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Weakly supervised localization
model for plant disease based
on Siamese networks
Jiyang Chen, Jianwen Guo*, Hewei Zhang,
Zhixiang Liang and Shuai Wang

Dongguan University of Technology, Dongguan, China
Problems: Plant diseases significantly impact crop growth and yield. The

variability and unpredictability of symptoms postinfection increase the

complexity of image-based disease detection methods, leading to a higher

false alarm rate.

Aim: To address this challenge, we have developed an efficient, weakly supervised

agricultural disease localization model using Siamese neural networks.

Methods: This model innovatively employs a Siamese network structure with a

weight-sharing mechanism to effectively capture the visual differences in plants

affected by diseases. Combined with our proprietary Agricultural Disease Precise

Localization Class Activation Mapping algorithm (ADPL-CAM), the model can

accurately identify areas affected by diseases, achieving effective localization of

plant diseases.

Results and conclusion: The results showed that ADPL-CAM performed the best

on all network architectures. On ResNet50, ADPL-CAM’s top-1 accuracy was

3.96% higher than GradCAM and 2.77% higher than SmoothCAM; the average

Intersection over Union (IoU) is 27.09% higher than GradCAM and 19.63% higher

than SmoothCAM. Under the SPDNet architecture, ADPL-CAM achieves a top-1

accuracy of 54.29% and an average IoU of 67.5%, outperforming other CAM

methods in all metrics. It can accurately and promptly identify and locate

diseased leaves in crops.
KEYWORDS

plant disease, deep learning, Siamese networks, weakly supervised localization, class
activation mapping
1 Introduction

Disease detection in agriculture plays a crucial role in ensuring crop health and

maximizing yields. Traditionally, manual inspection and experience-based judgment have

been used to identify diseases, but these methods often lack efficiency and accuracy,

particularly for minor or inconspicuous ailments. With the advancement of machine vision
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and deep learning models, particularly Convolutional Neural

Networks (CNNs) (LeCun et al., 2015), significant progress has

been made in computer vision techniques for agricultural disease

detection (Ferentinos, 2018). Utilizing these cutting-edge

technologies for disease image classification has greatly improved

the accuracy and robustness of detection.

However, current deep learning vision detection models still

face challenges when dealing with the diversity and randomness of

plant diseases. For example, diversity can lead to poor adaptability

of traditional algorithms at different scales, resulting in missed or

false detections. Diseases might be difficult to detect due to

variations in the size, shape, or color of plant leaves or due to

environmental factors such as lighting and occlusion. Traditional

CNN architectures often perform poorly in addressing these issues

(Fuentes et al., 2017) as they are designed with fixed scales and field-

of-view sizes, which do not adapt well to varying sizes of disease

features, especially in large-scale agricultural fields. Moreover,

conventional disease detection methods require extensive

annotation of datasets, which increases training costs and limits

application scenarios. In contrast, weakly supervised learning can

effectively detect using existing image category labels, significantly

reducing the reliance on detailed annotations. Current weak

supervision localization techniques primarily rely on multiple

instance learning (Carbonneau et al., 2018) and Class Activation

Mapping methods (Zhou et al., 2016), which train networks using

image-level labels but often focus only on local features, making it

difficult to cover the entire target and handle multiple instances of

the same category.

To address these challenges, we propose an innovative detection

model based on Siamese neural networks and weak supervision

localization techniques, transforming the disease detection problem

into a task of visual difference identification. By integrating

multiscale features and implementing a refined weighting

strategy, we have enhanced the accuracy and efficiency of disease

identification. We use the ADPL-Class Activation Map (CAM)

technique to generate heatmaps for precise disease localization and

employ Non-Maximum Suppression (NMS) technology to handle

multiple case issues, effectively improving the model’s performance

in complex environments.

The latter part of this article will detail the relevant research

work, foundational knowledge of Siamese networks and Class

Activation Mapping techniques, describe our model architecture

and experimental design, and demonstrate the effectiveness of our

model through experimental results. We will discuss these results,

emphasizing their significance in the field of intelligent agricultural

disease detection, and outline future research directions.
2 Related work

2.1 Advances in plant disease detection
research using deep learning

Early-stage plant diseases refer to diseases or diseases that occur

in the early stages of plant growth, usually in the early stages after

infection. Their symptoms may not be easily observed or recognized
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but may have potential impacts on the health and growth status of

plants. The automatic recognition of early-stage plant disease

images has traditionally relied on conventional machine learning

techniques such as K-Nearest Neighbors (KNN) (Kumar et al.,

2020), Support Vector Machines (SVM) (Rumpf et al., 2010), and

Deep Forest methods (Zhou and Feng, 2017). However, with the

advent of deep learning models, intelligent diagnostic methods

based on these technologies have become the mainstream

approach for image recognition (Sankaran et al., 2010) and have

been increasingly applied to crops like corn, wheat, citrus, and

potatoes (Ferentinos, 2018). For instance, (Mohanty et al., 2016)

have demonstrated the accuracy and robustness of deep learning in

classifying a vast array of plant disease images using CNNs.

Similarly, the deep learning models developed by (Sladojevic

et al., 2016) and the PlantXViT model introduced by Poornima

et al (Poornima and Pushpalatha, 2021), which combines CNNs

with Vision Transformers, have achieved notable success in plant

disease recognition.

To address the shortage of datasets, researchers have explored

small sample learning: (Li et al., 2023) investigated the potential of

Diffusion Models (DDPM), Swin-Transformer models, and transfer

learning for diagnosing citrus diseases with limited datasets. (Lee

et al., 2018) designed two new data generation methods based on

plant canopy simulation and Generative Adversarial Networks

(GANs), which successfully handled the challenging task of

segmenting apple scab disease in apple tree canopy images,

showing promising results on small datasets. In terms of transfer

learning, (Atila et al., 2020) proposed an efficient network of deep

learning models for classifying plant leaf diseases, trained using the

transfer learning approach on the EfficientNet architecture and

other deep learning models. (Zj et al., 2019) enhanced the VGG16

model with multitask learning concepts and then applied transfer

learning with pretrained models from ImageNet, effectively

recognizing diseases in rice and wheat leaves, and providing a

reliable method for identifying multiple plant leaf diseases. (Chen

et al., 2018) explored deep convolutional neural network transfer

learning to identify plant leaf diseases, considering using pretrained

models from large-scale datasets and then transferring them to

specific tasks.

Deep learning models still face challenges in handling the

multiscale and randomness aspects of diseases. Diseases may

appear on plants in various sizes, shapes, and colors, making it

difficult for traditional algorithms to adapt to different scales and

potentially leading to missed or false detections. Additionally, the

same disease might appear differently on various plants and be

influenced by environmental factors such as lighting and occlusion,

increasing the likelihood of false positives. This presents significant

challenges for disease detection, especially in large-scale agricultural

environments. To overcome these issues, new solutions are being

explored: (Singh et al., 2018) used Long Short-Term Memory

(LSTM) networks (Hochreiter and Schmidhuber, 1997) to detect

moisture stress in chickpea bud images, showcasing the potential of

LSTM networks in multiscale diagnosis. (Mahlein, 2016) discussed

methods for plant leaf disease detection using imaging sensors,

highlighting the randomness in disease manifestation and

proposing solutions. (Sumaya and Uddin, 2021) emphasized the
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importance of using deep learning for multiscale diagnosis and

made progress in diagnosing various plant leaf diseases.

We believe that traditional CNN architectures, designed with

predetermined image scales (He et al., 2016) and fixed receptive

fields, struggle to adapt to disease spots of varying sizes (Liu et al.,

2016). Additionally, these networks are not well-suited for spatial

transformations such as rotation and scaling (Jaderberg et al., 2015),

which can vary significantly across different plants, resulting in poor

performance in such tasks. Moreover, these networks may lose

crucial detailed information necessary for identification while

extracting high-level semantic information (Zeiler and

Fergus, 2014).
2.2 Siamese network

The Siamese network, as illustrated in Figure 1, is a specialized

neural network architecture designed for image comparison and

verification tasks. This architecture is characterized by its two

parallel branches, mirroring each other and sharing identical

parameters, much like the interconnected nature of Siamese twins

—hence the name. The primary benefit of this shared-parameter

design is that it ensures both branches carry out the same

transformations. Consequently, each input image is transformed

into a feature vector, enabling a direct and equitable comparison.

To enhance the network’s ability to accurately measure image

similarity, loss functions such as ContrastiveLoss (Hadsell et al.,

2006) and TripletLoss (Schroff et al., 2015) are employed during the

network’s training phase. These functions are crucial for the fine-

tuning of network parameters, directly impacting the precision of

similarity measurements.
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Upon inputting two distinct photographs, the network analyzes

each one independently. Each branch meticulously deconstructs its

image into a detailed array of features—lines, edges, textures, and

patterns—that define the image’s unique identity. These features are

then transcribed into vectors, comprehensive numerical sequences that

represent the images’ visual characteristics. Thanks to the Siamese

configuration, this feature extraction process is consistently executed

across both branches, laying the foundation for a balanced comparison.

Siamese networks have proven their effectiveness in a spectrum of

applications. For instance, the DeepFace system (Taigman et al., 2014)

harnesses a Siamese network for facial recognition, demonstrating its

prowess in complex identification tasks. Similarly, the SiamFC tracker

(Bertinetto et al., 2016) showcases the power of Siamese networks in real-

time object tracking in video streams. Beyond these, the architecture has

shown exceptional performance in recognizing Chinese handwritten

characters (Zhang et al., 2017) and evaluating semantic similarity in

natural language processing (Mueller and Thyagarajan, 2016).

In our research, we leverage the Siamese network’s dual-branch

feature extraction capability by inputting image pairs that exhibit

similarity. This approach allows us to produce highly accurate

feature maps that are essential for precisely pinpointing object

locations within images. By training the network with pairs of

known similar images, we enhance its proficiency in detecting fine

distinctions and shared characteristics between images, which is

critical for tasks that demand exact localization.
2.3 Class activation map

The CAM is a technique used in imaging to interpret and

visualize the decision-making process of CNNs. It is based on a
FIGURE 1

The architecture of the Siamese network was used in this study. The network independently analyzes each input image and deconstructs it into a
detailed array of features such as lines, edges, textures, and patterns. These features are then transcribed into vectors, representing the images’ visual
characteristics. The network is trained with pairs of known similar images to enhance its proficiency in detecting fine distinctions and
shared characteristics.
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critical insight: classification networks not only extract categorical

information from images but also implicitly encode spatial location

information of targets. CAM generates heatmaps for specific

categories by combining the outputs of a Global Average Pooling

(GAP) layer with the feature maps from the last convolutional layer,

visually indicating the target locations. The implementation process

is illustrated in Figure 2.

Initially, an input image is processed through a CNN,

producing a set of feature maps. Following the last convolutional

layer of the CNN, a GAP layer is employed to calculate the average

activation of each feature map, as shown in Equation 1:

Fk =
1

H�Wo
H

i=1
o
W

j=1
f kij (1)

Here, f kij denotes the activation value at position (i, j) on the kth

feature map, withH andW representing the height and width of the

feature map, respectively.

Subsequently, the output from the GAP layer is connected to a

fully connected layer, whose weight matrix is used to compute the

scores for each category:

Sc =o
k

Wk,c · Fk (2)

In this formula, W is the weight matrix of the fully connected

layer, Wk,c represents the weight between the kth feature map and

the cth category, and   Fk is the average activation of the kth

feature map.

Finally, by multiplying each feature map’s activation values by

their corresponding category weights and summing them up, a class

activation map is generated:

Mc(i, j) =o
k

Wk,c · f
k
i,j (3)

This map is the same size as the original image and uses

grayscale values to indicate the significance of different areas for

the network’s prediction. Higher scores indicate greater
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contributions to the final classification outcome. Converting this

grayscale map to a color map can more clearly show which parts of

the image are most focused on by the network and which areas are

most predictive for a particular category.

The CAM method has been successfully applied in many

research tasks, such as using CAM to locate pneumonia in chest

X-ray images (Wang et al., 2017). Researchers have developed

several variants of CAM, such as Grad-CAM (Selvaraju et al.,

2017), which uses category-specific gradient information to

weight feature maps, extending CAM’s applicability to more

CNN architectures. Score-CAM (Wang et al., 2020) and Layer-

CAM (Jiang et al., 2020) enhance the usability and interpretative

power of CAM methods through model scoring and specific layer

visualization, respectively.
3 Plant disease localization model
based on Siamese neural networks

The traditional backbone networks often struggle to adequately

recognize the subtle variances present in crop disease symptoms. To

address this issue, we present SPDNet, a Siamese neural network-

based method for weakly supervised localization of plant diseases.

SPDNet is ingeniously crafted to tackle the challenges associated

with the nuanced differences in infection symptoms and the

presence of multiscale features.

The SPDNet model begins by inputting pairs of images that

exhibit similar plant disease symptoms, with each pair comprising a

query image and a reference image. A Siamese neural network,

initialized with shared parameters, processes both the query and

reference images. The query image is fed into the first subnet to

extract feature maps, while the reference image is processed through

the second subnet for feature extraction. Subsequently, a pyramid

structure is employed to fuse the multiscale feature maps obtained

from both the query and reference images, ensuring a

comprehensive representation of disease symptoms across
FIGURE 2

Implementation of Class Activation Mapping: (A–C), CAM color heatmaps; (D), original image overlaid with the CAM heatmap.
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different scales. These fused multiscale feature maps are then input

into the ADPL-CAM-based weakly supervised localization module.

This module autonomously generates pseudo-detection bounding

boxes to identify potential disease symptom regions. Following this,

the ADPL-CAM module’s localization results are used to predict

bounding boxes around the disease symptoms in the query image,

with the disease locations highlighted in red on the heatmap. The

SPDNet model is trained using weakly supervised learning

methods, leveraging pseudo-labels generated by the ADPL-CAM

module instead of precise annotations. During the iterative training

process, the model is continuously refined to improve accuracy in

disease localization.

The architecture of SPDNet, as illustrated in Figure 3, leverages

shared parameters within its Siamese framework to enhance the

model’s sensitivity to minor discrepancies between input images.

The network processes pairs of disease images that share similar

characteristics, using one image as the target and the other as a

referential guide for localization. This dual-image input strategy

enables SPDNet to develop more refined and distinctive feature

representations, crucial for distinguishing between subtle

disease symptoms.

Within the Siamese network, a pyramid structure is employed

to amalgamate multiscale information extracted at various layers,

ensuring a thorough representation of disease symptomatology

across different scales.

The ADPL-CAM-based weakly supervised localization module

is a core component of SPDNet, tailored for effective internal

feature mapping during the detection and localization of plant

diseases. It autonomously generates pseudo-detection bounding

boxes, thereby diminishing the dependency on precisely

annotated data. This module’s capability to produce pseudo-labels

is pivotal for the generation of bounding boxes and the execution of

weakly supervised localization tasks.

The employment of weakly supervised learning methodologies

is a strategic choice for training SPDNet models. Given the

laborious and sometimes unfeasible nature of acquiring fully

annotated datasets in the agricultural domain, the weakly

supervised approach is exceptionally pertinent. It facilitates the
Frontiers in Plant Science 05
training of SPDNet with a reduced need for meticulously labeled

data. The generation of pseudo-labels by SPDNet’s localization

module acts as a surrogate for detailed annotations, making the

training process more scalable and economically viable while

preserving effectiveness. Through the study of SPDNet, we have

reduced the dependence on precisely annotated data, which enables

it to work effectively even in situations where annotated data are

scarce, breaking free from the limitations of supervised learning

methods like PiTLiD (Liu and Zhang, 2022) on small

sample datasets.
3.1 SPDNet Siamese network development

The development of the SPDNet Siamese network aims to

overcome a series of challenges faced by traditional CNNs when

processing crop disease images, particularly issues related to

handling multiscale image features, adapting to spatial

transformations like rotation and scaling, and preserving detailed

information. The SPDNet employs a dual-branch structure to

extract complementary features, which effectively deals with

spatial transformations in disease areas and enhances the

robustness of localization results. The architecture of the SPDNet

Siamese network is shown in Figure 4, featuring this dual-

branch structure.

The feature extraction part of the network utilizes a Feature

Pyramid Structure (Lin et al., 2017), a strategy for extracting and

integrating information across multiple scales. This allows for a

comprehensive capture of disease symptom features of varying

sizes. By merging features across scales, the network adaptively

responds to changes in the size of disease areas, enhancing

the robustness of the localization outcomes. In the higher

layers, SPDNet incorporates both GAP and Global Max Pooling

(GMP) (Zhou et al., 2016) to fuse features, which highlights

the most significant features while also considering the

average characteristics of the images, thus balancing global

and local information. Moreover, SPDNet introduces a Multi-

Scale Excitation (MSE) module to boost its representational
FIGURE 3

Flowchart of a weakly supervised plant disease localization model based on Siamese neural networks, where the blue represents the Siamese neural
feature extraction network, and the red denotes the weakly supervised localization module based on ADPL-CAM. In the heatmap, red indicates the
location of the disease.
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power by adaptively adjusting the weights of different

feature channels, focusing on the most pertinent features. The

network also includes Parametric Rectified Linear Unit (PReLU)

(He et al., 2015) as a nonlinear activation function and a

dropout mechanism (Srivastava et al., 2014) for regularization,

further enhancing the network’s learning capabilities and

feature robustness.

3.1.1 Detailed component descriptions
3.1.1.1 Basic block

This consists of a 3 × 3 convolution, batch normalization, and

ReLU activation:

y = ReLU(BN(Conv(x))) (4)

where Conv represents 3 × 3 convolution, BN denotes batch

normalization, and ReLU is the activation function.

3.1.1.2 Feature Calibration Component MSE

The Feature Calibration Component MSE (Hu et al., 2018)

facilitates the modeling of the importance across different semantic

feature channels. By utilizing GAP and GMP to extract the average

vector vavg and maximum vectorvmax, respectively, and

then concatenating them along the channel dimension, the

resulting vector is input into a fully connected network to learn

channel correlations.
Frontiers in Plant Science 06
The computation of the channel attention vector is formulated

as follows:

Z = ½GAP(x);GMP(x)� (5)

A = s (W2(d (W1Z))) (6)

where s denotes the Sigmoid function, d represents the PReLU

activation function, [;] indicates the concatenation operation, and

W1 and W2 are learnable weights.

3.1.1.3 More detailed structure and parameter selection

GAP and GMP are employed to compress each channel of the

input feature map into a single scalar value, representing the global

average and global maximum of that channel, respectively. The

pooled features (concatenated results of GAP and GMP, with a

dimension twice the number of input channels) are mapped to a

hidden layer. The hidden layer’s channel count is set to 25% of the

input channel count (controlled by the expansion parameter). The

weights of the first fully connected layer (FC1) are initialized using

the He initialization method. Batch normalization is applied to

stabilize the training process. Dropout is used to prevent overfitting,

with the dropout rate set to 0.5. The PReLU activation function is

applied after the first fully connected layer. The Sigmoid activation

function is applied after the second fully connected layer,

compressing the output values to the range [0, 1]. The weights of
FIGURE 4

Architecture diagram of the SPDNet Siamese network component.
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the second fully connected layer (FC2) are initialized using the

Xavier initialization method.

3.1.1.4 MBConv module

A mobile-optimized bottleneck residual block structure that

introduces the MSE mechanism between input and output (Sandler

et al., 2018):

x←ReLU(BN(DWConv(ReLU(BN(Expand(x)))))) (7)

attention = s (MSE(x)) (8)

  x← x + Proj(x⊙ attention) (9)

where Expand represents channel expansion via 1x1

convolution, DWConv stands for depthwise separable

convolution, and Proj is a 1 × 1 convolution projection.

3.1.1.5 Transformer module

Based on a conventional Attention and FFN transformer encoder

structure, the main process involves MST, LayerNorm, Attention

computation, and residual connections (Vaswani et al., 2017):

x1 = MST(x) (10)

z1 = Attention(LN(x1)) + x2 (11)

z2 = FFN(LN(z1)) + z1 (12)

where ×2 is a downsampling or equivalent Identity, LN denotes

LayerNorm normalization, and MST represents multiscale

integration of different sampling information.

3.1.1.6 Feature Pyramid Structure

After extracting features at each level, a 1 × 1 convolution processes

internally before upsampling is combined with the previous layer’s

feature map, and a 3 × 3 convolution smoothly integrates to ensure

consistent output scale and channel number (Lin et al., 2017):

Ci = Conv1x1 (13)

Pi = Upsample(Pi+1) + Ci (14)

FPNi = Conv3�3(Pi) (15)

By employing a complex design with multiple modules operating

at different sampling rates, the SPDNet Siamese network not only

captures disease features across various scales but also effectively

minimizes localization errors due to changes in disease appearance

through its dual-branch structure’s complementary characteristics,

demonstrating exceptional performance.
3.2 Weakly supervised localization based
on ADPL-CAM

To enhance the accuracy and robustness of disease symptom

localization in SPDNet, this study introduces an innovative Class
Frontiers in Plant Science 07
Activation Mapping method named Agricultural Disease Precise

Localization Class Activation Map (ADPL-CAM). The overall

detailed workflow diagram is shown in Figure 5. This method was

developed with an understanding of the limitations of traditional

CAM technologies in handling agricultural disease images,

especially their inadequacies in dealing with multiscale features

and background noise. It utilizes multiscale feature maps generated

by the two branches of the SPDNet Siamese network. Based on a

pair of similar image inputs, categorized into a reference image and

a query image (the actual target frame output image), where the

reference image enhances the features of the query image. ADPL-

CAM extracts two feature matrices and effectively merges feature

map s f r om bo th b r an ch e s u s i n g up s amp l i n g and

interpolation methods.

Subsequently, these feature maps undergo pooling to activate

hierarchical weight, using weights to absorb the importance of

features from different network layers. Ultimately, ADPL-CAM

undertakes token learning for the reference image’s features:

employing global maximum pooling to extract semantic

information (i.e., tokens) and then fusing these tokens with the

feature maps of the query image. Through token-based fusion, the

activation map of the query image prominently represents similar

semantic features. This strategy not only intensifies the model’s

focus on the disease target areas but also significantly reduces its

sensitivity to background noise.

Moreover, ADPL-CAM incorporates a NMS strategy to

optimize the generation of localization boxes. NMS identifies the

local maxima within each potential target area and filters out areas

with low scores or high overlap through thresholding, thus enabling

more accurate delineation of disease areas and effectively reducing

misses. This strategy is particularly aimed at localization challenges

in scenarios where similar diseases are clustered, greatly enhancing

the mode l ’ s prec i s ion and adaptab i l i t y in complex

agricultural settings.
3.2.1 ADPL-CAM multiscale feature map-
weighted fusion

The CAM is formulated as a weighted sum of feature maps:

CAM =o
N

i=1
wi · Fi (16)

where N is the number of feature maps, wi are weights obtained

via the global average pooling layer, and   Fi is the feature map at

that scale.

3.2.2 Token-based feature learning
Initially, we define the tokenization process for the reference

image’s feature maps (feature tokenization) to extract representative

feature vectors Ti:

Ti = GlobalMaxPool(Fi) (17)

Here, the GlobalMaxPool operation performs global maximum

pooling, traversing each channel of the feature map and retaining

only the maximum value per channel, thus forming a compact

feature vector. This vector Ti acts as a token, capturing the most
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critical visual features. Subsequently, we fuse the target feature map

G with the token (Ti), resulting in an enhanced feature map:

G0 = G +o
N

i=1
a · Ti (18)

where a represents the learned weights, indicating the

contribution of different tokens to the target feature map.

3.2.3 Adaptive threshold function for generating
box thresholds

T(x, y) = 1
blocksize2 o

i,j∈neighborhood

I(i, j) − C (19)

Here (Bradley and Roth, 2007), T(x, y) is the threshold at the

pixel location (x, y), I (i, j) is the value of the pixels in the

neighborhood, C is a constant used to adjust the threshold, and

blocksize squared represents the size of the neighborhood

considered for local threshold computation.

3.2.4 Non-maximum suppression
Define a set of detection boxes (D = d1,d2,…,dn), each with a

corresponding confidence score (si), select the box (dmax) with the

highest score from (D). Calculate the Intersection over Union (IoU)

with (dmax) for the other boxes and remove those with high

overlap. Repeat this process until only one box remains.

Thus, ADPL-CAM not only enhances the handling of

multiscale features but also improves the accuracy of disease

symptom localization, providing robust technical support for

precise agricultural disease diagnosis.
4 Experiments and results

4.1 Experimental design

The model’s effectiveness is assessed using three main metrics:

Top-K Positioning Accuracy, GT-Known Positioning Accuracy,

and Average Intersection over Union (Average IoU).

Top-K Positioning Accuracy is defined as the condition where

the correct category is among the top-K categories predicted by the

model and the IoU between the model’s predicted bounding box and

the actual bounding box exceeds a specified threshold (set at 0.5). If

these conditions are met, the prediction is considered correct.

GT-Known Positioning Accuracy measures whether the model

can accurately locate the object when the true category is known.

The prediction is deemed accurate if the IoU between the predicted

and actual bounding boxes exceeds a predetermined threshold.

Average IoU calculates the mean IoU value between all

predicted and actual bounding boxes across all test images to

gauge the model’s overall localization precision.

We selected Top-K Positioning Accuracy, GT-Known

Positioning Accuracy, and Average IoU as our principal metrics

for evaluation due to their recognized efficacy and standardization

in assessing both classification and localization performances within

the field of computer vision. Top-K Positioning Accuracy holds

particular significance for applications in the real world, where the
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ability to generate multiple plausible predictions is often more

beneficial than pinpoint accuracy in classification. This metric

ensures that the correct category is listed among the top

contenders, while the associated IoU threshold criterion

guarantees precise object localization within the imagery—a

critical factor for practical implementations such as precision

agriculture or automated wildlife monitoring.

GT-Known Positioning Accuracy is deployed to gauge the

model’s proficiency in object localization when the true category

is pre-identified—a typical training and tuning scenario for models

engaged in detection tasks. This metric singularly focuses on and

evaluates the model’s spatial discernment capabilities. The Average

IoU, on the other hand, extends to provide a cumulative measure of

localization accuracy across all tested instances, offering insight into

the model’s generalization capabilities across a diverse array of

categories and conditions. By integrating these tripartite metrics, we

ensure a holistic evaluation of the model’s competence in not just

accurately classifying objects but also in their precise localization,

both of which are indispensable for the practical deployment of

such models in scenarios where accurate identification and exact

object placement are of paramount importance.

In this work, we used two datasets: to further explore the

adaptability of the model to changes in different lighting

conditions, crop varieties, and disease stages, we constructed a

Multi-Conditional Plant Disease Dataset (MCPDD) based on the

PlantVillage dataset. This dataset generates image data for different

lighting conditions, crop varieties, and disease stages through image

processing and classification, specifically for plant disease detection

research. MCPDD contains a total of 42 images of different types

and degrees of diseases on grape, potato, and tomato leaves under

different lighting conditions. This diversity meets the requirements

of plant disease detection at different stages, ensuring full

consideration of the subtle semantic features of early diseases.

In contrast, the CUB-200 dataset is a fine-grained image

classification dataset focused on various animal species. The ADPL-

CAM method leverages its capability to capture semantic features

within the same class in images. The CUB-200 dataset is not only

informative but also serves as a universal benchmark for fine-grained

classification tasks. Therefore, evaluating the ADPL-CAMmethod on

this dataset not only validates its overall effectiveness in capturing

similar semantic features and generating accurate localization maps

but also reaffirms its robustness in fine-grained classification tasks.

This study assesses the feature semantic extraction capabilities

of ADPL-CAM using both the PlantVillage and CUB-200 datasets

to comprehensively verify the method’s universality and

effectiveness. The simulation experiments were conducted on a

computer equipped with an RTX A5000 GPU and 24GB VRAM.

The experimental environment included PyTorch 1.11.0, CUDA

11.6, cuDNN 8.4.0, and Python 3.9.12. Images were resized to 224

pixels × 224 pixels, and data augmentation techniques such as

random rotation and Gaussian blur were applied. The training was

performed using the AdamW optimizer with an initial learning rate

of 0.01, a minimum learning rate of 0.0001, and a cosine annealing

learning rate schedule. The training lasted for 100 epochs with a

batch size of 16, and the experiments were conducted under

consistent hyperparameter settings.
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4.2 Quantitative experiments
and discussion

In our quantitative analysis, we used EfficientNet and ResNet50

as comparative classification networks and compared different

CAM algorithms, including GradCAM, SmoothCAM, and our

proposed ADPL-CAM. The results are shown in Figures 6, 7, and

detailed results are shown in Tables 1, 2.

Based on the experimental results, we can draw the

following conclusion.

1. Performance comparison: In the CUB-200 and PlantVillage

datasets, ADPL-CAM outperformed Grad-CAM and SmoothCAM,

especially within the SPDNet framework. Notably, under the

SPDNet architecture, ADPL-CAM achieved the best results across

all evaluation metrics (accuracy, recall, precision, F1-score, GT-

known, and mean IoU). This demonstrates ADPL-CAM’s

significant advantage in capturing salient regions of target objects

and generating more accurate class activation maps.

2. Framework adaptability: The performance improvement of

ADPL-CAM in fine-grained tasks when paired with ResNet50 and

EfficientNetB0 is relatively modest. This can be attributed to these

CNN architectures being primarily designed for general image

classification tasks rather than specialized plant disease

recognition. However, in the MCPDD dataset, ADPL-CAM’s

performance is notably outstanding. This indicates that

specifically designed network structures, such as SPDNet, can

better capture task-specific features in specialized domains.

3. Disease recognition capability: The combination of SPDNet

and ADPL-CAM shows significant advantages in plant disease

recognition tasks, particularly in terms of various metrics. This
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suggests that SPDNet can effectively learn feature representations of

plant diseases, contributing to more accurate localization maps.

Traditional CAM methods (Grad-CAM and SmoothCAM) often

perform poorly in complex or challenging disease scenarios,

whereas ADPL-CAM maintains high effectiveness, which is

crucial for improving model reliability in practical applications.

ADPL-CAM excels in covering target areas more comprehensively.

Through adaptive multiscale feature fusion and enhanced Class

Activation Mapping mechanisms, ADPL-CAM can cover lesion

areas more thoroughly, avoiding the omission of key features.

4. Performance deficiencies and potential factors: Despite

ADPL-CAM’s improvement in overall localization accuracy, this

experiment did not validate potential issues in complex scenarios,

such as small or overlapping lesion areas, where the model might

experience false negatives or misclassifications. The potential reason

for this deficiency is that ADPL-CAM’s multiscale feature fusion

mechanism requires further optimization to better leverage features

at different levels. Although we have consciously enhanced fine-

grained features in the dataset, the model appears not to have fully

learned to recognize subtle disease characteristics. Label-based

semantic enhancement may need improvement to distinguish

disease samples with minor features. Figure 7 also indicates that

ADPL-CAM’s localization results are affected by factors such as

illumination conditions and crop varieties. Among these, the most

significant factor is crop variety, due to the vast semantic differences

in characteristics of different plant diseases. Furthermore, ADPL-

CAM’s generalization ability in small sample datasets might decline,

necessitating further optimization of network structures and

training strategies to enhance the model’s robustness in small

sample scenarios.
FIGURE 5

ADPL-CAM workflow diagram. Feature extraction: Feature maps are extracted in parallel from the reference and query images via SPNet
subnetworks. Hierarchical weight activation: Emphasizes or attenuates the importance of certain features through the network layers. Feature
tokenization: The feature maps from the reference image undergo tokenization, transforming these features into a set of compact tokens. Token-
based fusion: Tokens from the reference image are fused with the feature maps of the query image, enhancing the feature representation of the
query image. Class Activation Mapping: Postfusion, a sequence of processing steps generates the class activation map, highlighting areas of interest
in the query image. Non-Maximum Suppression (NMS): To conclude, NMS is applied to the class activation map to suppress overlapping detections,
ensuring distinct localization of each detected object.
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FIGURE 6

Displayed results of different visual models combined with different CAM methods on the CUB-200 dataset.
FIGURE 7

Visualization of experimental data. Displayed results of the combination of SPDNet and ADPL-CAM methods on MCPDD.
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4.3 Qualitative experiments and discussion

We conducted our research using the SPDNet+ADPL-CAM

strategy to visualize the effectiveness of our proposed method on

two datasets and to compare the generated localization bounding

boxes with the actual detection bounding boxes, as shown in

Figure 8. Additionally, to provide a comprehensive display of this

method’s performance, we have published all the localization data

from our qualitative experiments on GitHub [Qualitative

Experiment Visualization (github.com)].

By integrating the ADPL-CAM Class Activation Mapping method

with the SPDNet architecture, a series of visualization results were

obtained. These results demonstrate the potential advantages of this

combination in feature recognition and target localization. From the

visualized class activation maps, it is evident that this combination can

accurately identify and locate target areas. This not only confirms the

efficacy of SPDNet in capturing key features but also illustrates the

capability of the ADPL-CAM method in accurately generating target

localization frames (annotation boxes). This rapid target localization

approach, based on image-level labels, offers significant advantages in
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reducing training costs and resource consumption. It also provides

directions for further optimization of SPDNet and improvements to

the ADPL-CAM algorithm.

However, the visualization results also highlighted some areas

for improvement. When dealing with widely distributed and

scattered disease features, ADPL-CAM tends to recognize only

the most prominent parts, which could lead to failures in

detecting multiple smaller features. Additionally, the detection

outcomes are influenced by lighting conditions, which may affect

the accuracy of the localizations.
5 Conclusion

This paper addresses the challenges of multiscale and random

distribution of plant disease characteristics by proposing a weakly

supervised localization model based on Siamese neural networks. This

model is equipped with a proprietary ADPL-CAM algorithm, which

accurately identifies and locates areas affected by plant diseases. In early-

stage disease detection tasks, the model can timely and accurately identify
TABLE 1 Results of various CAM methods on the CUB-200 dataset (units: %).

Method CNN Top-1 Top-5 Recall Precision F1 score GT-know Average
IoU

GradCAM ResNet50 46.71 54.44 46.71 54.44 50.17 57.35 40.3

SmoothCAM ResNet50 47.25 55.67 47.25 55.67 51.06 58.12 42.8

ADPL-CAM ResNet50 48.56 56.43 48.56 56.43 52.14 59.78 51.2

GradCAM EfficientnetB0 49.38 57.22 49.38 57.22 52.91 60.47 45.6

SmoothCAM EfficientnetB0 50.14 58.76 50.14 58.76 54.05 61.89 47.4

ADPL-CAM EfficientnetB0 51.67 59.55 51.67 58.95 55.25 62.33 52.1

GradCAM SPDNet 52.82 60.91 52.82 60.91 56.55 63.25 56.7

SmoothCAM SPDNet 53.47 61.34 53.47 61.34 57.17 64.58 57.9

ADPL-CAM SPDNet 54.29 62.87 54.29 62.87 58.25 65.42 67.5
The bold values in the table indicate the optimal performance of each method on the CUB-200 dataset.
TABLE 2 Results of SPDNet combined with ADPL-CAM on the MCPDD.

Crop
varieties

Light
conditions

Accuracy Recall Precision F1
score

GT-known
(ADPL-
CAM)

Average
IoU

(ADPL-
CAM)

GT-known
(SmoothCAM)

Average IoU
(SmoothCAM)

Grape Normal 97.09 97.34 97.30 97.30 68.33 58.90 28.33 38.39

Shadow 73.06 72.47 77.31 73.53 55.00 51.56 28.33 40.68

Strong light 78.77 77.96 84.16 78.57 60.00 54.90 25.00 35.16

Potato Normal 96.50 96.35 96.55 96.40 42.50 43.79 22.50 35.88

Shadow 84.33 84.62 84.69 84.24 45.00 44.32 27.50 36.03

Strong light 70.33 70.88 79.00 70.04 37.50 42.04 15.00 29.42

Tomato Normal 90.84 87.93 89.67 88.32 82.22 63.25 36.67 44.13

Shadow 81.91 79.93 80.08 79.23 79.34 62.54 44.69 46.30

Strong light 62.88 60.74 70.82 61.36 73.33 58.67 23.90 33.74
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and locate diseased crop leaves. Moreover, the model also demonstrates

good performance in other feature recognition tasks. Delving deeply into

the ADPL-CAM technology enhances our model’s capability to pinpoint

plant diseases with remarkable precision. This empowers farmers with

prompt and reliable diagnostic insights, mitigating themisuse of pesticides

and avoiding the repercussions ofmisdiagnoses on crop yields. Enhancing
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the model’s resilience to fluctuations in light and extreme conditions is

essential, guaranteeing consistent performance amidst the diverse and

unpredictable agricultural landscapes. Integrated into an intelligent

decision support framework, our model becomes a pivotal tool for

farmers, aiding in the rapid identification of plant afflictions and

offering strategic management advice, thereby diminishing labor
FIGURE 8

(A) Part of the experimental results on the CUB-200 dataset. The first column contains the original images, the second column shows the ADPL-
CAM class activation maps, and the third column displays the localization maps. Yellow boxes represent the target boxes, while green boxes indicate
the generated boxes. (B) Partial experimental results of the MCPDD dataset are described, with the first column being the original plant disease map,
the second column being the ADPL-CAM class activation map, and the third column being the localization map. The green box represents the
target box, and the red box represents the generated box.
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demands and elevating agricultural productivity. Technicians benefit from

the model’s swift disease detection, enabling them to tailor more effective

control strategies, thus bolstering the efficacy of their interventions. For

researchers, the model serves as a vigilant sentinel for disease surveillance

and a robust data repository, laying down a solid scientific foundation for

disease management and the cultivation of new crop varieties.

Future research will focus on the following areas:

1. Exploring ADPL-CAM mechanisms and mapping strategies:

We plan to further investigate the mechanisms behind ADPL-CAM

and its performance enhancement in various CNN architectures. This

includes analyzing how it effectively integrates multiscale features and

handles spatial transformations to optimize methods or develop more

efficient CAM variants. Considering the limitations of ADPL-CAM in

handling complex features, exploring new activation mapping

techniques could be beneficial. For instance, introducing an

attention-based Class Activation Mapping might help the model

focus better on multiple key areas of the target.

2. Enhancing model robustness: Although ADPL-CAM maintains

good performance in complex disease scenarios, enhancing the model’s

adaptability to extreme variations (such as very small or concealed

disease features) is also crucial. This might be achieved by integrating

more fine-grained feature extraction mechanisms or using deeper

learning strategies. The impact of lighting conditions on image

recognition is a complex but critical issue. Model robustness to

lighting variations could be improved through data augmentation

(e.g., introducing a variety of lighting conditions during training) or

by incorporating lighting-invariant features.
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