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Green pepper fruits counting
based on improved DeepSort
and optimized Yolov5s
Pengcheng Du, Shang Chen, Xu Li, Wenwu Hu, Nan Lan,
Xiangming Lei and Yang Xiang*

College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, China
Introduction: Green pepper yield estimation is crucial for establishing harvest

and storage strategies.

Method: This paper proposes an automatic counting method for green pepper

fruits based on object detection and multi-object tracking algorithm. Green

pepper fruits have colors similar to leaves and are often occluded by each other,

posing challenges for detection. Based on the YOLOv5s, the CS_YOLOv5s model

is specifically designed for green pepper fruit detection. In the CS_YOLOv5s

model, a Slim-Nick combined with GSConv structure is utilized in the Neck to

reduce model parameters while enhancing detection speed. Additionally, the

CBAM attention mechanism is integrated into the Neck to enhance the feature

perception of green peppers at various locations and enhance the feature

extraction capabilities of the model.

Result: According to the test results, the CS_YOLOv5s model of mAP, Precision

and Recall, and Detection time of a single image are 98.96%, 95%, 97.3%, and 6.3

ms respectively. Compared to the YOLOv5smodel, the Detection time of a single

image is reduced by 34.4%, while Recall and mAP values are improved.

Additionally, for green pepper fruit tracking, this paper combines appearance

matching algorithms and track optimization algorithms from SportsTrack to

optimize the DeepSort algorithm. Considering three different scenarios of

tracking, the MOTA and MOTP are stable, but the ID switch is reduced by

29.41%. Based on the CS_YOLOv5s model, the counting performance before

and after DeepSort optimization is compared. For green pepper counting in

videos, the optimized DeepSort algorithm achieves ACP (Average Counting

Precision), MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error)

values of 95.33%, 3.33, and 3.74, respectively. Compared to the original

algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and

6.94, respectively. Additionally, Based on the optimized DeepSort, the fruit

counting results using YOLOv5s model and CS_YOLOv5s model were

compared, and the results show that using the better object detector

CS_YOLOv5s has better counting accuracy and robustness.
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1 Introduction

Green pepper, a significant commercial crop, can undergo

multiple harvests based on fruit maturity during the growing

season from June to November (Stein et al., 2016), and pepper

yields exhibit considerable variation across different harvesting

periods. Consequently, pre-harvest estimation of green pepper

yield can significantly aid in optimizing harvest processes, labor

management, transportation, and storage conditions (He et al.,

2022). Currently, green pepper yield estimation predominantly

depends on manual sampling, a time-consuming and labor-

intensive method (Aggelopoulou et al., 2010; Wulfsohn et al.,

2012). Recent advancements in machine vision and deep learning

have demonstrated substantial potential in enhancing fruit yield

estimation accuracy (Ren and Yang, 2016). This integration offers

an effective solution for the yield estimation of green peppers.

Fruit yield can be reflected laterally by the quantity (Teixidó

et al., 2012; Zhang Y. et al., 2022; Payne et al., 2013). Dorj et al.

(2017) and Malik et al. (2016) implemented distinct image

thresholding techniques to segregate citrus fruits from the

background. This approach was used for detecting and counting

citrus fruits in single images. Tu et al. (2020) and Behera et al.

(2021) utilized the Faster-RCNN convolutional neural network for

fruit detection and counting in single images.

The correlation between the number of fruits in a single image

and the count estimated by the algorithm is approximately 95%.

However, counting individual scattered fruits in single images may

not accurately reflect the total count of fruits in the entire orchard.

Therefore, when counting fruits in an orchard, it is common to use

interval image sampling to reflect the overall situation of the entire

orchard. For example, Song et al. (2014) counted peppers on densely

planted trees by capturing images at 5cm intervals, thereby obtaining

multi-view representations of the same fruit. They employed the ‘bag

of words’ model for pepper detection in individual images and

identified the same peppers across multiple images by analyzing

coordinate shifts, thus minimizing repeat counts. The experimental

data revealed that the correlation coefficient between manual and

automated pepper counting methodologies stood at 74%. It can be

seen that although Y. Song et al. tried to reduce the repeat count by

analyzing the peppers in adjacent images, the interval image sampling

still caused the problem of the repeat count (Liu et al., 2019). To

reduce such problems, when using interval sampling to count apples

and oranges, Xia et al. (2022) deployed CenterNet for the detection of

fruits and developed a patch-matching model to match the same fruit

in adjacent images. The experimental results indicated a correlation

between manual and algorithm counting of apples and oranges at

97.37% and 95.62% respectively. However, the patch-matching model

necessitated a brute-force comparison of all patches, resulting in an

average processing time of 5.33 minutes per image sequence.

To achieve rapid and accurate automatic fruit counting while

reducing duplicate counts, many researchers employ multi-object

tracking algorithms on sequences of fruit videos. These algorithms

detect fruits in video sequences and assign a unique ID to each fruit,

enabling the counting of fruits based on the number of IDs. Gao

et al. (2022) utilized the YOLOv4-tiny algorithm in conjunction
Frontiers in Plant Science 02
with the CSR-DCF algorithm for the detection and tracking of

apples. This approach achieved a counting accuracy of 91.49% and

enabled fruit tracking at speeds of 2–5 fps on a CPU. Similarly,

Vasconez et al. (2020) compared the influence of multiple target

detection algorithms on tracking and counting based on the

Bayesian multi-target tracking algorithm. They found that, under

the same tracking algorithm, object detection algorithms with

higher detection performance often resulted in better counting

accuracy. Additionally, they discovered that when processing fruit

video sequences, the multi-object tracking required only 10

milliseconds per frame, and the average counting accuracy for

different types of fruits reached 90%. While tracking fruits for

counting can yield good results, the dense growth of fruit trees

often leads to fruits being obscured by each other or by foliage.

Fruits may disappear and reappear in video sequences at different

time intervals (Li X. et al., 2022; Wu et al., 2023), significantly

increasing the difficulty of fruit tracking. Therefore, to improve the

accuracy of fruit counting, Gao F. et al. (2021) optimized the

Hungarian matching algorithm based on the YOLOv4-tiny

algorithm. This enhancement strengthened the association of the

same apples across different time intervals in video sequences.

Ultimately, they achieved an average counting accuracy of 81.94%

for apples in the orchard. Similarly, Zhang W. et al. (2022)

improved the YOLOv3 algorithm and SORT (Simple Online and

Realtime Tracking) algorithm simultaneously to count citrus fruits

in the field. By combining an efficient object detection algorithm

with an accurate object tracking algorithm, they aimed to prevent

duplicate counting caused by complex fruit occlusion. The method

demonstrated a Mean Absolute Error of 8.1% and a Standard

Deviation of 8% in orange counting.

Accurate fruit detection is imperative for accurate tracking

(Mccool et al., 2016). The integration of precise object detection

and efficient multi-object tracking algorithms makes automated

fruit counting through video sequences feasible (Zhang W. et al.,

2022). The detection of green peppers presents significant

challenges due to their dense distribution on plants, severe

occlusion by branches and leaves, and color similarity to the

background. Traditional visual detection algorithms struggle to

achieve both high precision and recall rates in green pepper

detection (Stein et al., 2016). Convolutional Neural Networks

(CNNs) have become the mainstream approach for feature

extraction in green pepper detection. Li X. et al. (2021) proposed

a detection model targeting the scale variation problem of green

peppers based on YOLOv4-tiny. This model efficiently detects small

green peppers, as well as highly overlapping and occluded ones,

achieving a detection accuracy of 95.11%. The following year, Wang

et al. (2022) balanced the parameter count and detection accuracy

of the YOLOv5s model to detect small chili peppers. They achieved

an mAP (mean Average Precision) value of 95.46% for this task.

Cong et al. (2023) introduced a Swin Transformers attention

mechanism into the Mask R-CNN model for effective

segmentation of green peppers under strong lighting, overlapping

instances, and heavy foliage occlusion, achieving an average

detection accuracy of 98.1%. In addition, Wei et al. (2023) studied

the influence of different light intensity and light Angle on the
frontiersin.org
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recognition and positioning of green pepper based on the YOLOv5s

model. The study showed that the detection effect of green pepper

was the best under the illumination Angle of 90°, and the mAP

value was 97.3%.

Based on the research mentioned above, this paper proposes a

novel method for automatic counting of green pepper fruits based

on object tracking, aimed at facilitating rapid and accurate

estimation of green pepper yields. Effective object detection and

precise object tracking are crucial for achieving high counting

accuracy. Therefore, this paper implements the following tasks:
1.1 Improvement of YOLOv5s model with
lightweight design and
attention mechanism

Enhance the YOLOv5s model by incorporating the concepts of

lightweight model design and attention mechanisms. Adopt a Slim-

Neck structure to maintain model accuracy while reducing

computational complexity and enhancing detection speed.

Integrate channel attention modules and spatial attention

modules to improve feature perception and extraction of green

peppers at different locations within images.
1.2 Optimization of DeepSort algorithm for
green pepper tracking

Address the issue of double counting caused by ID switches

during green pepper tracking by optimizing the matching

mechanism within the DeepSort algorithm. These adjustments

aim to reduce ID switching events, particularly those triggered by

significant changes in green pepper motion characteristics.
1.3 Implementation of track post-
processing method

Use a track post-processing method to optimize green pepper

tracks, thereby minimizing double counting to the maximum

extent possible.
2 Methods

The enhanced DeepSort multi-target tracking algorithm is

integrated with the optimized YOLOv5s target detection algorithm

for the counting of green peppers. The optimized YOLOv5s

algorithm rapidly identifies green pepper fruits within the video

sequence. Subsequently, the data about detected fruits are inputted

into the enhanced DeepSort algorithm. This algorithm associates

identical fruits and allocates a distinct ID to each one throughout the

video sequence. Ultimately, the counting of green peppers is achieved

by tallying the unique IDs assigned to each fruit. The technological

roadmap for this counting method is depicted in Figure 1.
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2.1 Optimized YOLOv5s object
detection algorithm

The YOLOv5s algorithm, a one-stage detection framework,

adeptly balances detection speed with accuracy. Its architecture

comprises four primary components: the Input Layer, Backbone,

Neck, and Prediction Head, as shown in Supplementary Figure 1.

Within the Input Layer, green pepper images are resized to 640×640

pixels using adaptive picture scaling, ensuring training speed while

maintaining model accuracy. Additionally, the Mosaic data

augmentation method (Bochkovskiy et al., 2020) is employed,

where four images are randomly scaled, cropped, and arranged

together to enrich the dataset and enhance the model’s

generalization ability. The Backbone network consists of

structures such as Focus, BottleneckCSP (Redmon and Farhadi,

2018), and SPP (Spatial Pyramid Pooling) (He et al., 2014), which

are used to extract target features from the input image. The Neck

utilizes a network structure that integrates FPN (Feature Pyramid

Network) (Lin et al., 2017) and PAN (Path Aggregation Network)

(Liu et al., 2018) to aggregate high-level and low-level features,

reducing the loss of target features due to spatial compression and

channel expansion. This integration helps preserve important

features across different scales and resolutions, improving the

overall effectiveness of the feature extraction process. The

Prediction Head utilizes operations such as NMS (Non-

Maximum Suppression) (Bodla et al., 2017) to determine the best

bounding boxes and applies other techniques for refining

predictions. Additionally, it outputs three different-sized feature

maps to predict targets of various sizes. This approach allows for

comprehensive object detection across different scales within the

input image.

In the process of identifying green peppers, the similarity in

color between fruits and leaves, as well as their overlapping and

occlusion by branches and leaves, all affect green pepper fruit

recognition. The accuracy and speed of green pepper fruit

recognition also influence the subsequent tracking of it.

Therefore, this paper proposes the CS_YOLOv5s model based on

the YOLOv5s model for green pepper detection. Firstly, the Slim-

Neck combined with GSConv (Li H et al., 2024) is used to optimize

the Neck part of the YOLOv5 model, achieving a better balance

between detection accuracy and speed. GSConv integrates DWconv

and Conv modules to accelerate prediction calculations while

minimizing the loss of semantic information during spatial

compression and channel expansion of feature maps.

Simultaneously, a cross-stage partial network module VoV-

GSCSP, designed using a one-shot aggregation method, is

employed for effective information fusion between feature maps

at different stages. This reduces the complexity of computations and

network structures while maintaining sufficient accuracy. To

mitigate the interference of green pepper branches and leaves on

fruit recognition, the CBAM attention mechanism is introduced at

the connection between the Neck part and the Prediction Head of

the YOLOv5s model. This enhances the perception of green pepper

fruit features at different positions, improves the model’s feature

extraction capability, and increases the attention to green pepper
frontiersin.org
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fruit features. Figure 2 illustrates the network structure of the

optimized YOLOv5s algorithm.

2.1.1 CBAM attention mechanism
CBAM (Woo et al., 2018) (Convolutional Block Attention

Module) represents an attention mechanism tailored for image

processing, encompassing two sub-modules: Channel Attention

(Lu and Hu, 2022) and Spatial Attention (Gao C. et al., 2021).
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The structural layout of CBAM is depicted in Figure 3. This module

enhances green pepper recognition by further extracting features

from channels and spatial locations, effectively suppressing

interference information and accentuating significant locations.

2.1.2 Slim-neck combined with GSConv
Within the Neck layer of YOLOv5s, the integration of Slim-Neck

with GSConv has yielded notable results in the field of automotive
FIGURE 1

Roadmap of counting method.
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autonomous driving. To form the Slim-Neck network structure, the C3

module in the Neck layer is substituted with the VoVGSCSP module.

This alteration enhances the model’s generalization capabilities and

concurrently reduces the number of channels and parameters. Within

the Slim-Neck structure, the GSConv module replaces the standard

Convolution (Conv) module. GSConv fuses Standard Convolution

(Zhou et al., 2022) (SC) with Depth-wise Separable Convolution

(Hossain et al., 2021) (DSC). Through a Shuffle structure,

information from SC is intermingled with that from DSC, ensuring

both the stability of the model’s performance and a reduction in

parameters. The combined Slim-Neck and GSConv network structure

effectively minimizes the number of parameters while amplifying the

model’s feature extraction capabilities. Figures 4 and 5 illustrate the

structures of GSConv and Slim-Neck, respectively.
2.2 DeepSort multiple target
tracking algorithm

The DeepSort multi-target tracking algorithm comprises four

key components: the Kalman filter algorithm (Li et al., 2015), the

Hungarian algorithm, the Reid model, and Cascade matching. In

the following frame, the Kalman filter algorithm estimates the

target’s motion state. Mahalanobis distance, measuring the

discrepancy between the prediction box and the detection box,

serves as the target’s motion feature. In contrast, the cosine distance,

which assesses the similarity between the detection box feature

vector and the track feature set, defines the target’s appearance

feature. These features are then cascaded for matching. For tracks
Frontiers in Plant Science 05
and detection boxes that do not match, the cost matrix is

determined by the Intersection Over Union (IOU) value between

the prediction and detection boxes. Subsequently, these elements

are re-matched by employing the Hungarian algorithm.

The Kalman filter algorithm serves as an optimization tool for

estimating the states of dynamic systems. When tracking green

peppers, this algorithm predicts the fruit’s motion state in the next

frame. This algorithm operates in two phases: Prediction and

Update. In the Prediction phase, the motion state of the green

pepper at time T is forecasted based on its state at T-1. The Update

phase involves a weighted analysis of the green pepper’s motion

states at times T-1 and T, culminating in an adjusted motion state at

time T. The specific formula is shown in (1)–(6).

Prediction stage:

State prediction equation : X̂ t=t−1 = Ft* Xt−1=t−1 + Bt*ut (1)

Covariance prediction equation :Pt=t−1 = Ft*Pt−1=t−1*F
T
t + Qt (2)

X̂ t=t−1   and Pt=t−1 are the states and covariance matrices

obtained by the prediction; Xt−1=t−1 is the time state of t-1; Ft is

the state transition matrix; ut is the external control input; Pt−1=t−1 is

the covariance matrix of the current state; Qt is the covariance

matrix of process noise.

Update stage:

Measurement update equation : yt = Zt −Ht*X̂ t=t−1   (3)

Kalman gain equation :Kt = Pt=t−1*H
T
t *(Ht*Pt=t−1*H

T
t + Rt)

−1 (4)
FIGURE 2

Network structure of the CS_YOLOv5s algorithm.
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Status update equation :Xt=t =   X̂ t=t−1   + Kt*yt (5)

Covariance update equation : Pt=t = (I − Kt*Ht)*Pt=t−1 (6)

yt is the measurement residual; Zt is the measured value; Ht is

the measurement matrix; Rt is the covariance matrix of

measurement noise; Kt is the Kalman gain; I is the identity

matrix; Xt=t is the update status at t time.

The Hungarian algorithm, an optimization tool, addresses the

optimal allocation problem through combinatorial matching.

Within the DeepSort framework, the Hungarian algorithm

computes the minimum cost between object detection boxes and

tracking tracks, thus determining the most effective matching

scheme. The Intersection Over Union (IOU) value between the

prediction box and the detection box forms the cost matrix. The

Hungarian algorithm then utilizes this matrix to ascertain the

optimal match between target detection and tracking. To

circumvent ID switching of the detected target, which can occur

due to occlusion or overlap, both the motion and appearance

features of the target are cascaded for matching.
2.3 Improving DeepSort algorithm

Green pepper tracking faces significant challenges due to fruit

overlap and branch occlusion. Camera movement, fruit overlap,

and branch occlusion can substantially alter green peppers’ motion

features between video frames. This alteration hinders the ability to

match them with their previous tracks, often resulting in the
Frontiers in Plant Science 06
assignment of new IDs. To mitigate ID switching attributable to

changes in green peppers’ motion features, this study integrates an

appearance matching algorithm for green peppers into the

DeepSort algorithm, thereby enhancing the influence of the

matching mechanism based on green pepper appearance features.

Furthermore, to decrease the frequency of ID switching during

tracking, the track optimization algorithm from SportsTrack has

been incorporated. This method processes the generated tracks by

analyzing their correlations, thereby reducing mismatches during

tracking. Figure 6 presents the flow chart of the enhanced DeepSort

multi-target tracking algorithm.

2.3.1 Appearance feature matching
In green pepper fruit tracking, ID switching primarily occurs

due to motion feature changes across two video frames, manifesting

in two forms: permanent and reversible switching. Permanent

switching occurs when the motion features of a green pepper fruit

change irrecoverably, leading to the loss of original features and

subsequent matching to a new, stable track. This results in a

permanent change in the ID of the green pepper fruit, as

illustrated in Figure 7A. As illustrated in the figure, the green

pepper initially identified as ID 35 undergoes a permanent ID

switch, changing from 35 to 49. Conversely, reversible switching

happens when the motion features of a green pepper fruit mutate

but swiftly recover, allowing the original features to persist and the

initial track to be re-associated. In such instances, the green pepper

fruit’s ID undergoes a reversible change, as depicted in Figure 7B.

As can be seen from the figure, the green pepper fruit with ID 123

briefly switches to 142 and then returns to 123. However, for the
FIGURE 3

CBAM structure diagram.
FIGURE 4

GSConv structure diagram.
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green pepper count, ID 142 will be recorded. In both scenarios, the

green pepper fruit risks being double-counted.

The cascade matching within the DeepSort algorithm facilitates

the alignment between detected green peppers and generated tracks,

following a weighted assessment of both appearance and motion

features. Nevertheless, when motion features undergo significant

changes, cascade matching may fail, leading to the generation of a

new track and necessitating the re-matching of the detected green
Frontiers in Plant Science 07
pepper fruit. This study enhances the matching mechanism of the

DeepSort algorithm, amplifying the role of green pepper

appearance features in the target-track association process. Post-

cascade matching, an additional green pepper appearance feature

matching algorithm is incorporated. This step re-matches green

peppers and tracks that become dissociated due to motion feature

mutations, thereby reducing the incidence of ID switching in green

pepper tracking.
FIGURE 5

Slim-Neck structure diagram.
FIGURE 6

Improved flow chart of DeepSort multi-target tracking algorithm.
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2.3.2 Track optimization
The optimization of tracking can be broadly classified into two

primary categories: continuous track optimization and fragment track

optimization. As shown in Figure 8A, in a continuous time series,

multiple tracks are successively linked to the same green pepper, resulting

in an ID switch for the fruit. In fragment track optimization, illustrated in

Figure 8B, occlusions or camera movements cause a green pepper to

temporarily disappear and reappear, matching with a new track and

resulting in an ID switch in fragmented time. In both scenarios, there is a

risk of double-counting the green pepper fruit. The improved

SportsTrack track optimization algorithm is applied to refine green

pepper tracking, aiming to minimize this double-counting error.

In the captured video sequence, each green pepper fruit exhibited

uniform linearmotionandpossessed adistinct shape,markedlydiffering

from the athletes tracked in SportsTrack (Wang et al., 2023). This study

integrates position and shape feature matching into the SportsTrack

track optimization algorithm, enhancing the accuracy of the

optimization process. Initially, unstable and partially stable tracks are

eliminated based on the variance in their appearance feature similarity.

For two stable track segments containingMandNframes, respectively, a

similarity matrix is computed if they persist for a reasonable duration.

Should the count of M×N similarity values exceed half of their product,
Frontiers in Plant Science 08
the position and shape features of the two tracks are matched. Upon

satisfying all criteria, the two tracks are deemed to have the same ID and

consequently merged into a single track. Supplementary Figure 2

illustrates the complete track optimization process.
3 Experimental

3.1 Dataset acquisition

The green pepper variety utilized in this experiment was ‘Xiangyan

15’, cultivated in the experimental field of Hunan Agricultural

University, located in Furong District, Changsha City, Hunan

Province. When collecting data, the self-made radio-controlled car

was driven at a constant speed using a remote control., A DJI Osmo

Mobile SE handheld stabilizer was mounted on the car to secure the

phone and minimize vibrations, ensuring stable image capture. The

phone model used was an OPPO Reno6 Pro+. The specific parameters

of the remote-controlled car are listed in Table 1.

At 8 am (low), 12 noon (high), and 4 PM (middle) different light

intensities, the radio-controlled car at 0.2m/s speed to collect data.

The fruit density was distinguished according to the number of
A

B

FIGURE 7

Two cases of green pepper ID switching. (A) indicates that the previous ID of the pepper track can no longer be restored after the switch due to the
change of pepper motion characteristics, and (B) indicates that the previous ID of the pepper track can be restored after the switch due to the
change of pepper motion characteristics.
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green peppers in each image. Figure 1 illustrates the shooting

process and the resulting image quality. The dataset comprises

1200 images, each with a resolution of 1920×1080, stored in JPG

format. Additionally, seven videos were captured at a resolution of

1920×1080, in MP4 format, with a frame rate of 30 fps. Detailed

information about each video is provided in Table 2.

To augment the green pepper image dataset, standard data

enhancement techniques including Image Rotation, Gaussian Blur,

Mirror Flip, and Brightness Change were employed in random

combinations. The effects of this image expansion are depicted in

Supplementary Figure 3. Consequently, the green pepper image dataset

expanded from 1200 to 4800 images. The data set is divided into the

training set and the test set by a ratio of 7:3. Similarly, the video dataset

was split into training and test datasets in a 4:3 ratio. This division was

designed to facilitate the training of the ReID model within the

DeepSort algorithm and to evaluate its tracking performance and

counting accuracy.
3.2 Experimental platform

The experimental setup utilized an HP DELL T5820

workstation, configured with a XEON W2155 CPU, 32GB of
Frontiers in Plant Science 09
RAM, and an NVIDIA RTX2080Ti 12G graphics card. The

Pytorch1.8 deep learning framework was deployed on a Windows

10 operating system, with Python 3.8 as the programming language.

For YOLOv5s model training, input images were resized to

640×640 pixels. Stochastic Gradient Descent (SGD) was employed

to optimize the model parameters. The Weight Decay was set at

0.005, with a Momentum Factor of 0.937. The training used a Batch

Size of 4 across 300 Epochs.

During ReID model training, the ResNet network served as the

base model. Input images were resized to 128×256, with Stochastic

Gradient Descent (SGD) and a Momentum Factor of 0.9 for

optimization. Leveraging Market’s official pre-training weights,

the training was conducted with a Batch Size of 64 over 300 Epochs.
3.3 Evaluation metrics

In assessing the object detection algorithm, key metrics include

Recall (R), Precision (P), mean Average Precision (mAP), and the

Detection Time for a single image and GFLOPs. These metrics are

defined by the formulas in Equations (7)–(9).

Precision =  
TP

TP + FP
(7)

Recall =  
TP

TP + FN
(8)

mAP =  o
n
k=0AP

N
(9)

Here: TP - the number of real samples;

FP - the number of false positive samples;

FN – number of false negative samples;
A

B

FIGURE 8

Track optimization of two cases. (A) represents ID switching in the continuous track, and (B) represents ID switching in the pepper track in the
track fragment.
TABLE 1 The parameters of the radio-controlled car.

Parameter Value/Method

Drive mode Four-wheel drive

Speed range 0–2m/s

Steering control Differential steering

Load capacity 0–5kg
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N - the number of classes in the sample.

The evaluation of the multi-target tracking algorithm employs

ID Switch (IDs) (Luo et al., 2014), Multiple Object Tracking

Accuracy (MOTA), and Multiple Object Tracking Precision

(MOTP) as key metrics. IDs quantifies the frequency of ID

changes for the same target caused by incorrect associations;

ideally, this metric should be zero. MOTA effectively gauges the

performance of tracking algorithms in terms of target detection and

track stability. MOTP assesses the positioning accuracy of the

detection system. The calculations for MOTA and MOTP are

detailed in Equations (10) and (11).

MOTA = 1 −oFP + FN + IDSW

oGT
(10)

MOTP =  ot,idt,i

otct
� 100% (11)

Here: FN - the number of false negative examples;

FP - the number of false positive examples;

GT - the number of labeled targets;

IDSW - the number of ID switch;

ct - the number of successful matches in the current frame;

dt,i - the distance between the real box and the detection box;

i - the current detection target;

t - the sequence number of the frame.

To evaluate the performance of green pepper counting in video

sequences, three indexes are proposed: Average Counting Precision

(ACP), Mean Absolute Error (MAE), and Root Mean Square Error

(RMSE). ACP and MAE can measure the performance of the model

and reflect the accuracy of counting, while RMSE can reflect the

robustness of the model (Jiang et al., 2021). These metrics assess

both the accuracy and error in counting. The formulas for these

evaluation indexes are provided in Equations (12)–(14).

ACP =  oN
1 (1 −

GT−COUNTj j
GT )

N
(12)

MAE =  o
N
1 GT − COUNTj j

N
(13)
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RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

1 (GT − COUNT)2

N

s
(14)

Here: GT - the number of labeled targets;

COUNT - the number of statistics;

N - the number of videos.
4 Results analysis

4.1 Detection results and analysis

The training process of the model is depicted in Supplementary

Figure 4, showing that the CS_YOLOv5s model converges faster

during training, with a lower final loss value compared to YOLOv5s.

To evaluate the impact of each improvement module on the

YOLOv5s model, ablation experiments were conducted on the

test set, and the results are presented in Table 3.

After applying the Slim-Neck + GSConv structure to the

YOLOv5s model, the precision decreased, but recall and mAP

values increased. Additionally, the Detection time of a single image

and GFLOPs were reduced. Further adding the CBAM attention

mechanism resulted in the proposed CS_YOLOv5s model.

Experiment results show that with the addition of the CBAM

attention mechanism, which enhances the model’s attention to

green pepper fruit features, recall and mAP values improved, while

precision, detection time of a single image, and GFLOPs remained

relatively unchanged. Comparing the YOLOv5s model with the

CS_YOLOv5s model, the latter exhibits slightly lower accuracy but

a 1.1% increase in recall, a 0.5% increase in mAP value, and a

reduction of 3.3ms in the detection time per single image.

The detection results of the model for green peppers with

different densities are shown in Figure 9. As illustrated in

Figure 9, the optimized YOLOv5s algorithm demonstrates

superior detection confidence for green peppers across different

densities, compared to the standard YOLOv5s algorithm.

Furthermore, the optimized YOLOv5s algorithm notably reduces

missed detections of green pepper, thereby enhancing the stability

of subsequent green pepper tracking.
TABLE 2 Detailed information about each video.

Video Light intensity Green pepper density Video duration/s

Test

Video001 Medium Low 12

Video002 Medium High 17

Video003 Low High 20

Train

Video004 High Low 6

Video005 Medium Medium 11

Video006 Medium Medium 17

Video007 Low Medium 27
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This paper compares CS_YOLOv5s with the YOLO series and

the DR_DETR object detection algorithm, as shown in Table 4.

From the table, it is evident that YOLOv5s has a significant

advantage in recognizing chili peppers. Although YOLOv6s,

YOLOv8s, and YOLOv3-tiny exhibit slightly higher Precision

than YOLOv5s, their Recall and mAP values are much lower than

YOLOv5s, and they have higher parameter counts. While RT-

DETR achieves good performance, its parameter count is

excessively large. The proposed CS_YOLOv5s in this paper

achieves good levels of recall rate, precision rate, mAP value, and

GFLOPs, meeting the requirements for chili pepper recognition and

subsequent tracking tasks.
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4.2 Track results and analysis

This experiment incorporates both the appearance feature

matching algorithm and the track optimization algorithm into the

DeepSort framework. To evaluate the impact of each component on

the DeepSort algorithm, CS_YOLOv5s was used as the object

detector, and the two algorithms were tested in turn.

Following the integration of the two algorithms into the

DeepSort framework, the tracking effectiveness of green pepper

fruit under three distinct conditions was compared, with the results

detailed in Table 5. The test results indicate that post-integration,

the Multiple Object Tracking Accuracy (MOTA) and Multiple
TABLE 3 Test comparison of test results.

Baseline
model

Slim-Nick
+GSConv

CBAM P/% R/% mAP/%

Detection
time of
a single

image/ms

GFLOPs

YOLOv5s 99 93.9 96.8 9.4 16.3

YOLOv5s √ 98.7 94.5 96.9 6.0 15.3

YOLOv5s √ √ 98.6 95 97.3 6.1 15.4
“√” indicates the addition of this module based on the YOLOv5s model.
FIGURE 9

Detection results of different density models.
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Object Tracking Precision (MOTP) for green pepper tracking under

various conditions exhibit minimal fluctuations, while the number

of ID switches is notably reduced. Videos 001 and 002 share

identical lighting conditions but differ in green pepper density. A

comparative analysis of their test results reveals the effectiveness of

both algorithms in track optimization, with the addition of the

appearance feature matching algorithm showing a more

pronounced impact. Videos 002 and 003 present the same green

pepper density, yet Video 003 features lower light intensity. The

comparison between these videos indicates an enhanced

optimization effect from the appearance feature matching

algorithm under reduced light conditions. These results suggest

that lower light intensity leads to increased correlation errors
Frontiers in Plant Science 12
between the target and track, attributable to changes in the

motion features of green pepper fruit.

Upon comprehensive analysis, it was observed that the standalone

integration of the appearance feature matching algorithm resulted in a

25% reduction in the number of ID switches. Furthermore, the exclusive

addition of the track optimization algorithm led to a 4.41% decrease in

ID switches. When both the appearance feature matching and track

optimization algorithms were combined, there was a notable reduction

of 29.41% in ID switching. These results are detailed in Table 6.
4.3 Counting results and analysis

In order to explore the influence of the appearance matching

algorithm and track optimization algorithm on the counting of

green pepper fruit, CS_YOLOv5s was used as the detector of

DeepSort algorithm to carry out the counting comparison

experiment of green pepper fruit. The count of green pepper

fruits under three distinct conditions within the test set, as

detailed in Table 1, was comparatively analyzed, with the findings

presented in Table 7. An examination of the test results from Videos

001 and 002 reveals that an increase in green pepper fruit density

correlates with a decrease in counting accuracy and an increase in

missed detections. This trend is attributed to the intensified

influence of green pepper branches, leaves, and fruit overlap on
TABLE 4 Comparison of multiple target detection algorithms.

model P/% R/% mAP/% GFLOPs

CS_YOLOv5s 98.60 95.00 97.30 15.40

YOLOv5s 99.00 93.90 96.80 16.30

RT-DETR 95.80 96.80 97.90 108.30

YOLOv3-tiny 99.00 78.00 88.00 19.00

YOLOv6s 99.00 90.80 95.20 44.20

YOLOv8s 99.20 91.40 95.50 28.40
TABLE 5 Test comparison of tracking effect.

model Name Algorithm GT MOAT/% MOTP/% IDs

CS_YOLOv5s

Video
001

Deep Sort

57

91.0 85.9 15

Deep Sort +
appearance matching

91.2 85.9 14

Deep Sort
+ optimization

91.0 85.9 15

Deep Sort +
appearance
matching

+optimization

92.2 86.1 14

Video
002

Deep Sort

95

92.7 86.8 29

Deep Sort+
appearance matching

92.8 86.8 23

Deep Sort
+ optimization

92.7 86.8 27

Deep Sort +
appearance matching

+ optimization
92.8 87.4 21

Video
003

Deep Sort

96

88.6 88.3 24

Deep Sort+
appearance matching

89.4 88.0 14

Deep Sort
+ optimization

88.7 88.3 23

Deep Sort +
appearance matching

+ optimization
89.4 87.3 13
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both detection and tracking as the density increases. Comparing

Videos 002 and 003, a decrease in light intensity is observed to lead

to lower counting accuracy and higher missed detection rates for

green pepper fruit. The difficulty in identifying green pepper fruit in

low-light conditions is the primary reason for this outcome. Upon

comparing the three scenarios, it is evident that under challenging

conditions of low light and high-density green pepper fruit, the

integration of both algorithms significantly enhances

counting accuracy.

A comprehensive evaluation across all three scenarios was

conducted to compare the effects of the two algorithms on
Frontiers in Plant Science 13
counting accuracy, with the findings detailed in Table 8. In the

absence of optimization algorithms, the Average Counting

Precision (ACP) stands at 88.13%, the Mean Absolute Error

(MAE) at 10, and the Root Mean Square Error (RMSE) at 10.68.

Following the sequential addition of the appearance feature

matching and track optimization algorithms, the ACP increases

by 5.46% and 2.44% respectively, while both the MAE and RMSE

decrease correspondingly. When both algorithms are integrated

into the DeepSort algorithm simultaneously, for green pepper

counting in videos, the ACP (Average Counting Precision), MAE

(Mean Absolute Error), and RMSE (Root Mean Squared Error)
TABLE 6 Comprehensive comparison of tracking effect test.

model
Numberof

video
Algorithm GT MOAT/% MOTP/% IDs

CS_YOLOv5s 3

Deep Sort

247

90.9 87.1 68

Deep Sort+
appearance matching

91.3 86.9 51

DeepSort
+ optimization

90.9 87.1 65

DeepSort +
appearance matching

+ optimization
91.3 86.9 48
TABLE 7 Comparison of counting effect tests.

Video Algorithm GT Count IDSW ACP MAE

Video
001

DeepSort

57

63 15 89.47% 6

DeepSort+
appearance matching

62 14 91.23% 5

DeepSort
+ optimization

63 15 89.47% 6

DeepSort +
Appearance
matching
+ optimization

62 14 91.23% 5

Video
002

DeepSort

95

104 29 90.52% 9

DeepSort+
appearance matching

99 23 95.79% 4

DeepSort
+ optimization

100 27 94.74% 5

DeepSort +
Appearance
matching
+ optimization

96 21 98.95% 1

Video
003

DeepSort

96

111 24 84.38% 15

DeepSort+
appearance matching

102 14 93.75% 6

DeepSort
+ optimization

108 23 87.50% 12

DeepSort+
Appearance
matching
+ optimization

100 13 95.83% 4
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values of 95.33%, 3.33, and 3.74, respectively. Compared to the

original algorithm, ACP increases by 7.2%, while MAE and RMSE

decrease by 6.67 and 6.94, respectively. The integration of these two

algorithms results in a substantial enhancement of the counting

accuracy robustness of the algorithm.

To investigate the impact of YOLOv5s and CS_YOLOv5s on

green pepper fruit counting, comparative experiments were

conducted using the improved DeepSort algorithm as the basis.

The experimental results are summarized in Table 9 below. In

conclusion, the CS_YOLOv5s model demonstrates significant

advantages in green pepper fruit counting accuracy and

robustness compared to YOLOv5s. However, the FPS

improvement when processing videos using CS_YOLOv5s is only

slightly higher than that of YOLOv5s, indicating that the matching

process while tracking green pepper fruits consumes significant

computational resources. Based on this study, the processing speed

of videos reaches 17 FPS, which is insufficient for the real-time

processing of 30 FPS videos. In order to realize the real-time

detection of green pepper fruit, it is necessary to reduce the video

frame rate to 15FPS. Obviously, after the frame rate is reduced, the

sampling interval of the two frames of images is not consistent with

the sampling in this experiment. Therefore, the speed of the radio-

controlled car should be reduced by half.
4.4 Track effect improvement

4.4.1 Comparison results of adding appearance
feature matching

In the DeepSort algorithm, the green pepper fruit’s appearance

feature matching algorithm was integrated into the matching

process, with the test results depicted in Figure 10. Post-

integration, this algorithm effectively alleviates the two primary

types of false associations stemming from the motion feature

mutations of green pepper fruit, leading to a reduction in the

number of ID switches.
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4.4.2 Comparison results of track optimization
The optimization of the green pepper fruit tracking process

significantly alleviated incorrect target-to-track matching, with the

test results presented in Figure 11. By utilizing track context

information, issues of ID switching in both continuous and

fragmented tracks were mitigated, resulting in more stable

tracking of green pepper fruit.
5 Conclusion

This paper focuses on the fusion and individual optimization of

the DeepSort multi-target tracking algorithm and the YOLOv5s

target detection algorithm to enable accurate counting of green

peppers in video sequences, conducting experiments to verify the

efficacy of these optimizations. The experiments led to the

following conclusions:
(1) A target detection model named CS_YOLOv5s based on

the YOLOv5s framework was proposed. CS_YOLOv5s

utilizes a Slim-Neck combined with GSConv to optimize

the Neck layer, balancing the model’s detection accuracy

and speed. Additionally, the model incorporates the CBAM

attention mechanism to enhance the feature perception

capability of the model for different positions of green

pepper fruits, thereby improving feature extraction.

Experimental results demonstrate that the CS_YOLOv5s

model achieved an mAP (mean Average Precision) of

98.96%, Precision rate of 95%, Recall rate of 97.3%, and

Detection Time for a single image of 6.3 ms. Comparative

analysis under different densities of green pepper fruits

showed that the performance of the CS_YOLOv5s model

surpassed that of the original model.

(2) In response to the causes of ID switching observed in green

pepper fruit tracking, this paper enhances the matching

mechanism of the DeepSort algorithm, placing greater
TABLE 8 Comprehensively comparison of counting effect tests.

Algorithm Number of videos ACP MAE RMSE

DeepSort 3 88.13% 10 10.68

DeepSort +
appearance matching

3 93.59% 5 5.07

DeepSort + optimization 3 90.57% 7.67 8.27

DeepSort+
Appearance matching
+ optimization

3 95.33% 3.33 3.74
TABLE 9 Effect of target detector on counting.

Algorithm Model
Number
of videos

ACP MAE RMSE FPS

DeepSort +
Appearance matching

+ optimization

YOLOv5s 3 93.29% 5.33 5.58 15.9

CS_YOLOv5s 3 95.33% 3.33 3.74 16.2
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emphasis on green pepper characteristics during the

matching process. Additionally, the track optimization

algorithm from SportsTrack was employed and refined

for improved green pepper track. Using CS_YOLOv5s as

the object detector, after sequentially integrating these

enhanced functionalities into the DeepSort algorithm,

while the improvements in MOAT (Multiple Object

Tracking Accuracy) and MOTP (Multiple Object

Tracking Precision) are modest, a significant reduction in

ID switching is observed. By simultaneously integrating

these two algorithms into DeepSort, the number of ID

switches for pepper fruits in the video decreased from 68 to

28, representing a reduction of 29.41%.
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(3) The impact of appearance feature matching and track

optimization algorithms on the counting accuracy of green

pepper fruit was experimentally investigated within the

DeepSort framework. These two algorithms demonstrated

varying degrees of effectiveness in enhancing the counting

accuracy of green peppers. When compared across various

environments, the appearance feature matching algorithm

was found to more effectively improve counting accuracy.

After integrating both algorithms, the Average Counting

Precision (ACP) increased to 95.33%, the Mean Absolute

Error (MAE) decreased to 3.33, and the Root Mean Square

Error (RMSE) decreased to 3.74. Compared to the original

algorithm, ACP increases by 7.2%, while MAE and RMSE
A

B

FIGURE 10

Effect of green pepper tracking after improvement. (A) shows the improvement effect of pepper trajectory under the condition of 'A' in Figure 7
before and after the algorithm is used; (B) shows the improvement of pepper trajectory in the case of 'B' in Figure 7 before and after the algorithm
is used.
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decrease by 6.67 and 6.94, respectively. The algorithm

significantly improves the counting accuracy and

robustness of green pepper fruits. and based on the

optimized DeepSort algorithm, the influence of different

detectors on counting is compared, and it is found that

better detectors will get better results.
6 Outlook

The research demonstrates that combining object detection

algorithms with object tracking algorithms can effectively, quickly,
tiers in Plant Science 16
and accurately count pepper fruits, thereby estimating pepper fruit

yield, which has practical value. However, there are numerous

varieties of peppers, and harvesting requirements and growing

conditions vary. Therefore, future research will further expand to

acquire more datasets to enhance adaptability to different

agricultural environments.

In addition, the research shows that the fruit counting of green

pepper can basically achieve real-time detection, but the real-time

detection frame rate needs to be improved by further optimization

algorithms. The tracking and matching process of pepper fruit

consumes a lot of time and computing resources. Future efforts

could focus on optimizing matching algorithms to simplify them

and improve matching speed while ensuring accuracy.
A

B

FIGURE 11

Results of green pepper track optimization. (A) shows the improvement effect of pepper track under the condition of 'A' in Figure 8 before and after
the algorithm is used; (B) shows the improvement of pepper trajectory in the case of 'B' in Figure 8 before and after the algorithm is used.
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