiments of online
detection devices

To validate the performance of the device in detecting

cottonseed breakage information, this study utilized 60 Xinhai-63

variety cottonseeds, including 30 broken and 30 intact cottonseeds.

The discriminatory results of the device on cottonseeds were

recorded to assess its detection effectiveness.
3 Results and discussion

3.1 Experimental configuration

The hardware platform for training and testing YOLOV8, Light-

YOLO, and the other models consisted of an i9–13900HX at 2.2GHz

with 32GB of RAM and 2TB of ROM. The graphics card employed

was an NVIDIAGeForce RTX 4060 GPUwith 8GB of videomemory.

The software system for training and testing was Windows 10. The

computational platform included CUDA 11.7 and Cudnn version 8.6.

The deep learning framework used was PyTorch 2.1, and the overall

software environment operated on Python 3.9.

The training process for the object detection model aims to

align the model’s predictions of the cottonseed’s category and
Frontiers in Plant Science 13
location information as closely as possible with the actual results.

The convergence speed of the model is substantially influenced by

the hyperparameter settings during training. In this study, the

following hyperparameters were used: (1) Learning rate: The

initial learning rate was set to 0.01. (2) Patience: The training

utilized an early stopping mechanism with a patience of 10 epochs,

meaning that training would halt if the validation loss did not

improve for 10 consecutive epochs. (3) Number of Epochs: The

training process extended up to a maximum of 500 epochs. (4)

Batch Size: The batch size, representing the number of images

processed per batch, was configured as 4. (5) Optimizer: The Adam

optimizer was employed to fine-tune the model parameters. These

hyperparameters were carefully chosen to ensure efficient training

and optimal model performance.
3.2 Results of various YOLOV8 versions

To rigorously evaluate the detection capabilities of various

YOLOV8 versions for identifying cottonseed breakage, the study

conducted performance tests using identical cottonseed datasets for

the training set, validation set, and test set. The detection outcomes

on the test set are presented in Table 3. From Table 3, it is evident

that there is a substantial difference in the memory usage among

different versions of YOLOV8, with YOLOV8n having the smallest

memory footprint at 5.93MB, while YOLOV8x requires the most

memory at 130MB. In terms of detection performance, YOLOV8x

achieved the highest detection accuracy at 96.1%, while YOLOV8s

and YOLOV8m attained the highest mAP50 (at IOU threshold 0.5)

at 99.0%. For precision, YOLOV8x outperformed with a score of

93.8%, and for recall, YOLOV8x exhibited the highest value at
FIGURE 13

Online cottonseed breakage detection software.
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97.2%. A smaller memory footprint implies faster detection speed,

YOLOV8m emerges as the best performer when balancing

detection speed and accuracy. It achieves a mAP50 of 99.0%,

Precision of 93.7%, Recall of 95.0%, Accuracy of 95.2%, and a

model size of 49.6MB. In summary, YOLOV8m stands out as the

most effective in detecting the location and category information of

both broken and intact cottonseeds in cottonseed images.

Consequently, this study has chosen YOLOV8m as the

foundation for developing the Light-YOLO framework.
Frontiers in Plant Science 14
3.3 Results of ablation experiments

To evaluate the efficacy of the enhancement techniques applied to

YOLOV8 in this study, we conducted ablation experiments on

cottonseed images sourced from the same training, test, and

validation sets. For clarity, we refer to YOLOV8m with MobileOne-

block as the sole improvement to the backbone as “YOLOV8m-

MobileOne”, and the version incorporating GhostConv alone for

enhancing both the backbone and YOLO head as “YOLOV8m-

GhostConv”. Table 4 presents the outcomes of these ablation

experiments. YOLOV8m model has a maximum size of 49.6MB.

TABLE 3 Test results of various YOLOV8.

Model P R mAP50 Acc
Model

memory usage

YOLOV8n 89.6% 97.9% 98.5% 94.8% 5.93MB

YOLOV8s 90.7% 96.5% 99.0% 94.2% 21.4MB

YOLOV8m 93.7% 95.0% 99.0% 95.2% 49.6 MB

YOLOV8l 92.5% 96.5% 98.9% 95.2% 83.5 MB

YOLOV8x 93.8% 97.2% 98.9% 96.1% 130 MB
FIGURE 14

The workflow of the online detection device.
TABLE 4 Results of ablation experiments.

Model P R mAP50 Acc
Model
memory
usage

YOLOV8m 93.7% 95.0% 99.0% 95.2% 49.6 MB

YOLOV8m-
MobileOne

93.8% 95.7% 98.9% 95.5% 47.9 MB

(Continued)
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Both YOLOV8m-MobileOne and YOLOV8m-GhostConv models

exhibit reduced sizes compared to YOLOV8m, with 47.9MB and

45.3MB, respectively. The Light-YOLO model occupies the smallest

memory footprint at 41.3MB, indicating superior running speed. For

precision, Light-YOLO and YOLOV8m-MobileOne both achieve the

highest at 93.8%, while YOLOV8m-GhostConv has the lowest at

91.9%. Regarding recall, the Light-YOLO model leads with 97.2%,

while YOLOV8m has the lowest at 95.0%. YOLOV8m reaches the

highest mAP50 at 99.0%, while the other three models achieve 98.9%.

In terms of accuracy, the Light-YOLO model excels at 96.1%, while

YOLOV8m-GhostConv lags at 94.8%. In conclusion, Light-YOLO not
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only markedly reduces the model’s parameter count but also

demonstrates enhanced detection performance. This indicates that

MobileOne-block and GhostConv not only decrease the number of

parameters in YOLOV8 but also render the networkmore adept for the

specific task of detecting cottonseed breakage. The confusionmatrix for

Light-YOLO is shown in Figure 15.

Additionally, this study compared the detection performance of four

models on broken cottonseeds without using data augmentation. As

shown in Table 4, the Precision, Recall, mAP50, and Accuracy of

YOLOv8, YOLOv8m-MobileOne, YOLOv8m-GhostConv, and Light-

YOLO all decreased in the absence of data augmentation. Specifically,

Light-YOLO’s P, R, mAP50, and Acc decreased by 0.7%, 0.7%, 0.3%, and

0.6%, respectively. These results indicate that the data augmentation

algorithms used in this study enhance the models’ detection performance.

Figure 16 depicts the precision change curves throughout the

training process of the four models. It is evident that after 350 epochs

of training, the precision starts to stabilize for all four models, signifying

that they have reached convergence. Notably, after stabilization, the

precision of YOLOV8m-GhostConv is the lowest, while the other three

models exhibit very similar precision values. This consistency aligns

with the results observed in the test set as presented in Table 4.
3.4 Comparative performance analysis
against alternative models

The experimental results presented above primarily focus on

comparing the detection performance of Light-YOLO and

YOLOV8 regarding cottonseed category and location information

in cottonseed images. However, within the realm of real-time object
TABLE 4 Continued

Model P R mAP50 Acc
Model
memory
usage

YOLOV8m-
GhostConv

91.9% 96.5% 98.9% 94.8% 45.3 MB

Light-YOLO 93.8% 97.2% 98.9% 96.1% 41.3 MB

YOLOV8m-
N

92.7% 94.0% 98.6% 94.9% 49.6 MB

YOLOV8m-
MobileOne-
N

92.7% 95.0% 98.6% 95.2% 47.9 MB

YOLOV8m-
GhostConv-
N

91.2% 95.7% 98.5% 94.2% 45.3 MB

Light-
YOLO-N

92.5% 96.5% 98.6% 95.5% 41.3 MB
“-N” indicates that the model is without data augmentation.
FIGURE 15

The confusion matrix for Light-YOLO.
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detection, prominent alternatives include YOLOV5 and YOLOV7.

To further validate the detection capabilities of Light-YOLO for

cottonseed breakage information, we conducted a comparative

analysis involving Light-YOLO, YOLOV5, and YOLOV7. The

results of this comparative study are summarized in Table 5.

Comparing the detection performance of Light-YOLO with

YOLOV5 and YOLOV7 for cottonseed breakage, YOLOV5

achieves a precision, recall, mAP50, and Acc of 88.7%, 95.0%,

97.6%, and 92.7%, respectively, with a model size of 54.3 MB. For

YOLOV7, precision, recall, mAP50, and Acc are 90.0%, 95.7%,

98.2%, and 93.6%, respectively, with a model size of 47.4 MB. Light-

YOLO outperforms both YOLOV5 and YOLOV7 in terms of
Frontiers in Plant Science 16
detection performance and speed, with YOLOV7 slightly

surpassing YOLOV5. The detection results for cottonseed images

using Light-YOLO are depicted in Figure 17.
3.5 Results of online detection device

After integrating the Light-YOLO model into the cottonseed

breakage online detection software, we evaluated its performance

using 60 cottonseeds, divided randomly into four groups of 15. The

number of cottonseeds correctly identified by the cottonseed reject

module and those left on the disk were tallied. Results revealed that
FIGURE 16

Precision change curve during training.
TABLE 5 Comparison results with other models.

Model P R mAP50 Acc
Model

memory usage

YOLOV5 88.7% 95.0% 97.6% 92.7% 54.3 MB

YOLOV7 90.0% 95.7% 98.2% 93.6% 47.4 MB

Light-YOLO 93.8% 97.2% 98.9% 96.1% 41.3 MB
FIGURE 17

Detection results of Light-YOLO.
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6 out of 30 broken cottonseeds were mistakenly classified as intact,

while 2 out of 30 intact cottonseeds were erroneously identified as

broken. The total misclassification count was 8, resulting in

detection accuracy of 86.7%, 80.0% for broken cottonseeds, and

93.3% for intact cottonseeds. This underscores the effectiveness and

feasibility of the online detection device, providing valuable insights

for subsequent research and development.
3.6 Discussion

To investigate an efficient technology for detecting broken

cottonseeds, this study devised a collection device capable of

capturing front and back images of multiple cottonseeds, tailored

to the characteristics of cottonseeds. This led to the design of an

online detection device for cottonseed breakage, accompanied by

the development of online detection software and a control system.

To enhance the detection performance of the device, we improved

the backbone and YOLO head of YOLOV8 by incorporating

lighter-weight MobileOne-block and GhostConv, resulting in the

Light-YOLO model, optimized for online detection of cottonseed

breakage. This study then conducted online experiments on the

developed device to validate this approach.

Previous research has explored various techniques for detecting

cottonseed breakage. Shuhua et al. (2015) employed a color sorting

technique, achieving a detection accuracy of 97.8%. Gao et al. (2018)

utilized spectral imaging, reporting a detection accuracy of 91.50%.

Wang et al. (2023) utilized a high-speed camera, reaching a detection

accuracy of 99%. Zhang et al. (2022) applied air-coupled ultrasound

with a sound-to-image encoding technique, obtaining a recognition

accuracy of 90.7%. In comparison, the detection technique in this

study proves to be more cost-effective, quicker, and efficient, capable

of simultaneously detecting 15 cottonseeds. While Liu et al. (2022)

managed to detect multiple cottonseeds, their methods were limited

to capturing single-side information and remained in the laboratory

stage. Similar limitations were observed in the work of Du et al.

(2023). In contrast, our study successfully captured both front and

back images of cottonseeds, aligning more closely with the practical

requirements of the cottonseed industry. This approach holds

promising potential for direct application in industrial settings.
4 Conclusions

In response to the current lack of rapid detection techniques and

methods for broken cottonseeds, this study developed an image

acquisition device capable of capturing images of 15 cottonseeds

simultaneously, based on the characteristics of cottonseeds. We

constructed Light-YOLO, an improved model based on YOLOV8, to

detect broken information in cottonseeds. Furthermore, we developed

the software, hardware, and control systems for an online detection

device and conducted online tests. The conclusions are as follows:
Fron
(1) MobileOne-block and GhostConv are employed to improve

the backbone and YOLO-Head of YOLOV8m, resulting in
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Light-YOLO. The detection metrics for Light-YOLO,

including precision, recall, mAP50, and accuracy for

cottonseed breakage information, are 93.8%, 97.2%, 98.9%,

and 96.1%, respectively, with a model size of only 41.3 MB.

(2) Ablation experiments indicate that using MobileOne-block

and GhostConv alone to improve the backbone and YOLO-

Head of YOLOV8m only accelerates the detection speed

without enhancing the detection accuracy for broken

cottonseeds. Additionally, augmenting the cottonseed

image data improves the model’s detection performance.

(3) To further validate the online detection device’s performance,

we tested it with 60 cottonseeds, achieving a detection accuracy

of 86.7%. This underscores the effectiveness of our technology

and methodology, providing crucial technical support for the

efficient and rapid detection of cottonseed breakage

information, with the potential for direct application in the

cottonseed industry.
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