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Identification of differential
gene expression related to
reproduction in the sporophytes
of Saccharina japonica
Toshiki Uji*, Takuya Kandori and Hiroyuki Mizuta

Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of
Fisheries Sciences, Hokkaido University, Hakodate, Japan
Saccharina japonica, a significant brown macroalga in the Pacific Ocean, serves

as a food source and industrial material. In aquaculture, collecting mature

sporophytes for seedling production is essential but challenging due to

environmental changes. In this study, transcriptomic analysis of vegetative and

sorus tissues was done to identify differentially expressed genes (DEGs) and

enhance our understanding of sorus formation regulation in S. japonica. KEGG

pathway and Gene Otology (GO) analysis revealed that upregulated DEGs were

involved in folate biosynthesis, riboflavin metabolism, and amino acid

biosynthesis. In addition, the upregulation of genes associated with cell wall

remodeling, such as mannuronan C-5-epimerases, vanadium-dependent

haloperoxidases, and NADPH oxidase, was observed in sorus parts. Meanwhile,

downregulated DEGs in sorus portions included genes related to chloroplast

function. These findings will help us understand the regulatory mechanisms

behind sorus formation in S. japonica and extracellular matrix remodeling in

brown algae.
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1 Introduction

Saccharina japonica, an ecologically significant brown macroalga, is a major

component of productive beds on the northwest coast of the Pacific Ocean (Xu et al.,

2015). It is one of the most economically important seaweeds in aquaculture, extensively

utilized as a food source and raw industrial material (Tseng, 2001). In Japan, S. japonica is

an essential ingredient for making dashi (soup stock) as “kombu” in Japanese cuisine.

In S. japonica aquaculture, high-quality wild mature sporophytes are collected from the

periphery of aquaculture sites in autumn to produce seedlings. However, due to recent

marine environment changes, it has become increasingly difficult to collect mature S.

japonica sporophytes that release active zoospores (Yotsukura et al., 2022). Certain hybrid

cultivars of S. japonica, despite having excellent agronomic traits, also exhibit late
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maturation (Liu et al., 2023). This hinders the hybrid cultivars from

producing spores at the time of seedling production, limiting their

practical application. Thus, understanding sporogenesis regulation

is crucial for sustainable aquaculture in S. japonica.

Previous studies investigated the physiological alterations

during sorus formation, such as decreased photosynthesis and

increased respiration (Nimura and Mizuta, 2001). An exogenous

application of abscisic acid (ABA) to sporophyte disks of S. japonica

promoted sorus formation, and the amount of ABA in sorus tissue

was significantly increased compared to that in vegetative tissue

(Nimura and Mizuta, 2002). Sorus also accumulates high levels of

phenolics, silicon, and iodoperoxidase (IPO) activity compared to

its vegetative parts to increase its defensive capacity (Mizuta and

Yasui, 2010; Mizuta and Yasui, 2012) (See review (Uji and Mizuta,

2022)). In addition to physiological studies, systematic analysis

identified the genes encoding enzymes for the biosynthesis of cell

wall carbohydrates (including alginate, fucoidan, and cellulose) and

cytoplasm storage carbohydrates (mannitol, laminarin, and

trehalose) during the sporophyte development (Zhang et al.,

2020). However, molecular biological findings that complement

physiological findings in the sporogenesis of S. japonica are

still lacking.

In this study, a comparative transcriptomic analysis was

performed on vegetative and sorus tissues of S. japonica

sporophytes to investigate the differentially expressed genes (DEGs)

during reproduction. The findings of this study will enhance our

understanding of the regulatory mechanisms, especially cell wall

remodeling involved in sorus formation of S. japonica.
2 Materials and methods

2.1 Algal materials

Mature S. japonica sporophytes cultured in a farming area off the

coast of Minamikayabe, Hakodate City, Hokkaido, Japan, were

collected in October 2023 and transported in a cool box with

refrigerants to our laboratory. After 1 h, the disks (3 cm in

diameter) formed sorus (mature) and nonsorus portions that did

not contain meristematic regions (vegetative), which were cut by a

cork borer from the marginal parts sited at 100–200 cm from the

stipe-blade transition along each sporophyte (~3 m long). The release

of the zoospores from sorus portions was confirmed. The disks were

wiped with a paper towel and washed with sterilized seawater to

remove the attached organisms. The disks were cultured in 800 mL of

sterile vitamin-free Provasoli’s enriched seawater (Provasoli, 1968) at

10°C under 10–20 mmol photons m−2 s−1 (12 h light/12 h dark cycle)

to reduce the effect of dissection on gene expression. After 1 week, the

disks were harvested at 10:00 am, immediately frozen with liquid

nitrogen, and stored at −80°C until RNA extraction.
2.2 RNA extraction

Total RNA extraction was conducted using a combination of a

CTAB-based method and the RNeasy Plant Mini Kit (Qiagen,
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Hilden, Germany), following the protocol by (Heinrich et al.,

2012) with minor modifications. Frozen sporophytes were ground

in liquid nitrogen with a mortar and pestle and were transferred to

tubes. Then, 1 ml of extraction buffer (composed of 2% CTAB, 1 M

NaCl, 100 mM Tris pH 8, 50 mM EDTA, pH 8, 3%

Polyvinylpolypyrrolidone) and 40 µl of 1M DTT were added and

thoroughly mixed. The resulting mixture was incubated at 45°C for

10 mins. Then, one volume of chloroform: isoamylalcohol (24:1)

was vigorously mixed for 10 mins. The tubes were centrifuged for 20

min at 20°C and 12,000 g. Subsequently, 600 µl of the aqueous phase

was carefully transferred into a new tube. An additional step

involved the gentle addition and mixing of 0.3 volumes of 100%

EtOH by inverting the tube. A second chloroform extraction was

performed by adding one volume of chloroform: isoamylalcohol

(24:1). Following centrifugation, 500 µl of the resulting supernatant

was transferred to a new tube. Total RNA extraction was

accomplished using an RNeasy Plant Mini Kit, following the

manufacturer’s instructions. The extracted RNA was purified

using a TURBO DNA-free kit (Invitrogen/Life Technologies,

Carlsbad, CA) to obtain DNA-free RNA. RNA samples’ quantity

and integrity were assessed using a NanoDrop™ 2000

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and

an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA).
2.3 RNA sequencing analysis

Six libraries of complementary DNA (two conditions: vegetative

and mature × three replicates) for S. japonica were constructed and

subsequently sequenced using an Illumina NovaSeq 6000

instrument at Rhelixa Inc. The obtained reads were trimmed for

low-quality reads and adapter sequences using fastp (Chen et al.,

2018). After trimming, STAR (Dobin et al., 2013) was used to map

high-quality reads to an in-house gene model of S. japonica, which

was constructed with a reference genome (ASM882872v1) using

BRAKER 2.1.6 (Brůna et al., 2021). The normalized expression of

each gene was calculated using RSEM (Li and Dewey, 2011) as

transcripts per million. DEGs between vegetative and mature were

identified using edgeR (Robinson et al., 2010) on the false discovery

rate significance score < 0.05 and |log2 fold change| > 1.
2.4 Functional annotation of RNA-Seq data

The obtained DEGs were annotated as follows. First, gene

coding regions of S. japonica were inferred by Braker (Brůna

et al., 2021) to use the genome sequences for functional

annotation. The eukaryotic protein database OrthoDB v10

(Kriventseva et al., 2019; Zdobnov et al., 2021) was used to

predict S. japonica gene coding regions. The protein sequences of

the obtained gene coding regions were functionally annotated using

EnTAP (Hart et al., 2020) and InterProScan (Jones et al., 2014).

To assess the biological significance of the DEGs, Gene

Ontology and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were conducted. GO terms
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were assigned to all genes using eggNOG-mapper v2 online (http://

eggnog-mapper.embl.de/) (Huerta-Cepas et al., 2019; Cantalapiedra

et al., 2021) with the default parameters, except that the min_hit_e-

value was set to 0.05. The topGO (Alexa and Rahnenfuhrer, 2023) R

package was used for GO enrichment analysis, and GO terms with P

< 0.05 were considered significantly enriched in the DEGs. A

KOBAS 3.0 software (Bu et al., 2021) was used for KEGG

annotation and enrichment analysis based on the KEGG

PATHWAY databas e (h t tp s : / /www.genome . jp /kegg /

pathway.html) (Kanehisa and Goto, 2000). Pathways with a

corrected p-value (q-value) < 0.05 were defined as significantly

enriched pathways for DEGs.
2.5 Quantitative PCR

First-strand cDNA was synthesized from 0.5 µg of total RNA

(same RNA used for RNA-seq) using a PrimeScript II 1st strand

cDNA Synthesis Kit (TaKaRa Bio, Shiga, Japan). The cDNA was

diluted 10-fold for qPCR analysis, and 1.0 µl of the diluted cDNA

was used as a template in a 20 mL reaction volume using KOD

SYBR® qPCR Mix (TOYOBO, Osaka, Japan), following the

manufacturer’s instructions. Real-time PCR was performed with a

LightCycler® 96 System (Roche Diagnostics, Basel, Switzerland)

under the following conditions: 2 min at 98°C followed by 40 cycles

of 10 s at 98°C, 10 s at 55°C, and 30 s at 68°C. The mRNA levels

were calculated using the 2−△△Ct method and normalized to levels

of the 18S ribosomal RNA gene. The relative expression level was

calculated as a ratio of the mRNA level to the transcription level of

vegetative samples. All experiments were performed in triplicate.

Supplementary Table S1 lists the primers used in this study.
3 Results and discussion

3.1 Identification of DEGs related
to reproduction

Using RNA-seq, the transcripts in S. japonica were compared

between sorus (mature) and nonsorus portions (vegetative) to identify

candidate genes regulating sorus formation. Raw data generated by

sequencing ranged from 18.0–24.2 million reads per sample. After

filtering, 17.6–23.9 million clean reads were obtained, and the mapping

rate was 76.9–86.0%. A summary of the obtained RNA sequencing

datasets and mapping rates of clean reads is shown in Table 1.

A total of 629 DEGs were obtained between mature and

vegetative, including 354 upregulated and 275 downregulated

genes in sorus portions (Supplementary Table S2). Six DEGs

(three each for upregulated and downregulated genes) were

selected for qPCR analysis to validate the accuracy of the RNA-

seq data. As shown in Figure 1, expression levels of the selected

genes were similar in the RT-qPCR and RNA-seq analyses,

indicating that the RNA-seq results were reliable. Shown in

Tables 2, 3 are the representative genes found to be differentially

expressed in mature sporophytes.
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3.2 KEGG enrichment and GO analysis

KEGG enrichment analysis indicated that upregulated DEGs in

sorus portions could be categorized into several pathways, including

folate biosynthesis; riboflavin metabolism; and amino acid

biosynthesis, such as serine (Figure 2). Folates are indispensable

components of metabolism in all living organisms; they play as

donors and acceptors of one-carbon groups in one-carbon transfer

reactions that participate in the formation of numerous important

biomolecules, such as nucleic acids, pantothenate (vitamin B5), and

amino acids (Gorelova et al., 2017). The strong antioxidant

properties of folates can be considered a key factor in elucidating

their role in enhancing plant tolerance to diverse abiotic stresses

and preventing oxidative damage (Alsamadany et al., 2022). Folates

also regulate cellular and molecular events that affect plant growth

and development, including cell division (Gorelova et al., 2017). In

folate metabolism, serine is crucial for the regulation of methyl

group transfer by providing tetrahydrofolate metabolism with C1

units (Ros et al., 2014). Previous studies suggest that serine is

involved in the biosynthesis of several biomolecules required for

cell proliferation (Ros et al., 2014). Riboflavin (vitamin B2) is a vital

component required for fundamental metabolism and a precursor

of the coenzymes, FAD and FMN (Jiadkong et al., 2024). Riboflavin

metabolism includes antioxidant activity, cell signaling, and

coenzyme function (Jiadkong et al., 2024). During sorus

formation, upregulation of folate and amino acid biosynthesis,

and riboflavin metabolism may play an important role in cell

proliferation for sporulation and antioxidant system for reactive

oxygen species (ROS) homeostasis.

Conversely, KEGG enrichment analysis revealed that

downregulated DEGs in sorus portions were categorized into

pathways, including photosynthesis-antenna proteins, carbon

fixation, and secondary metabolite biosynthesis (Figure 3).

To elucidate the biological processes, molecular functions, and

cellular components associated with DEGs, GO analysis was

performed using eggNOG-mapper and topGO. In upregulated

DEGs, GO terms related to serine biosynthesis, riboflavin

biosynthesis, and cell wall metabolism were enriched (Figure 4).

In downregulated DEGs, GO terms related to photosynthesis and

chloroplast components were enriched (Figure 5). Consequently,

KEGG enrichment analysis and GO analysis revealed that

upregulated genes were associated with vitamin and amino acid
TABLE 1 Summary of transcriptome analysis in Saccharina japonica.

Sample
name

Raw
reads

Clean
reads

GC
content

(%)

Mapping
rate (%)

Vegetative-1 20,894,576 20,601,412 53.8 86.0

Vegetative-2 18,062,424 17,633,548 54.4 85.0

Vegeattive-3 19,272,408 18,832,922 54.8 84.4

Mature-1 22,475,716 22,086,784 54.9 84.8

Mature-2 24,258,320 23,923,762 55.8 83.0

Mature-3 23,512,470 23,204,488 55.4 76.9
f
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biosynthesis and cell wall metabolism. In contrast, photosynthesis-

related genes were downregulated.
3.3 Upregulation of ECM remodeling

DEG analysis revealed abundant transcripts in the sorus parts,

including genes associated with the extracellular matrix (ECM), such

as cell wall remodeling (Table 2; Figure 6). The ECM is a complex

supramolecular network that imparts both rigidity and flexibility to

multicellular tissues (Hynes, 2009). Beyond its structural role, it

regulates development and protects cells from biotic and abiotic

stresses (Kim et al., 2011). The ECMs of macroalgae, commonly
Frontiers in Plant Science 04
referred to as the cell wall, consist of complex assemblages of

cellulose, various hemicelluloses, and unique sulfated

polysaccharides (Kloareg et al., 2021). The primary cell wall

components in brown algae are anionic polysaccharides, specifically

alginates and fucose-containing sulfated polysaccharides (Chi et al.,

2018). Alginate plays a more prominent role in supporting cell

structure than fucoidan (Kloareg et al., 2021).

Alginate is composed of two hexuronic acids: D-mannuronic acid

(M) and L-guluronic acid (G). These are arranged in unbranched

homopolymeric regions of M and G blocks, interspaced with a

random arrangement of both monomers (MG blocks) (Heyraud

et al., 1996). Alginate with a low M/G ratio exhibits superior

mechanical properties compared to that with a high M/G ratio.

Alginate with a high G-content also has a higher antibacterial activity

than its low G-content counterpart (Ci et al., 2021). In brown algae,

the composition of alginic acid varies with season, region, tissue, and

age (Haug et al., 1974; McKee et al., 1992).

Previous research has shown a biosynthetic pathway for alginate

in brown algae (Nyvall et al., 2003). The final step involves the
TABLE 2 Selected upregulated genes with possible roles in the
sporogenesis of Saccharina japonica.

Contig
ID

Functional
categories

Description Fold
Change

g14012
remodeling
of alginates

mannuronan C-
5-epimerase

11.9

g26842 extracellular matrix
spondin domain-
containing protein

10.5

g1659 iodide oxidation
vanadium-
dependent
iodoperoxidase

9.51

g3247 oxidative burst
respiratory
burst oxidase

6.43

g17300 cell wall integrity
WSC domain-
containing protein

5.36

g10745 antioxidant activity superoxide dismutase 4.46

g277 bromide oxidation
vanadium-dependent
bromoperoxidase

3.54

g11685 lipid oxidation lipoxygenase 1.92
FIGURE 1

Validation of RNA sequencing (RNA-seq) data using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Six representative genes
were selected to validate the RNA-seq data by RT-qPCR. The pink bars represent the mean log2-fold change obtained by RT-qPCR, and the blue
bars represent the RNA-seq data. Results are presented as relative expression compared to that in vegetative tissues. The primers used for RT-qPCR
are listed in Supplementary Table S1.
TABLE 3 Selected downregulated genes with possible roles in the
sporogenesis of Saccharina japonica.

Contig
ID

Functional
categories

Description Fold
Change

g113
photosystem
I assembly

Tab2 9.58

g26812
chloroplast
inner membrane

Tic20 3.08

g3799 plastoglobules fibrillin family protein 2.42

g25037 photosynthesis
light harvesting
complex protein

2.42

g25030 photosynthesis
light harvesting
complex protein

2.29
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epimerization of D-mannuronic residues into L-guluronic residues

within the polymer chain, a reaction catalyzed by mannuronan C-5-

epimerases (MC5E). Considering both their chemical structure and

biological function, which is to provide strength and flexibility to

the algal tissue, alginates can be regarded as functional analogs of

the pectins found in higher plants. Consequently, mannuronan C-

5-epimerases are likely functionally analogous to plant pectin

methylesterases in controlling the cell wall matrix texture (Nyvall

et al., 2003). In RNA-seq analysis, we found upregulated 8 DEGs

encoding enzymes of MC5E (Figure 6), and this result showed

similarity to previous results (Zhang et al., 2020). G-rich alginate in

brown seaweed serves as a skeleton to provide stiffness or elasticity

according to the environment, similar to pectins and cellulose in

terrestrial plants (Nyvall et al., 2003). The upregulation of various

MC5Es in the sorus parts is likely necessary to specifically customize

the relative contents and distributions of G blocks, M blocks, and

MG blocks in alginate chains.

In addition to MC5Es, cell wall remodeling-related genes were

identified as sorus-preferential genes. DEGs encoding vanadium-

dependent haloperoxidases (vHPOs) (g1659), (g277), NADPH

oxidase (g3247), and superoxide dismutase (SOD) (g10745) were
Frontiers in Plant Science 05
found to be upregulated in the sorus parts (Table 2). Saccharina

japonica has 89 vHPOs, consisting of 21 bromoperoxidases

(vBPOs) and 68 IPOs (Liu et al., 2019), emphasizing their role in

processes such as chemical defense. vHPOs also play a role in

oxidative cross-linking that facilitates the formation of phenolic

polymers and their complexation with alginates, contributing to cell

wall rigidification (Tarakhovskaya et al., 2015). Previous studies

showed that phenolic substances, called phlorotannins, oxidized by

vHPOs undergo self-assembly and form a macromolecular cluster

with alginate, wherein the phenolic substances are encapsulated

within the gel network of alginate (Bitton et al., 2006). The

dynamics of vHPO activity during Fucus vesiculosus

embryogenesis were highly synchronized with H2O2 content

changes. Because H2O2 serves as a vHPO substrate, elevated ROS

levels may serve as a prerequisite for an increased enzyme activity

(Lemesheva et al., 2020). Genes involved in vHPO activity,

including NADPH oxidase and SOD, were also found in

upregulated DEGs of mature S. japonica sporophytes. NADPH

oxidase, also known as respiratory burst oxidase homolog, is a well-

studied enzymatic ROS-producing system (Marino et al., 2012).

SODs catalyze the dismutation of O2
− produced by NADPH
FIGURE 2

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the upregulated differentially expressed genes (DEGs). The degree of
enrichment increased as the rich factor increased. Larger dots indicate higher numbers of differential genes enriched by the pathway.
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FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the downregulated differentially expressed genes (DEGs). The degree of
enrichment increased as the rich factor increased. Larger dots indicate higher numbers of differential genes enriched by the pathway.
FIGURE 4

Numbers of enriched Gene Otology (GO) terms for upregulated differentially expressed genes (DEGs). GO terms are presented for three main
categories: biological processes, molecular functions, and cellular components. Each GO term is listed in ascending order of p-value.
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oxidase into O2 and H2O2 (Sagi and Fluhr, 2006). In previous

studies, substantial intracellular ROS production was observed in S.

japonica sorus, especially zoosporangium and paraphyzes. The high

abundance of transcripts encoding NADPH oxidase and SOD in the

sorus may contribute to the control of ROS levels for cell wall

remodeling in the sorus.

The cell wall undergoes remodeling in a tightly regulated and polarized

manner, a process primarily controlled by the cell wall integrity (CWI)

signaling pathway (Levin, 2011). CWI signaling activation regulates the

production of various carbohydrate cell wall polymers, as well as their

polarized delivery to the site of cell wall remodeling. Proteins with a cell

wall integrity and stress response component (WSC) domain were first

described as cell surface sensors involved in detecting and transmitting cell

wall status to the CWI signaling pathway in Saccharomyces cerevisiae

(Verna et al., 1997). S. cerevisiae Wsc1 accumulates to sites of enhanced

mechanical stress through reduced lateral diffusivity, mediated by the

binding of its extracellularWSCdomain to cell wall polysaccharides (Neeli-

Venkata et al., 2021). RNA-seq analysis showed an upregulated DEG

(g17300) containing aWSC domain in the sorus parts. Although there is a

lack of information on theWSC domain inmacroalgae, g17300may be an

important player in cell wall remodeling during S. japonica

sorus formation.
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Four upregulated DEGs were found containing a spondin

domain as genes related to the ECM. The spondin family, which

includes F-spondin and Mindin, comprises molecules attached to

ECM (Feinstein et al., 1999). The F-spondin molecule consists of

approximately 800 amino acids containing domains homologous to

reelin, FS domain, and multiple TSR repeats (Higashijima et al.,

1997), while Mindin contains an FS domain and one TSR domain

(Umemiya et al., 1997). Structural studies suggest that the FS

domain, exhibiting a homologous structure similar to that of the

C2 domain, functions as a membrane-targeting module through

Ca2+-dependent mechanisms (Tan and Lawler, 2011). There is little

information on the spondin family in algae, but four genes that

contain only the FS domain (named NySPL1–4) were identified

from the red alga Pyropia yezoensis genome (Uji et al., 2022).

NySPLs have similar secondary structures to that of FS domains

from animals, and their transcripts increased in mature thalli

treated with 1-Aminocyclopropane-1-carboxylic acid (ACC),

which is a gametogenesis inducer. Similarly, the spondin domain

from S. japonica only contains the FS domain (SjSPL1–4), and their

transcripts increased in the sorus parts. Thus, FS domain-

containing proteins play a crucial role in the formation of

reproductive cells in red and brown macroalgae.
FIGURE 5

Numbers of enriched Gene Otology (GO) terms for the downregulated differentially expressed genes (DEGs). GO terms are presented for three main
categories: biological processes, molecular functions, and cellular components. Each GO term is listed in ascending order of p-value.
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ECM plays crucial roles in protecting cells from biotic and

abiotic stresses. The present RNA-seq analysis showed an

upregulated DEG (g11685) encoding lipoxygenase (LOX) in the

sorus parts. In plants and algae, the LOX pathway has been

proposed to play a key role in their defense via major oxylipins.

Oxylipins derived from the oxidation of polyunsaturated fatty acids

induce the establishment of resistance in the kelp Laminaria

digitata against infection by its brown algal endophyte

Laminariocolax tomentosoides (Küpper et al., 2009). In higher

plants, oxylipins from the LOX pathway function in cell wall

modifications required for root development and pathogen arrest

(Vellosillo et al., 2007). The link between the LOX pathway and cell

wall modification in brown algae should be investigated.
Frontiers in Plant Science 08
3.4 Downregulation of chloroplast function

In RNA-seq analysis, we found downregulated DEGs associated

with chloroplast function, such as Tab2 family RNA-binding

protein, Tic20, and light-harvesting complex protein (Table 3). In

Chlamydomonas reinhardtii, Tab2 was identified as an RNA-

binding protein required for the translation of the photosystem I

subunit, and Arabidopsis Tab2 is involved in the signaling pathway

of light-controlled synthesis of photosystem proteins during early

plant development (Dauvillée et al., 2003; Barneche et al., 2006).

Tic20 is a crucial component of the protein-conducting channel

within the inner membrane preprotein translocon. In S. japonica,

Tic20 is specifically positioned in the innermost membrane of the
FIGURE 6

Relative expression levels of ECM related genes in S. japonica during sorus formation. RNA samples were prepared from vegetative tissue (VT) and
mature tissue formed zoosporangia (MT). Expression levels were assessed using the 18SrRNA gene for normalization. Results are presented as
relative expression and compared with that in VT. Data are presented as means ± standard deviations (n = 3). Asterisks indicate significant differences
at p < 0.05 between VT and MT (The Mann–Whitney U test).
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chloroplast, indicating its involvement in facilitating protein

transport within the chloroplast (Chen et al., 2019). Light-

harvesting complex proteins are known to be involved both in

collecting light energy for driving the primary photochemical

reactions of photosynthesis (Rochaix and Bassi, 2019). The

reduced expression of genes related to chloroplast function is

consistent with previous findings that the photosynthetic activity

of S. japonica sporophyte was lower in the fertile parts than in the

sterile parts (Nimura and Mizuta, 2001). One possible cost of

photosynthesis in reproductive structures is the increased damage

to DNA by the necessary exposure of reproductive structures to

photosynthetically active, and hence (in nature) UV-B, radiation,

and the increased potential for the production of ROS (Raven and

Griffiths, 2015). Finally, we propose a possible model of the

mechanisms of sorus development in S. japonica (Figure 7).
Conclusion

The transcriptomic analysis suggests the upregulation of genes

associated with vitamins and amino acid biosynthesis, ECM

remodeling, and cell wall metabolism in S. japonica sorus portions,

with downregulation of photosynthesis-related genes. Regarding

ECM remodeling, DEGs associated with the composition of alginic

acid and cell wall cross-linking were upregulated during sorus

development. Candidate genes involved in ECM remodeling
Frontiers in Plant Science 09
signaling pathways were also identified. Thus, this study on sorus

formation mechanisms in S. japonica is important for a sustainable

kelp production and to better understand the regulatory mechanisms

of ECM remodeling in brown algae.
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