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pests in cotton fields based on
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and Zhenhong Jia1,2

1School of Computer Science and Technology, Xinjiang University, Urumqi, China, 2The Key
Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang
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Introduction: Effective pest management is important during the natural growth

phases of cotton in the wild. As cotton fields are infested with “tiny pests” (smaller

than 32×32 pixels) and “very tiny pests” (smaller than 16×16 pixels) during growth,

making it difficult for common object detection models to accurately detect and

fail to make sound agricultural decisions.

Methods: In this study, we proposed a framework for detecting “tiny pests” and

“very tiny pests” in wild cotton fields, named SRNet-YOLO. SRNet-YOLO includes

a YOLOv8 feature extraction module, a feature map super-resolution

reconstruction module (FM-SR), and a fusion mechanism based on BiFormer

attention (BiFormerAF). Specially, the FM-SR module is designed for the feature

map level to recover the important feature in detail, in other words, this module

reconstructs the P5 layer feature map into the size of the P3 layer. And then we

designed the BiFormerAF module to fuse this reconstruct layer with the P3 layer,

which greatly improves the detection performance. The purpose of the

BiFormerAF module is to solve the problem of possible loss of feature after

reconstruction. Additionally, to validate the performance of our method for “tiny

pests” and “very tiny pests” detection in cotton fields, we have developed a large

dataset, named Cotton-Yellow-Sticky-2023, which collected pests by yellow

sticky traps.

Results: Through comprehensive experimental verification, we demonstrate that

our proposed framework achieves exceptional performance. Our method

achieved 78.2% mAP on the “tiny pests” test result, it surpasses the

performance of leading detection models such as YOLOv3, YOLOv5, YOLOv7

and YOLOv8 by 6.9%, 7.2%, 5.7% and 4.1%, respectively. Meanwhile, our results on

“very tiny pests” reached 57% mAP, which are 32.2% higher than YOLOv8. To

verify the generalizability of the model, our experiments on Yellow Sticky Traps

(low-resolution) dataset still maintained the highest 92.8% mAP.
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Discussion: The above experimental results indicate that our model not only

provides help in solving the problem of tiny pests in cotton fields, but also has

good generalizability and can be used for the detection of tiny pests in

other crops.
KEYWORDS

cotton field, super-resolution reconstruction, feature fusion, YOLOv8, tiny pests, very
tiny pests
1 Introduction

Cotton ranks as one of the planet’s most crucial cash crops,

serving not only as the foundational raw material for the textile

industry but also offering livelihood opportunities to millions

worldwide (Wang and Memon, 2020). Yet, when grown in the

wild, cotton becomes vulnerable to infestations of tiny pests, leading

to significant reductions in yield (Chen et al., 2020). The vast

expanse of cotton fields in wild environment complicates the

timely identification of these tiny pests by human observers.

Often, by the time such pests are incidentally discovered, they

have proliferated extensively. Thus, the prompt and effective

detection and management of pests in these wild natural cotton

field are imperative (Wu and Guo, 2005). In combating these

frequent pest invasions, yellow sticky traps prove to be an

invaluable tool (Pinto-Zevallos and Vänninen, 2013). They play a

crucial role in capturing tiny pests in wild natural cotton fields,

enabling timely analysis of the extent of pest damage. This facilitates

swift, precise responses, including targeted pesticide application in

afflicted areas. Moreover, this strategy ensures optimal use of

pesticides, enhancing crop yield and ushering in an era of rapid

and efficient precision agriculture.

Traditionally, pest species and quantities on sticky traps have

been examined to determine the appropriateness of control

measures (Aliakbarpour and Rawi, 2011). Cotton fields, often

sprawling across extensive wild areas, necessitate the deployment

of a substantial number of yellow sticky traps, imposing significant

strain on manual inspection efforts. Moreover, manual observations

carry the risk of misinterpretation, potentially leading to

inappropriate pesticide application. Consequently, automated pest

detection leveraging image processing (Wen and Guyer, 2012) and

machine learning techniques (Silveira and Monteiro, 2009) has

garnered interest among agricultural researchers (Maharlooei et al.,

2017). introduced an algorithm that detects and quantifies aphids

on soybean leaves through image processing techniques, yet this

approach heavily relies on manually selected features, which

compromises the robustness of the detector. Chunlei et al. (2012)

employed shape and color characteristics derived from thresholding

methods for whitefly detection following image segmentation. Xia

et al. (2015) developed a methodology for the automated

identification of whiteflies, aphids and thrips, employing YCbCr
02
color attributes and a distance-based classification system. Thus,

conventional pest identification methods predominantly rely on

observations and identifications by agricultural experts or

technicians. This approaches are not only time-consuming and

costly but also sensitive to timing and challenging to apply broadly

(Ye et al., 2023).

In recent years, deep learning models have demonstrated

exceptional performance in pest detection (Li et al., 2021b),

effectively addressing the limitations of conventional machine

learning approaches (Shen et al., 2018). The motivation for

designing these models mainly comes from mainstream object

detection methods, which are two-stage (Girshick et al., 2014;

Girshick, 2015; Ren et al., 2017) and one-stage detectors (Redmon

et al., 2016; Redmon and Farhadi, 2017, Redmon and Farhadi,

2018). For instance, Patel and Bhatt (2021) utilizes Faster R-CNN

for automatic multi-class pest detection in agriculture, addressing

challenges of small datasets and class imbalance through image

augmentation techniques like Horizontal Flip and 90 Degree

Rotation. It demonstrates deep learning’s potential to significantly

enhance pest detection accuracy. Tian et al. (2023) refined YOLOv3

for efficient tiny object detection, integrating this enhanced

algorithm into software for pest early warning systems. Chen

et al. (2022) integrated YOLOv4 into a compact vehicle equipped

with a camera and auxiliary lighting to monitor pests in grain

storage. Zhang et al. (2023a) substituted YOLOv7’s original

optimizer with the Adan optimizer, enhancing the detection of

three specific corn pests. In parallel, leveraging traps in conjunction

with deep learning algorithms has proven effective in greenhouse

and laboratory environment. Li et al. (2021a) conducted sticky trap

data collection on greenhouse-grown pepper plants, refining Faster-

RCNN for the detection of whiteflies and thrips in their adult stages,

yielding promising results. Gerovichev et al. (2021) collected

samples of flying insects from various locations, proposing a

novel approach that combines deep learning with sticky trap-

captured pests for object detection experiments using YOLOv5.

Zhang et al. (2023b) devised a trap system incorporating yellow

sticky traps and LED lighting, augmenting YOLOv5 with a copy-

and-paste data augmentation technique for pest management in

cherry tomato and strawberry greenhouses. Kalfas et al. (2023)

collects data from wild chicory fields and subsequently trains the

yolov5 algorithm within a laboratory environment for focused
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detection of two pests (chicory leaf miners and woolly aphids) and

their predatory counterparts (ichneumonid wasps and grass flies).

She et al. (2022) adds four attentional mechanisms to yolov5 for

intelligent counting methods of cucurbits on trap bottles. Object

detection algorithms utilizing deep learning play well in detecting

pests in traps.

However, we found that it is difficult to achieve well results in

cotton field pest detection by these methods. This is mainly due to

the presence of a large number of tiny pests such as cotton thrips

and Myzus-persicae. Generally, the size of the “tiny pests” is not

more than 32� 32 pixels on the captured image, and even “very

tiny pests” are not more than 16� 16 pixels, which makes it difficult

to extract effective features by conventional object detection

methods as shown in Figure 1. To address the above problems,

we proposed SRNet-YOLO model for the two small-sized pests

detection in cotton fields in the field. The algorithm combines

super-resolution reconstruction with feature fusion to minimize

false and missed detections in “tiny pest” and “very tiny pest”

detection. The principal contributions of this study are outlined

as follows.
Fron
1. To enhance the accuracy of detection and monitoring of

tiny pest infestation in local cotton fields, we developed the

Cotton-Yellow-Sticky-2023 dataset, representing yellow

sticky traps in cotton fields. Additionally, we made

validation experiments of the overall approach on the

public Yellow Sticky Traps dataset as well.

2. The SRNet-YOLO model is proposed to specifically “tiny

pests” and “very tiny pests” in wild cotton fields. The model

adopted the feature extraction approach of YOLOv8 with

FM-SR module and BiFormerAF module. The proposed

FM-SR and BiFormerAF modules are used for feature

reconstruction and feature fusion, and their joint action

achieves a perfect fusion of original and recovered features
tiers in Plant Science 03
to enhance the feature information of tiny and very tiny

pests. These two modules enhanced the critical feature of

tiny pests during feature extraction, thus improving the

overall performance of the network.

3. SRNet-YOLO is trained and evaluated on both the Cotton-

Yellow-Sticky-2023 dataset and the Yellow Sticky Traps

datasets (low-resolution), with its better performance

compared against other advanced object detection algorithms.
2 Related work

2.1 Object detection model

In the domain of computer vision, the two-stage object

detection RCNN model, grounded in CNN technology, represents

pioneering efforts to integrate deep learning into object detection.

This model employs region proposal mechanisms to identify

potential regions of interest, subsequently processing each region

through a CNN for feature extraction. This approach enables

precise identification of object categories within each region and

facilitates the regression adjustment of their boundaries (Girshick

et al., 2014). Throughout the evolution of two-stage target detection,

enhancements to the RCNN framework, including Fast-RCNN

(Girshick, 2015), Faster-RCNN (Ren et al., 2017), and Mask-

RCNN (He et al., 2017), have yielded improved accuracy. Jiao

et al. (2020) proposed an unanchored regional convolutional neural

network, AF-RCNN, consisting of an unanchored regional proposal

network, AFRPN, and a Faster R-CNN end-to-end for the detection

of 24 classes of pests. This method improves accuracy, but they are

processing images at 0.07 seconds a photo, which is still some

distance away from 30FPS detection. This is usually where second-

stage object detection falls short as well, which makes it difficult to
FIGURE 1

Illustration of the size of the pests. The top right image of each picture is a partial zoom image and the pixel size of some pests is labeled.
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make timely agricultural decisions after detecting “tiny pests” and

“very tiny pests” when dealing with large amounts of data.

In the realm of agricultural pest identification and detection, it’s

essential for the object detection system to achieve precise recognition

alongside real-time detection capabilities. Given the rapid

development, enhanced accuracy, and reduced parameterization of

the YOLO series of CNN-based one-stage object detection models,

they emerge as highly suitable for practical agricultural pest detection

applications. The inception of the YOLO series was marked by

YOLOv1 (Redmon et al., 2016), the pioneering one-stage end-to-

end object detection algorithm that approached object detection as a

regression problem. By processing the entire image as input, it

facilitated the generation of bounding boxes through a neural

network, significantly accelerating detection speeds compared to

two-stage methods. YOLOv3 (Redmon and Farhadi, 2018) further

refined the detection mechanism by replacing the original Darknet19

with Darknet53 and adopting a pyramid network structure for multi-

scale detection. Its shift to logistic regression for classification, over

softmax, balanced real-time performance with detection accuracy. Lv

et al. (2022) proposed a linear transformation method based on K-

means and alteration of the original yolov3 framework to improve the

detection of corn pests. YOLOv4 (Bochkovskiy et al., 2020) enhanced

the architecture by integrating Darknet53 with CSPNet, introducing

residual blocks for improvements, and adding the SPP module to

expand the receptive field without compromising speed. Liu et al.

(2022) proposed a fusion of triplet attention mechanism with yolov4

and introduced a focus function to solve the tomato pests sample

imbalance problem. YOLOv5 (Jocher et al., 2022) innovates with the

mosaic data augmentation method and a focus structure within the

backbone, enriching object backgrounds while optimizing

the detection of small object and reducing computational demands.

Huang et al. (2023) introduced the attention module (CBMA) and

adaptive spatial feature fusion (ASFF) to yolov5 to improve the

detection of Laodelphax striatellus. Addressing the issue of over-

optimization in YOLOv4 and YOLOv5, YOLOX (Ge et al., 2021)

reverts to YOLOv3 and Darknet53 as foundational models,

incorporating enhancements like an increased EMA weight update

and transitioning from a coupled to a decoupled header to

significantly boost convergence speed. Additionally, it adopts an

anchorless mechanism, reducing parameter count to enhance

detection capabilities. Xu et al. (2023) proposed an adaptive spatial

feature fusion and lightweight detection model (ASFL-YOLOX) of

positional IPPs for pests of Papilionidae (IPPs), which is much better

than Faster R-CNN in both map and inference. The creators of

YOLOv4 and Scaled-YOLOv4 (Wang et al., 2021) unveiled the

YOLOv7 (Wang C. Y. et al., 2023) algorithm. This latest iteration

integrates model reparameterization into its architecture, along with

an augmented efficient layer aggregation network and a variety of

trainable “bag-of-freebies” techniques. These innovations aim to

improve the accuracy of network training and detection without

elevating inference costs. Jia et al. (2023) utilized MobileNetV3 for

feature extraction and combined CA attention and SIoU loss function

to improve yolov7, which plays a better role in the detection of rice

pests and diseases. One-stage object detection has the advantages of

being fast and easy to deploy, and is favored by researchers in smart
Frontiers in Plant Science 04
agriculture. However, for the study of “tiny pests”, especially “very

tiny pests”, the localization function of the one-stage object detection

model is a bit poor.

Both two-stage and one-stage common object detection are less

often applied to “tiny pests” and “very tiny pests”. The main reason

is that the pests are too small, the lower resolution leads to fewer

features, and the process of extracting features is more difficult. For

one-stage although results can be made quickly, the accuracy of this

result may be questionable. And the two-stage is the opposite.

Therefore, we designed a new model applied to the detection of

“tiny pests” and “very tiny pests” in cotton fields, which model

maintains the advantages of the one-stage approach while having

higher detection results.
2.2 Tiny pests research

Small object detection is crucial for precise pest identification,

crop protection, and minimizing pest-induced harm (Du et al.,

2022). Due to small objects containing fewer pixels, their features

are less distinct (He et al., 2016; Xie et al., 2017; Gao et al., 2021),

apply downsampling to feature maps to reduce resolution, aiming

to decrease spatial redundancy and learn high-dimensional features.

However, this approach risks losing object information. Studies

focused solely on detecting tiny pests in smart agriculture are

notably limited. Li et al. (2022) applies a spectral residual model

and a support vector machine to effectively detect tiny pests in

trapping images, achieving high accuracy. This method offers a

time-efficient alternative to manual counting for pest management.

Wen et al. (2022) introduced Pest-YOLO, a novel agricultural pest

detection model using focal loss and non-IoU box strategies for

improved accuracy on dense and tiny pests. Validated on the Pest24

(Wang et al., 2020) dataset, it demonstrates superior performance

over other models, indicating its efficacy for practical pest

monitoring. Wang et al. (2022) presents S-ResNet, an improved

version of the standard ResNet model tailored for the identification

of tiny pests, by optimizing its structure and integrating advanced

modules for enhanced feature processing. This novel neural model

has shown to surpass the traditional ResNet in terms of

performance, indicating its potential utility in agricultural pest

detection applications. Wang X. et al. (2023) presents an auxiliary

prior-knowledge architecture for tiny pests detection in wild

environments, capable of identifying rarely collected pests with

minimal sample availability. Liu et al. (2023) enhances DETR’s

ability to detect small objects important for forest pest control by

adding skip connections and spatial pyramid pooling, significantly

improving detection precision.

Although research on tiny pests has progressively advanced in

agriculture, most of it has been conducted on “tiny pests” around

32×32 pixels, and very few models have been developed for “very

tiny pests” below 16×16 pixels. Because many “very tiny pests” do

exist in cotton and are not easy to detect. Therefore we created a

“tiny pest” and “very tiny pest” dataset containing cotton fields

named Cotton-Yellow-Stricky-2023. This dataset will be used for

experiments with our new model.
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3 Materials

3.1 Image data acquisition and annotation

Owing to the lack of a dataset capturing yellow sticky traps in

naturally wild cotton fields, this research utilized a dataset derived

from yellow sticky traps collected in an experimental cotton field

from Huaxing Form, Urumqi City, Xinjiang Province, which is

located in the environment of 86.9°E and 44.23°N. The collection

period was strategically chosen to coincide with the peak cotton pest

season, spanning from early July to early September 2023. As cotton

will be infested by thrips, aphids and whiteflies during the growth

period, and these pests are sensitive to yellow color and have a

strong tendency to yellow, so in the process of data collection, we

chose the yellow sticky traps for the collection of pests. For the

collection methodology, clean yellow sticky traps were strategically

placed at 20-meter intervals across the cotton field and were

collected and photographed every 4 hours to ensure a broad

generalization of the model. To capture the data, three distinct

smartphones were utilized (iPhone 12, Glory 9 Android, and

Xiaomi 11 Android), resulting in a total of 387 high-resolution

images. The primary focus of the research was on two classes of

“tiny pests” and “very tiny pests”: cotton thrips and Myzus-persicae,

as shown in Figure 2A.

The process of image object labeling is pivotal in deep learning,

highlighting the significance of a standardized selection of labeling

tools. In this study, we utilized the LabelImg tool to annotate the

presence and species of pests on yellow sticky traps. Upon

completion of the labeling task, an XML file corresponding to each

image’s name is created, encapsulating the image’s dimensions, the

label names, and their positions as shown in Figure 2B. For

subsequent experimental directions, a detailed analysis of the

annotated dataset revealed that objects with dimensions smaller

than 32� 32 pixels (contained 16� 16 pixels) constitute 80.4% of

all labeled pests, underscoring the prevalence of “tiny pests” within
Frontiers in Plant Science 05
these images. Notably, objects smaller than 16� 16 pixels account

for 28.7% of all labeled pests, categorizing them as “very tiny pests”.

Detailed quantities and weights are shown in Figure 3. In terms of

the percentage and size of these pests, from our human eyes, some

tiny pests are difficult to distinguish.
3.2 Dataset preparation

This study employs a segmented image approach to generate

the dataset for experimental purposes. Images are cropped to a

dimension of 640� 640 pixels, ensuring a 40-pixel overlap between

adjacent cropped sections to prevent the loss of objects subjects

during the cropping process. This method is illustrated

schematically in Figure 4. We chose   640  �   640 pixels because

this is among the optimal inputs for most of the models, and the

reason for overlapping two adjacent sheets by 40 pixels is that we

counted all pest targets up to a maximum of 40 pixels, so

overlapping them by 40 pixels would leave all targets intact in the

segmented image. The resulting dataset, designated “Cotton-

Yellow-Sticky-2023”. Our dataset consists of a training set (all

pests with pixels in the data are randomly selected), a test A (all

pests with pixels are randomly selected), a test B (all pests with

pixels smaller than 32  �   32 pixels, which is the “tiny pests” test

set), and a test C (all pests with pixels smaller than 16  �   16   pixels,

which is the “very tiny pests” test set), as shown in Table 1. In test A,

we have a data count of pest targets, which results in 78% of tiny

pests smaller than 32  �   32   pixels, this averages out to the

presence of at most one pest object larger than   32  �   32 pixels

per image. test B is from test A, and our construction rule is to keep

only the data images where all the pixels of the pest targets are

smaller than 32  �   32   or less. Thus test B is an extreme case of test

A. The data in test C is different from test A. The selection rule of

test C is similar to that of test B. Only the data images with all pest

pixels less than 16� 16 are selected.
A B

FIGURE 2

Example pictures of yellow sticky traps taken in a cotton field Original (A) and labeled (B).
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A B

DC

FIGURE 4

Segmented image approach example image, where (A-D) are cropped image data.
A B

FIGURE 3

Schematic representation of the number and percentage of “tiny pests” and “very tiny pests”. Where tiny pests are contained “very tiny pests”, “large
pests” are pests with pixels larger than 32 × 32 pixels. (A) is a histogram of the number of pests, (B) showing the percentage of pests.
TABLE 1 Distribution of data sets.

Data Grouping train val test

Cotton-Yellow-Sticky-2023 1462 342
test A test B test C

356 6 56

The Yellow Stricky Traps
(Low resolution)

1237 300 test D: 309
F
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To verify the effectiveness of our model on other tiny pests

detection, we chose a publicly available dataset the Yellow Sticky

Traps dataset (Deserno and Briassouli, 2021), and reduced the

images to obtain tiny pest samples. In order to prevent damage to

the image quality after reducing the image pixels, we reduce the

jagged effect in this process, which makes the output image

smoother and maximizes the image quality. Specifically, we

reduced the average pixel size of the NC (Nesidiocoris) from 130�
130 to 31� 31, the MR (Macrolophus) from 135� 121 to 33� 32,

and the WF (Whiteflies) from 50� 47 to 13� 12. Overall, the

average pixel size of all objects was reduced from 105� 100 to 25�
24. This modified dataset is called “the Yellow Sticky Traps dataset

(low-resolution)” and is used as the second experimental dataset for

the subsequent analysis, where the test set is named test D, as shown

in Table 1.
4 Methods

4.1 Network structure of the SRNet-YOLO

In this study, we proposed the SRNet-YOLO model as shown in

Figure 5B. Our approach uses YOLOv8’s backbone (Terven and

Cordova-Esparza, 2023) as a baseline, as shown in Figure 5A,

YOLOv8 maintains the core of the CSP (Cross-Stage Partial

Network) concept while designing the C2f module, which allows

to improve the efficiency of the model without compromising its

robustness, thus achieving an optimal balance between accuracy

and computational speed. However, YOLOv8 performs poorly on

small (especially very small) objects, so we improved the backbone

in a more targeted way. The backbone of SRNet-YOLO contains the

FM-SR and BiformerAF modules, the combination of which is very

effective in improving feature extraction. In YOLOv8, the P5 layer

information basically contains only the more comprehensive key

information layer, and the corresponding P3 layer feature map size

is 80×80, which is used for detecting targets with pixels larger than
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8×8, and is applicable to the detection of small targets. So we

reconstruct the P5 layer feature map by super-resolution through

the FM-SR module to restore it to a dimension comparable to the

P3 layer feature map, and obtain the SRP5 layer feature map.

Subsequently, the SRP5 and P3 layer feature maps are jointly fused

by BiformerAF to form the NewP3 feature map. The NewP3 feature

map here replaces the original P3 layer feature map in YOLOv8,

and this improvement solves the problem of details that may be lost

during the recovery phase and enhances the functionality of the P3

layer. Subsequent feature extraction of NewP3 yields NewP4 and

NewP5, which correspondingly replace the original P4 and P5

layers in YOLOv8. Above is the feature map extraction flowchart

in backbone, meanwhile, we provide the detailed flowchart of the

model of SRNet-YOLO as shown in Figure 6.
4.2 Feature map super-
resolution reconstruction

Upsampling typically depends on a fixed interpolation

algorithm that lacks adaptability and exhibits consistent

performance across images. Unlike upsampling, super-resolution

reconstruction provides a more advanced capability for image

enhancement compared to simple upsampling methods, making

it the preferred choice in practical applications. Super-resolution

reconstruction is a critical research challenge in the fields of

computer science and image processing. This image processing

technique (Yang et al., 2014) aims to produce high-resolution

images from their low-resolution versions, crucial for improving

image quality, enhancing detail reproduction, and boosting image

performance in a variety of applications. With the advent of deep

learning and convolutional neural networks, exemplified by

SRCNN (Dong et al., 2016), the first deep learning model for

supersampling, super-resolution reconstruction can now

effectively learn and interpret contextual information within

images, significantly increasing image accuracy at the pixel level.
A B

FIGURE 5

SRNet-YOLO model structure. In order to highlight the improvement of SRNet-YOLO, where (A) shows the feature map extraction process of
backbone for YOLOv8, and (B) shows the feature map extraction process and detection process of backbone for SRNet-YOLO.
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In this study, we proposed a super-resolution reconstruction

module (FM-SR) dedicated to feature map enhancement, inspired by

SRResNet (Ledig et al., 2017) and SPPCSPC (Wang C. Y. et al.,

2023), as shown in Figure 7. We designed FM-SM to improve on

SRResNet, but with the difference that FM-SR is better used at the

feature map level, while SRResNet is used at the image level.

SRResNet primarily comprises five ResNet blocks, serving as the

generative networks within SRGAN. SPPCSPC module as shown in

Figure 7, it contains SPP (He et al., 2015) module and CSP module.

Among them, SPP acts after maxpooling operation of 1� 1, 5� 5,

9� 9 and 13� 13 sized convolutional kernels as a way to obtain

four different receptive fields, which are used to differentiate between

large and small objects. The features will be processed through two
Frontiers in Plant Science 08
parts of CSP module, one part consists of Conv, Batch normalization

and SilU activation functions, the other part is SPP, finally the two

parts of features are spliced together by concat. These operations will

greatly improve the detection accuracy. Our approach is to add the

SPPCSPC module to the input of SRResNet, as well as the jump

connections operation (He et al., 2016), which not only enriches the

deep features of the network, but also enhances the recovery of the

feature images. In the whole process of FM-SR, the SPPCSPC at the

input end obtains different receptive fields at the feature map level

and sends them to SRResNet, which has the advantage of improving

the grasp of the key information of the feature maps, while the

subsequent jump connection serves to prevent the possibility of

information loss after entering SRResNet.
FIGURE 7

FM-SR and SPPCSP structures.
FIGURE 6

Detailed flowchart of the SRNet-YOLO model.
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4.3 Attention Fusion
Mechanisms (BiformerAF)

Attention mechanisms are widely utilized in computer science

for rapid and efficient analysis of complex information, significantly

improving the performance of numerous deep learning

architectures. BiFormer (Zhu et al., 2023) introduces a dynamic,

query-aware sparse attention mechanism, predicated on the Bi-

Level Routing Attention (BRA) module. The BRA module and

details of a BiFormer block are shown in Figure 8, focusing on

eliminating the majority of irrelevant key-value pairs at a coarse

area level to retain a select segment of the routing area. The BRA

module is structured around three principal components: region

partition and input projection, region-to-region routing with

directed graph and token-to-token attention.
4.3.1 Region partition and input projection
Firstly, the feature map X ∈ RH�W�C is divided into S� S non-

overlapping regions, each containing HW
S2 feature vectors, X

becomes Xr ∈ RS2�HW
S2

�C , and then Q,K ,V ∈ RS2�HW
S2

�C i s

obtained by linear mapping with the expression as Equation 1.

Q = XrWq,K = XrWk,V = XrWv (1)

where Wq,  Wk,  Wv ∈ RC�C is the projection weight of query,

key, and value, respectively.

4.3.2 Region-to-region routing with
directed graph

A directed graph is constructed to find the regions that should

be involved without a given region. First calculate the average of Q

and V in each region to get Qr ,Kr ∈ RS2�C . We then derive the

adjacency matrix Ar ∈ RS2�S2 , of region-to-region affinity graph via

matrix multiplication between Qr and Kr , as Equation 2. Entries in
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the adjacency matrix, Ar , measure how much two regions are

semantically related. Then modify the correlation graph by

keeping only the first K connections of each region, have routing

index matrix Ir ∈ NS2�K , and save the indexes of the first K

connections row by row, as Equation 3.

Ar = Qr(Kr)T (2)

Ir = topkIndex(Ar) (3)

where the ith row of Ir contains the indexes of the first k most

relevant regions of the ith region.
4.3.3 Token-to-token attention
For each Query token in each region i, it will focus on all key-

value pairs in the concatenation set of the K routing regions,

indexed Ir(i,1), I
r
(i,2),⋯, Ir(i,k). According to the set we first aggregate

the key and value tensor as Equation 4.

Kg = gather(K , Ir),Vg = gather(V , Ir) (4)

where Kg ,    Vg ∈ RS2�kHW
S2

�C are the tensor of key and value

after aggregation and then attention operation is used on the

aggregated K-V pairs as Equation 5.

O = Attenion(Q,Kg ,Vg) + LCE(V) (5)

where, a local context augmentation term LCE(V) (Ren et al.,

2022) is introduced, function LCE( · ) is parameterized with a

depth-wise convolution, and we set the convolution kernel size to 5.

He et al. (2024) added BiFormer to YOLOv7 to improve the

detection of tea pests. They only added BiFormer behind the feature

maps of P3, P4 and P5 layers in Neck, but not in the process of

feature extraction, and it will have the potential for the loss of

critical information. The difference is that we designed a fusion

mechanism based on BiFormer to be added into the backbone,
FIGURE 8

BiFormerAF, BRA and BiFormer structures.
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which acts on the fusion of the SRP5 and P3 feature maps for more

accurate feature extraction in the follow-up, thus improving the

performance of the model.

In this paper, we develop a BiFormer-based feature fusion

mechanism, called BiFormerAF, for fusing feature mappings

between the P3 and SRP5 layers in feature extraction, as shown in

Figure 8. The mechanism is divided into two branches: one

processes the P3 layer feature image through the C2f module,

producing an output denoted as Y , as described in Equation 6.

The other branch processes the SRP5 layer feature map, which is the

P5 layer feature image enlarged fourfold by FM-SR module,

through the C2f module. Subsequently, most irrelevant key-value

pairs are filtered out using BiFormer to eliminate redundancy, with

the filtered output labeled X0, as described in Equation 7. It is

important to note that the X0 is then passed through BatchNorm

and Sigmoid operations sequentially, generating the output X1, as

described in Equation 8. X1 serves as weights assigned to X0,

facilitating their element-wise multiplication to obtain new

information, X, as described in Equation 9. Finally, the

information Y and X are merged through element-wise addition,

as described in Equation 10, with the combined output forming the

updated information for the NewP3 layer.

Y = C2f (P3) (6)

X0 = BiFormer(C2f (SRP5)) (7)

X1 = Sigmoid(BatchNorm(X0)) (8)

X = X0 � X1 (9)

NewP3 = Y + X (10)

In C2f, firstly the convolution operation helps to extract features

of different levels and abstraction degrees from the input data,

secondly the branching design of c2f helps to increase the nonlinear

and representation capabilities of the network, which improves the

network’s ability to model complex data, and finally after feature

splicing enriches the feature expression capability. The output

which is subsequently processed by Biformer is two branches, one

of which is used to multiply the weight factors with the other to

highlight important features. Since the output values of Biformer

may have a large distribution, and the span is too large to use

sigmoid directly, we first use the BN layer as an intermediate buffer.

The BN layer can make the distribution of features more stable by

normalizing the data of each mini-batch, so that the mean and

variance of these features are changed to 0 and 1, respectively. And

the BN layer can also accelerate convergence and prevent gradient

explosion, so the BN layer plays a good effect in the middle. Finally

the input is changed to between (0, 1) using sigmoid to multiply

with another branch. Finally feature fusion according to the

addition of elements (add) is performed, which increases the

amount of information under the features describing the image,

but the number of dimensions describing the image itself does not

increase, only the amount of information under each dimension,

which is clearly beneficial for the detection of the final image.
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Therefore, we perform super-resolution reconstruction work at

the feature extraction P5 layer, which allows us to magnify on the

key information to form the SRP5 layer, which helps the subsequent

feature extraction. We let the SRP5 information target “tiny pests”

and “very tiny pests” information effectively by BiFormer attention

in a query self-attention manner. After that we did normalization as

weights multiplied with itself for highlighting the weight of feature

information. We consider the possibility that there is information

that has not been extracted before the super-resolution, so we

perform feature fusion of the SRP5 information with the P3

information to prevent the information from being missed.
4.4 Loss function

We use the FM-SR modules of the holistic framework for end-to-

end training, ensuring that the new modules designed are adapted to

each other and that the loss function is computed at the detection

output of the model. Our aim is for the final detection task, and not

adding the pre-training weights of FM-SR and thus not being limited

by the weights is a better choice for the final accurate detection. We

do this with the benefit of being more adaptable to a specific task and

having flexibility. Moreover, we can adjust and optimize our model

based on the performance during the training process in an end-to-

end manner. In this study, we still take the CIoU loss function

(Zheng et al., 2022), shown in Equation 11.

LcIoU = 1 − IoU + r2(b,  bgt )
c2

� �
+ av (11)

where a is the weight parameter. v is the similarity used to

measure the aspect ratio. r2 denotes the Euclidean squared distance

between the two held bounding boxes. c2 denotes the square of the

diagonal distance between the two rectangular boxes. b and bgt

denote the centroids of the two bounding boxes. CIoU takes into

account overlap area, centroid distance and aspect ratio and has

better regression accuracy.
5 Experimental results

Utilizing our specially compiled dataset, Cotton-Yellow-Sticky-

2023, we conducted comprehensive experiments to assess the

superiority of our proposed method by comparing it with several

cutting-edge approaches. Moreover, we validated the effectiveness

of our method by testing on the Yellow Sticky Traps dataset

(low-resolution).
5.1 Experimental setup

All experiments were conducted on an NVIDIA RTX 3090

GPU, which boasts 24 GB of RAM. The development environment

employed was PyCharm 2021.3, alongside the programming

language Python 3.8. For deep learning tasks, we utilized the

frameworks Torch 1.10.0 and torchvision 0.11.1. Image

processing was facilitated through the use of OpenCV, and
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CUDA 11.3 served as the acceleration environment. This research

builds upon enhancements to the YOLOv8 network model,

employing yolov8n object detection weights for training purposes.

The detailed parameters are presented in Table 2.

To thoroughly evaluate the effectiveness of our model, we

conducted a series of experiments on both our proprietary dataset

and a public dataset after reducing its pixel resolution. We utilized

the subsequent quality metrics for assessment: Precision (P), Recall

(R), Mean Average Precision (mAP), and F1-score (F1). These

metrics are mathematically described as Equations 12–16.

Precision = TP
TP+FP (12)

Recall = TP
FN+TP (13)

F1 − score = 2TP
2TP+FN+FP (14)

AP =
Z 1

0
P(R)dR (15)

mAP = 1
NoN

1 AP (16)

where TP, TN, FP, and FN denote true positive, true negative,

false positive, and false negative, respectively. Accuracy is the

proportion of correctly predicted observations to the total

observations. P (Precision), also known as positive predictive

value, is the ratio of true positives to the sum of true positives

and false positives, indicating the correctness of positive
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predictions. R (Recall), or sensitivity, measures the ratio of true

positives to the sum of true positives and false negatives, reflecting

the model’s ability to identify all relevant instances. AP (Average

Precision) refers to individual category average precision, while

mAP (Mean Average Precision) is the average precision of all class.

The F1-score is the harmonic mean of precision and recall,

providing a balance between them for a comprehensive measure

of the model’s accuracy.
5.2 Comparison of different object
detection algorithms

In our study, we meticulously compared several object detection

algorithms to assess their efficacy in identifying tiny pests. The

evaluation utilized the “Cotton-Yellow-Sticky-2023 test A” dataset,

aiming to provide a detailed analysis of each algorithm’s

performance. The algorithms comparison includes Faster R-CNN,

YOLOv3, YOLOv5, YOLOv7, YOLOv8, YOLOv9 and our proposed

model (SRNet-YOLO). The evaluation metrics used for comparison

were P, R, mAP, and F1, as these metrics provide a holistic view of

the model’s accuracy, reliability, and efficiency in tiny pest

detection. The results of the comparison are shown in Table 3,

reveal significant differences in the performance of the algorithms.

Faster R-CNN demonstrated the lowest precision at 42.8% and a

recall of 65.3%, leading to a mAP of 44.6% and an F1 of 0.52. This

indicates a considerable gap in detecting tiny pests accurately. The

advancements in YOLO algorithms, particularly YOLOv3,

YOLOv5, YOLOv7, YOLOv8 and YOLOv9, have significantly

enhanced tiny pests detection performance, among them,

YOLOv9 achieved the highest precision of 75.1%, and YOLOv8

achieved the highest recall of 73.2%, the highest mAP of 74.1% and

F1-score of 0.73. These improvements underscore the efficiency of

YOLO models in processing and analyzing images, outperforming

previous versions by maintaining high precision and recall rates.

Our proposed model surpassed all the compared algorithms by

achieving the highest P of 75.5%, R of 78.1%, mAP of 78.2%, and F1

of 0.77. This is made possible by super-resolution reconstruction

techniques and feature fusion mechanisms. We design FM-SR which

can be better applied to feature map level recovery and has a better

grasp of the recovery of key information of feature maps. Then the

more accurate recovered information is fused with the P3 layer
TABLE 3 Detection results of different object detection algorithms in Cotton-Yellow-Stricky-2023 test A.

Model Precision (%) ↑ Recall (%) ↑ mAP (%) ↑ F1-score

Faster R-CNN 42.8 65.3 44.6 0.52

YOLOv3 69.7 72.5 71.3 0.71

YOLOv5 67.7 76.4 71.0 0.72

YOLOv7 70.4 77 72.5 0.73

YOLOv8 73.3 73.2 74.1 0.73

YOLOv9 75.1 67.8 72.6 0.71

SRNet-YOLO(ours) 75.5 78.1 78.2 0.77
The bold value means the highest value, and the symbol (↑) means the higher value is better.
TABLE 2 Hyperparameters for network training setts.

Hyperparameter Value

Epoch 1000

Batch Size 32

Image Size 640

Seed 0

Ir0 0.001

Irf 0.01

Pretrained Model Weights yolov8n.pt
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feature map by BiformerAF to refine the P3 layer information and

form NewP3. The subsequent feature extraction greatly increases our

detection results, and this idea also largely solves the problem of the

loss of information about the tiny pest targets during the feature

extraction process. Therefore, for tiny pest object detection,

SRResNet-YOLO can stand out among the advanced algorithms.
5.3 Ablation experiment

According to Table 4, our ablation study meticulously evaluated

the contributions of SRResNet, FM-SR, ADD and BiFormerAF

within the SRNet-YOLO framework. Where ADD is the fusion of

feature map information according to the summation of

corresponding elements. The purpose of our ablation experiments

is to verify that FM-SR is better for feature graph level recovery

compared to SRResNet and that BiformerAF has better fusion

capability compared to ADD. It is also demonstrated that the

combination of FM-SR and BiformerAF is the most effective. To

ensure the correctness of the ablation experiments, the model

hyperparameter settings and runtime environment were kept

consistent, and the dataset used was cotton-yellow-sticky-2023

test A.

From the experimental results related to SRResNet, it can be

seen that R is improved in the case of using only SRResNet, which

shows that the super-resolution reconstruction can prevent the loss

of tiny pest targets. When ADD fusion is performed with the

original P3 layer, all the metrics are improved compared to using

only SRResNet, which shows that the fusion effect makes the

combination of original and recovered features can improve the

detection results of the model. After replacing the ADD fusion with

our BiformerAF fusion, all results are greatly improved and all

exceed the baseline. This shows that we chose the right attention

mechanism and that multiplying the over-scored features as weight

factors can highlight key information and better improve the

refinement of the information, but the precision did not

improve much.

To improve the precision, we performed the same experiment

using FM-SR. We found that the highest accuracy of 76% was

achieved when using only FM-SR, this also proves the effectiveness
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of recovery of feature maps by FM-SR in detecting “tiny pests” and

“very tiny pests”, but R and mAP were not as good as the

combination of SRResNet and BiformerAF, which was not the

result we wanted. Therefore, we take that the combination of FM-

SR and BiformerAF will improve this situation. From the

experimental results, we can see that all the results after the

combination of FM-SR and BiformerAF are the best, P, R and

mAP and are higher than the baseline by 2.2%, 4.9% and

4.1%, respectively.

Therefore, the recovery of our proposed FM-SR at the feature

map level is stronger than SRResNet, and BiformerAF is also

superior to the ADD fusion approach. Similarly, SRNet-YOLO

performed the best. The results of the ablation study clearly

demonstrate the joint influence of each component on the

detection effectiveness of SRNet-YOLO, which greatly improves

the accurate identification of tiny pests.
5.4 Comparison of tests for “tiny pests” and
“very tiny pests”

To verify the performance of our method on “tiny pest” and “very

tiny pest”, we specifically tested it on two types of size pests, as shown

in Table 5. In our “tiny pests” test B, our model test results were

optimal and each broke new heights, with P, R, mAP and F1 breaking

70%, 90%, 90% and 0.8 for the first time to 71.1%, 95.8%, 92.4% and

0.82, outperforming each of the second-highest metrics by 5.3%,

6.2%, 11.8% and 0.06. This illustrates our ability in tiny pests sizes are

far better than these object detection algorithms for each

performance. On the “very tiny pest” test C, our model test results

break 40% and 50% at P and mAP for the first time, reaching 40.9%

and 57%, respectively, which is 6.6% and 28.5% higher than the

second highest. Under the comparison from the mAP results in test

C, our model is twice as high as the second highest, which is a huge

improvement. This shows that our comprehensive performance is far

superior to other object detection models while maintaining the

highest accuracy. Meanwhile, F1 also showed the best results in both

types of test sets, which also ensures the robustness of our model. It is

worth noting that in the results of test C in Table 5, the R-value is too

high in the performance of YOLOv9, while the P-value seems to be
TABLE 4 Results of ablation experiments.

Yolov8 SRResNet FM-SR Add BiFormerAF P (%) ↑ R(%) ↑ mAP (%) ↑ F1 ↑

✓ - - - - 73.3 73.2 74.1 0.73

✓ ✓ - - - 70.3 74.2 72.9 0.72

✓ ✓ - ✓ - 71.3 77.4 73.3 0.74

✓ ✓ - - ✓ 73.7 74.7 75.6 0.74

✓ - ✓ - - 76 73.9 7.5 0.75

✓ - ✓ ✓ - 75.7 75.1 75.5 0.75

✓ - ✓ - ✓ 75.5 78.1 78.2 0.77
✓ represents the use of this module in the model.
The bold value means the highest value, the symbol (↑) means the higher value is better and (-) represents a space.
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not as good. We have analyzed this, most likely because the adaptive

anchoring box is not effective, there may be a result that causes the

box to be larger for the object, but the information contained in the

box increases as the box gets larger, thus resulting in too high and R-

value and too low a P-value. The results of the B and C tests for the

two types of pests show that our model is 4.1% and 32.2% higher in

mAP than the baseline YOLOv8, respectively, which suggests that our

improved method is very effective. Overall, the results prove that our

method is the best when it comes to detecting “tiny pests” and “very

tiny pests”. Our method not only results in new heights, but also far

exceeds other models. Especially in the detection of “very tiny pests”,

our mAP is twice as high as the second highest. Thus our method has

the advantage of both high accuracy in these two types of pests

detection and guarantees the robustness and stability of the model,

which gives over help in agricultural pests detection.
5.5 Yellow sticky traps dataset (Low-
resolution) validation results

Our study utilized the public the Yellow Sticky Traps dataset

(low resolution) to evaluate the performance of our SRNet-YOLO
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model as shown in Table 6. This evaluation highlights the

performance of our model compared to YOLOv3, YOLOv5,

YOLOv7, YOLOv8 and YOLOv9 under low-resolution pest

conditions. Our model still maintains the highest performance

across metrics. Compared to the baseline YOLOV8, we were

1.1%, 1.7% and 0.7% higher in P, R and mAP, respectively.

Because the Yellow Sticky Traps dataset was taken in a laboratory

environment, the captured dataset is cleaner and clearer compared

to the dataset we collected ourselves. Therefore, the detection

accuracy of each model is higher compared to test A, B, C.

Therefore, the improvement of our model in the detection of this

dataset is not as high as that of the wild environment, and these

situations are normal. Thus, the results confirm the advanced ability

of SRNet-YOLO to maintain high detection accuracy with fewer

pixels, emphasizing its suitability for applications in agricultural

environments that require precise identification of microscopic

pests, even in challenging low-resolution situations.
5.6 Visualization and analysis

In the visual evaluation of pest detection algorithms on cotton

field images, our SRNet-YOLO model’s performance is significantly

superior to that of YOLOv8, as illustrated in Figure 9. Our method

demonstrates enhanced precision, with a notable decrease in both

false positives and false negatives, improving the accuracy of pest

detection in agricultural applications.

The efficacy of our SRNet-YOLO is particularly evident in its

ability to correctly identify pest by pixel size, as indicated in the

results. This level of detail is crucial for precise pest population

estimation, which is a key factor in effective pest management. Our

approach, which reduces erroneous detections, provides valuable

insights for developing targeted pest control strategies, ensuring

that interventions are accurately aligned with the pest pressure

indicated by the reliable detections. Confirming the findings of

Tables 5, 6, our model is especially adept at detecting smaller and

less distinct pests, minimizing the risk of overlooking “tiny pests”

and “very tiny pests” that may cause crop damage. The success of

our model in challenging wild conditions emphasizes its potential to
TABLE 6 Test results for the Yellow Sticky Traps (low-resolution) data.

model

test D (low-resolution image)

P(%)↑ R(%)↑ mAP
(%)↑ F1↑

Yolov3 84.4 89.4 90.1 0.87

Yolov5 86.3 90.3 92.7 0.88

Yolov7 83 84.8 88.7 0.84

Yolov8 85.5 90.6 92.1 0.88

Yolov9 83 87.8 89.6 0.85

SRNet-YOLO(ours) 86.6 92.3 92.8 0.89
The bold value means the highest value, the symbol (↑) means the higher value is better.
TABLE 5 Test results for “tiny pests” and “very tiny pests”.

model
test B test C

P(%)↑ R(%)↑ mAP(%)↑ F1↑ P(%)↑ R(%)↑ mAP(%)↑ F1↑

YOLOv3 65.8 89.6 77.5 0.76 34.3 43.2 22.6 0.38

YOLOv5 65.6 83.2 80.6 0.73 31.4 48.9 26.2 0.38

YOLOv7 57.2 72.9 70.5 0.64 31.3 55.8 28.5 0.4

YOLOv8 62.9 85.4 71.7 0.72 32.1 36.8 24.8 0.34

YOLOv9 68.4 85.8 83.6 0.76 25.4 63.5 25.3 0.36

SRNet-
YOLO(ours)

71.1 95.8 92.4 0.82 40.9 42.3 57 0.42
The bold value means the highest value, and the symbol (↑) means the higher value is better.
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advance precision agriculture, enabling more accurate and efficient

pest management.
6 Conclusion

In the pursuit of enhancing detection of tiny pests in wild

natural cotton fields, this study has tackled the challenging task of

identifying “tiny pests” and “very tiny pests”. We introduced a novel

backbone network that integrates super-resolution reconstruction

with the YOLOv8 framework, tailored for precise detection. We

combined SPPCSPC with SRResNet and add jump connections to

form a new feature map super-resolution reconstruction module.

This significantly enhances feature recovery and identifies pests

more accurately and in detail. To solve the problem of information

loss after super-resolution reconstruction, we designed a feature

fusion module based on BiFormer attention. This effectively

preserves the feature of the pests and provides for the subsequent

extraction of more distinct features, which greatly improves the

detection accuracy and performance. To validate the performance
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of the model, we also built the dataset containing “tiny pests” and

“very tiny pests” (Cotton-Yellow-Sticky-2023). Our experimental

results demonstrated that compared to YOLOv3, YOLOv5,

YOLOv7, YOLOv8 and YOLOv9, our method outperforms in

mAP metrics by 6.9%, 7.2%, 5.7%, 4.1% and 5.6%, respectively.

We also performed a more convinced experiment on “tiny pests”

and “very tiny pests”. In the test of “tiny pests”, Our method has

better performance compared to other model, with a mAP value of

92.4%, which is 20.7% higher than YOLOv8. In the “very tiny pests”

test, our accuracy breaks through 40% and is the highest accuracy,

while the mAP value reaches 57%, which is 28.5% higher than the

second highest. Furthermore, when applied to the Yellow Sticky

Traps dataset (low-resolution), our method not only outperforms

YOLOv8 but does so with marked increases of 1.1% in Precision,

1.7% in Recall, 0.7% in mAP, solidifying its advantage across all

metrics in challenging detection scenarios. Our contributions to the

detection of tiny and very tiny pests in wild cotton fields have

advanced the capabilities of one-stage object detection models, have

laid the groundwork for automated crop pest diagnostics,

enhancing real-time monitoring and management in agriculture.
A B
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FIGURE 9

Comparison plots for visualization of cotton field count images. Where (A–F) are examples of different visualized image comparisons, the left side of
each set of images (A–F) shows the detection results of YOLOv8, and the right side of each set of images (A–F) shows the detection results of
SRNet-YOLO. Where green arrows represent false detections and blue arrows represent missed detections. We also labeled the pixel size of each
pest in the detection results of the SRNet-YOLO model.
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