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The study explores anaerobic soil disinfection as an alternative to soil fumigants

for controlling Verticillium wilt in strawberry crops. For this purpose, two

agrowastes close to the strawberry-growing areas of Huelva province were

tested as potential amendments for the control of Verticillium wilt: rice bran

and residual strawberry extrudate. Furthermore, two application rates were

evaluated: 13.50 and 20.00 t/ha for the rice bran and 16.89 and 25.02 t/ha for

residual strawberry extrudate. Amended and anaerobically disinfested soils were

compared with a non-amended soil under anaerobic conditions, a soil treated

with the chemical fungicide metam sodium and an untreated soil. One week

before the start of disinfection treatment, these soils were artificially inoculated

with 250 microsclerotia/g dry soil of Verticillium dahliae. After disinfestation

treatments, pathogens were quantified, and strawberry plants were cropped in a

growth chamber to further evaluate Verticillium wilt severity, which was

measured with a symptom scale in the same potting soils. Measurements of

the anaerobic condition, pH and microbial population densities were performed,

and the results showed significant differences between the different

amendments. In addition, the treatment with rice bran at 20 t/ha recorded the

lowest population density of V. dahliae. Likewise, it was possible to achieve a

reduction in foliar disease severity in all amended treatments in similar

percentage to those obtained by chemical treatment. These results suggest

potential application of this technique for the control of Verticillium wilt in the

strawberry-growing area of Huelva, reducing the use of chemical fumigants.
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1 Introduction

Strawberry (Fragaria x ananassa Duch.) is a widely distributed

crop with susceptibility to various soil pathogens, such as Fusarium

oxysporum f.sp. fragariae (Fof) (Winks & Williams, 1965),

Macrophomina phaseolina (Tassi) Goid, Phytophothora cactorum

(Leb. & Cohn) J. Schrot., and Verticillium dahliae Kleb., the causal

agent of Verticillium wilt. In Huelva, the strawberry production

area in Spain, the management of these soilborne pathogens has

become especially difficult since the entry into force of the current

European legislation. This regulation prohibits the use of the most

used soil fumigants, including 1,3-dichloropropene or chloropicrin.

Dazomet and metam sodium are allowed one application every 3

years in the same field, subject to authorization (Regulation (EC)

No. 1107/2009). The limited availability of tools to combat these

diseases could cause great economic losses, so it is essential to look

for more ecologically sustainable alternatives for the control of soil-

borne pathogens.

Anaerobic soil disinfestation (ASD) is a promising alternative to

the use of chemical fumigants for soilborne diseases management

(Butler et al., 2012a; Shrestha et al., 2016; Márquez-Caro et al., 2022;

Hernández-Muñiz et al., 2023). This technique consists of applying

an amendment rich in labile carbon to the soil, watering to field

capacity and then covering the soil with a plastic cover. Labile

carbon stimulates the growth of micro-organisms, which consume

oxygen, and the plastic mulching acts as a barrier to gas exchange,

thus establishing anaerobic conditions (Momma et al., 2013; Poret-

Peterson et al., 2019). Depending on the carbon source used,

different microbial communities will be generated under such

conditions (Shennan et al., 2014). Microbial communities play a

crucial role in the success of pathogen disinfestation, making the

selection of the appropriate amendment an important decision for

the effectiveness of ASD treatment (Hewavitharana & Mazzola,

2016; Liu et al., 2016; Poret-Peterson et al., 2019). The mechanisms

of pathogen suppression with ASD are not still clearly understood,

but the production of organic acids produced by the anaerobic

decomposition of the added carbon, the release of volatile

compounds and the resulting biocontrol micro-organisms after

ASD seem to be involved (Poret-Peterson et al., 2019.; Shennan

et al., 2014). Recently, Littrell et al. (2024) proved the importance of

volatile fatty acids (VFAs) in reducing the viability of Fusarium

oxysporum, with sandy soils being more suppressive to the disease

than clay soils at the same concentration of VFAs. This technique is

widely used in strawberry crop to manage soilborne diseases like

Verticillium wilt (Goud et al., 2004; Shennan et al., 2018).

Management of Verticillium wilt is very important for the

economic viability of the crop due to the rapid progress of the

disease, leading to plant death and severe yield losses.

Microsclerotia of this pathogen can persist in the soil over years

(Wilhelm, 1955; Green, 1980), so that soil disinfestation techniques

are required. For the control of Verticillium wilt on strawberry

crops, temperatures above 22.5°C (Ebihara & Uematsu, 2014) and

an accumulation of 50,000 mVh below 200 mV are necessary

(Shennan et al., 2018). One of the most used carbon sources in

ASD is rice bran. This amendment has a high labile carbon and has
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been successfully used for the management of various soil

pathogens in ASD treatment (Serrano-Pérez et al., 2017; Mazzola

et al., 2018; Shennan et al., 2018; Hernández-Muñiz et al., 2023).

Another successful by-product recently tested againstM. phaseolina

(Márquez-Caro et al., 2022) and F. oxysporum f.sp fragariae

(Hernández-Muñiz et al., 2023) is the residual strawberry

extrudate. This by-product has a similar concentration of labile

carbon as rice bran and could be used as an amendment for ASD

against Verticillium wilt. Both wastes can be found in industries

close to the strawberry-growing area of Huelva.

The main objective of the present study was to optimize the

ASD strategy in Spain for reducing V. dahliae microsclerotia in soil

and alleviate the severity of symptoms caused by V. dahliae on

strawberry crops in Spain to economically sustainable levels using

by-products from industries near the strawberry crop area of

Huelva, Spain.
2 Materials and methods

The effect of ASD on the reduction of V. dahliae microsclerotia

and the severity of Verticillium wilt was evaluated. For this purpose,

a common sandy soil extracted from a strawberry plantation

(37.398045, -7.075881) in the growing area of Huelva was used to

carry out the experiment under conditions similar to those in the

field. The amendments used were rice bran as a standard

amendment and residual strawberry extrudate at different

amendment doses for optimization: 13.5 and 20 t/ha for rice bran

and 16.89 and 25.02 t/ha for residual strawberry extrudate. One

week before the addition of the amendments (start of the

treatments), the soil was artificially inoculated with V. dahliae. At

the end of the treatments, a trial was carried out under controlled

climatic conditions in a growth chamber, where strawberries were

grown in the soil resulting from the treatments (ASD, control and

chemical) to evaluate the disease caused by V. dahliae.
2.1 Soil and amendment characterization

Before starting the trials, a physico-chemical characterization of

the soil and the amendments used was carried out.

2.1.1 Soil characterization
Three soil samples (without previous disease) were collected

from the first 20 cm, excluding the upper layer. Soil characterization

was determined by the Agricultural Research Service of the

University of Seville (Table 1).

2.1.2 Amendment characterization
Rice bran (Arrozúa, Seville, Spain) and residual strawberry

extrudate (Svz, Huelva, Spain) were employed as amendments.

Total carbon, nitrogen and sulphur were determined by the

Agricultural Research Service of the University of Seville using

LECO CNS-Trumac Elemental Autoanalyzer (Michigan,

USA) (Table 2).
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2.2 Evaluation of V. dahliae microsclerotia
reduction in soil

2.2.1 Soil inoculum preparation
Verticillium dahliae strain V.31 was used to prepare the soil

inoculum. V.31 was isolated from strawberry plants and is

conserved in the Plant Pathology Laboratory of the University of

Seville. The isolate was grown on PDAmedium for one week. Then,

rice was inoculated in polypropylene bags with filters (PPD75/REH/

V37–53, SacO2, Deinze, Belgium) according to the procedure

described by Benson and Parker (2015). Once the pathogen had

completely colonized the rice, it was dried, ground, and mixed with

the soil according to Hernández-Muñiz et al. (2023). After one

week, inoculum-soil titration was performed to estimate the final

microsclerotia concentration according to Harris et al. (1993).

The estimated soil inoculum concentration was 2.42×107

microsclerotia/g soil.
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2.2.2 Experimental design
Two trials including seven treatments and three repetitions for

each were performed. Soils were inoculated with 250

microsclerotia/g dry soil, homogenized with 4.1 Kg of soil with an

automatic homogenizer (Heidolph Reax 20, Schwabach, Germany)

and then placed in a black bag within a 2.5L internal volume

container (experimental unit). The containers were incubated

during one week at room temperature for the correct

establishment of the pathogen. The number of V. dahliae

microsclerotia was re-estimated on PDA medium to check the

good establishment of the pathogen into the soil following the

procedure described by Harris et al. (1993). The average density of

microsclerotia recorded was 25 microsclerotia/g dry soil.

Amendments and corresponding water to each treatment were

added and homogenized with an automatic homogenizer. The

amendment doses used for rice bran were 13.50 and 20.00 t/ha

(Mazzola et al., 2018; Márquez-Caro et al., 2022; Hernández-Muñiz

et al., 2023). and 16.89 and 25.02 t/ha for residual strawberry

extrudate (Márquez-Caro et al., 2022.; Hernández-Muñiz et al.,

2023). The volume of water needed to reach field capacity was

calculated considering the soil and amendments humidity. Then,

bags were immediately closed. To facilitate redox measurements

during the trial, 15 mL falcon tubes were placed with one end cut off

(in contact with the soil) and the other end (outside the container)

closed with a stopper. In addition, an unamended treatment under

anaerobic conditions, an unamended treatment under aerobic

conditions (control treatment) and a chemical treatment with

50% (w/v) metam sodium at 300 l/ha (Raisan-50, Lainco S.A.,

Barcelona, Spain) were included. Anaerobic treatments had a

duration of 25 days and the fumigant treatment lasted for 15

days, as recommended in the product label.

The trials were placed randomly in a growth chamber and

incubated in dark at 33/23°C. The incubation temperature of the

treatments was chosen according to temperature in Huelva in the

summer months to simulate real field conditions.

2.2.3 Soil redox and pH
During treatments, several redox measurements were conducted

at different times following the methodology outlined by Hernández-

Muñiz et al. (2023). The SensoLab Benchtop pH/ORP Meter

(PM1000) with the ORP1000 Polycarbonate Laboratory ORP

Sensor (Sensorex Corporation, California, USA) was used for redox

measurements. Soil redox potential values were corrected to be

relative to the redox potential of a standard hydrogen electrode.

Formodification of the ORP reading in mV to EhmV, the addition of

201 mV was necessary (Fiedler et al., 2007). The critical redox

potential of soil, indicative of reduced conditions (Rabenhorst &

Castenson, 2005), was calculated using the formula [CEh= 595mV –

60 mV (soil pH)] was used. The value of 264 mV was determined as
TABLE 2 Determination of oxidable and total organic carbon, total nitrogen, total sulphur, and the humidity of used amendments.

Amendment Oxidable organic carbon (%) Total C (%) Total N (%) Total S (%) Humidity (%)

Rice bran 46.51 50.19 2.21 0.24 4.51

Residual strawberry extrudate 37.18 52.37 1.95 0.18 5.42
TABLE 1 Physicochemical parameters of the soil used in experiment.

Parameters Values+

pH (extractor ½, 5 p/V) 5.52 ± 0.06

Electrical conductivity (µS/cm) (extractor 1/5 p/V) 216.20 ± 13.27

Olsen P (mg/Kg) 62.18 ± 1.75

Oxidable organic matter (%) 0.42 ± 0.01

Oxidable organic carbon (%) 0.24 ± 0.00

Total N (%) 0.03 ± 0.01

Exchange cations (soluble in ammonium acetate 1N pH 7)

Ca (cmolc/Kg) 1.17 ± 0.09

Mg (cmolc/Kg) 0.37 ± 0.02

K (cmolc/Kg) 0.52 ± 0.03

Na (cmolc/Kg) 0.18 ± 0.01

Available trace elements (soluble in DTPA-TEA-CaCl2)

Fe (mg/Kg) 49.92 ± 1.25

Mn (mg/Kg) 11.33 ± 0.53

Zn (mg/Kg) 4.23 ± 0.12

Cu (mg/Kg) 2.73 ± 0.03

Texture:

Silt (%) 7.18 ± 0.08

Clay (%) 3.59 ± 0.10

Sand (%) 89.24 ± 0.06
+Data represent mean ± standard error.
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the threshold below which soil is considered as anaerobic at a soil pH

of 5.52 (Shennan et al., 2018). Soil pH was determined with the

GLP22 Crison pHmeter (Hach Lange Spain, S.L.U, Barcelona, Spain)

after ASD treatments following Hernández-Muñiz et al. (2023).

2.2.4 Potential biocontrol microbes
Microbial density of usual biocontrol agents, including

Trichoderma spp., fluorescent Pseudomonas spp. and copiotrophic

bacteria, was determined in soils by dilution plating using a

combination of selective culture media according to Borrero et al.

(2004). Streptomyces spp. density was determined using 1/50

tryptone soybean medium as described by Mazzola et al. (2018).

Samples were taken from each repetition after treatments and

following one week of aeration.

2.2.5 Quantification of V. dahliae
V. dahliae DNA was extracted in triplicated from each

repetition of aerated soil sample (experimental unit) using

DNeasy PowerSoil Pro kit (QIAGEN, Germany) according to the

manufacturer’s procedure. DNA was quantified in triplicate in a

Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham,

MA, USA). Real-time polymerase chain reaction (qPCR) for the

detection and quantification of V. dahliae was carried out following

the conditions described by Bilodeau et al. (2012) with some

modifcations: qPCR reactions were performed in 96-well plates

using a CFX Connect thermocycler (Bio-Rad) in a 20 mL final

volume. This contained 1x SensiMix (SensiMixTM Probe Kit,

Bioline), 0.1 mg/mL BSA, 1 mM each primer (Bilodeau et al.,

2012), 5 mM TaqMan probe marked with 6′FAM fluorescein

(Bilodeau et al., 2012), and 5 mL of extracted DNA. To discard

false-negative amplifications, an internal positive control (IPC) was

used consisting of lambda (l) bacteriophage DNA (1 pg) added to

each sample and amplified in duplex qPCR assays using primers l
-F (5´-GGT GGA AAC CGC ATT CTG TAC-3´) and l-R (5´-CCG

TCG AGA ATA CTG GCA ATT T-3´) and a HEX-TaqMan probe

(5’-TCG TGCT GTC GCG GAT CGC AGG T-3’). Amplifications

were carried out at 95°C for 10 minutes, and 55 cycles of 15 s at 95°

C and 30 s at 62°C. In each run, sterile distilled water was used as a

negative control. A standard curve was constructed by serial

dilutions of V. dahliae V.31 genomic DNA included in each

qPCR assay in triplicate. Quantifications were calculated as pg of

V. dahliae DNA per g of soil using the CFX Connect software

(Bio-Rad).
2.3 Assessment of disease severity after
soil treatments

2.3.1 Experimental design
After treatment, soil samples were aerated for one week.

Subsequently, the soil samples from each repetition were

transferred into three 0.65L pots (n= 9 pots per treatment and 3

pots per block). One bare root strawberry plant of the ‘Splendor’

variety (Plant Sciences-Berry Genetics, Watsonville, California) was

transplanted into each pot. Plants were randomized within each block

in a growth chamber and maintained for 235 days at 25°C day and
Frontiers in Plant Science 04
22°C night with a 12-h photoperiod. The final experimental design

encompassed 2 trials× 7 treatments × 3 blocks × 3 repetitions.

2.3.2 Disease development
Weekly observations were conducted to monitor the

progression of the disease caused by V. dahliae. Disease foliar

severity was assessed considering leaf wilting and dwarfing.

Measurements were made by counting affected and total leaves

and the proportion between them ranged from 0 (healthy plant) to

1 (totally affected plant). At the end of the plant trials, root severity

was measured as percentage of affected roots (necrotic roots): 0 = all

roots were healthy and 1 = all roots were necrotic. To confirm the

presence of V. dahliae, crown piece samples were disinfected by

immersion in 1% sodium hypochlorite for two minutes, followed by

a two-minute water rinse and drying under sterile conditions for

two hours. Finally, the crown pieces were placed on Verticillium

selective medium (Papavizas and Klag, 1975).
2.3.3 Potential biocontrol microbes
in rhizosphere

The microbiological biocontrol populations were determined in

the strawberry rhizosphere as described in section 2.2.4. For this

process, ten grams of rhizosphere soil were collected from a mixture

of the rhizospheres of the three repetitions within each block

and treatment.
2.4 Statistical analysis

Data collected from two trials were analyzed with the software

Statgraphics Centurion 18 (18.1.13 version; Statgraphics

Technologies, Inc., The Plains, VA). Data coming from the two

trials were pooled for statistical analysis after finding no significant

disinfestation treatment x trial interaction in factorial ANOVA.

Disinfestation treatments, trials, and their interaction were treated

as fixed effects, blocks nested in trial and their interaction were

considered as random effects. The variables analyzed were foliar

disease severity and the percentage of necrotic roots (n=18);

cumulated anaerobic conditions and pH in the soil post-

disinfestation (n=6) and population density of the microbiological

groups (Trichoderma spp., copiotrophic bacteria, Streptomyces spp.

and fluorescent Pseudomonas spp.) present in the soil post-

disinfestation and at the end of the plant trials (n=6). When

necessary, data were transformed for compliance with ANOVA

requirements and were tested using Levene, Bartlett and Cochran’s

tests. Means were compared using Duncan’s test.
3 Results

3.1 Soil physicochemical parameters

All amended treatments showed higher cumulative anaerobic

condition values, measured as Eh mVh below 264 mV, than the

anaerobic unamended treatment. Likewise, the amended treatments
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showed no significant differences for the accumulation of anaerobic

conditions among them (Table 3).

Regarding pH, all amended treatments, except for a high dose of

residual strawberry extrudate, showed higher values than the

aerobic unamended. In addition, the high dose residual

strawberry extrudate and metam sodium treatments showed no

significant differences with the aerobic unamended. On the other

hand, the high dose of rice bran showed the highest pH (Table 3).
3.2 Soil microbial parameters

3.2.1 Quantification of V. dahliae after treatments
Significant differences were observed for the amount of V. dahliae

DNA/g of soil among treatments. However, no differences were found

between the doses tested within each amended treatment (Table 4). All

treatments showed lower V. dahliae inoculum density than the aerobic

unamended treatment. The inoculum density of V. dahliae after the

metam sodium treatment did not significantly differ from that observed

with residual strawberry extrudate treatments at the two assessed doses

nor from the inoculum density following the anaerobic unamended

treatment. Rice bran treatments recorded the lowest amount of V.

dahliae DNA/g of soil (Table 4).

3.2.2 Biocontrol microbes’ population densities
After treatments, rice bran amended with 20 t/ha showed high

population density of Trichoderma spp. and copiotrophic bacteria.

Likewise, the treatment amended with 13.5 t/ha of rice bran showed

significant differences in copiotrophic bacteria populations

compared to the rest of amended treatments, but not in the

Trichoderma spp. populations (only significant differences with
Frontiers in Plant Science 05
the aerobic amended and metam sodium treatments). The

treatments with residual strawberry extrudate showed no

differences with the metam sodium treatment and with the

aerobic and anaerobic unamended treatments in the density of

recorded Trichoderma spp. populations and copiotrophic bacteria

(Table 5). No significant differences were observed among

treatments in the population density of fluorescents Pseudomonas

spp. and Streptomyces spp. (data not shown).

After the plant trial, no significant differences were observed

between treatments for biocontrol microbes, Trichoderma spp.,

copiotrophic bacteria spp., fluorescent Pseudomonas spp., and

Streptomyces spp. (data not shown).
3.3 Disease severity

Treatments including amendments and metam sodium exhibited

lower foliar disease severity than the aerobic and the anaerobic

unamended treatments. In addition, all amended treatments, except

the amended with 16.89 t/ha of residual strawberry extrudate, showed

similar severity values to the metam sodium treatment (Figure 1).

A reduction in root severity was only observed in comparison to

the anaerobic and aerobic unamended soil when high doses of both

amendments were applied. Metam sodium also decreased root

severity compared to the aerobic unamended but not in

comparison to the anaerobic unamended soil (Figure 1).
4 Discussion

In the present study, a reduction in disease severity was

observed in the treatments with rice bran and residual strawberry
TABLE 3 Effect of disinfestation treatments on cumulative Eh mV h
and pH.

Amendment Dose
(t/ha)

Cumulative
Eh mV h
below

264 mVa

pHb

Rice bran 13.50 62,716 ± 6,394 ab 6.8 ± 0.26 b

Rice bran 20.00 94,304 ± 13,899 a 7.29 ± 0.12 a

Residual
strawberry
extrudate

16.89 87,355 ± 8,802 ab 6.62 ± 0.11 bc

Residual
strawberry
extrudate

25.02 68,907 ± 9,620 ab 6.57 ± 0.08 bcd

Anaerobic
unamended

– 46,309 ± 9,935 c 5.63 ± 0.15 e

Aerobic
unamended

– – 6.20 ± 0.04 d

Metam sodium 50% w/v 300
l/ha

– 6.43 ± 0.15 cd
Data represent the mean ± standard error (n=6). Values followed by different letters indicate
significant differences according to ANOVA and Duncan test (P<0.05).
aCumulative Eh mV h below 264 mV: measures were taken during the duration treatment.
Data for analysis were transformed with X0.3.
bpH: measures were taken just after treatments.
TABLE 4 qPCR quantification of Verticillium dahliae in soil
after treatments.

Amendment
Dose
(t/ha)

V. dahliae density (pg DNA/g
soil (x10-1)a

Rice bran 13.50 2.60 ± 2.19 de

Rice bran 20.00 0.24 ± 0.17 e

Residual
strawberry
extrudate

16.89 15.9 ± 10.8 bc

Residual
strawberry
extrudate

25.02 24.2 ± 14.0 b

Anaerobic
unamended

– 5.63 ± 3.23 cd

Aerobic
unamended

– 380.0 ± 77.1 a

Metam sodium 50% w/v,
300 l/ha

4.57 ± 1.35 bc
Data represent the mean ± standard error (n = 6) Values followed by different letters indicate
significant differences according to ANOVA and Duncan test (P<0.05).
aV. dahliae density (pg DNA per gram of soil (x10-1): Quantification of V. dahliae by qPCR
was taken after one week of aeration of the treatments. Data for analysis were transformed
with X0.15.
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extrudate at 20 and 25 t/ha respectively. In addition, rice bran at 20

t/ha reduced V. dahliae density compared to aerobic and anaerobic

treatments without amendment. Additionally, the efficacy of these

treatments were comparable to that achieved by metam sodium

treatment. Notably, the 20 t/ha rice bran amendment achieved the

greatest reduction in V. dahliae inoculum density.

The efficacy of this kind of residues as amendments in ASD to

control soil pathogens is well-known. Studies conducted by

Serrano-Pérez et al. (2017); Shennan et al. (2018), and Márquez-

Caro et al. (2022) have demonstrated the ability to reduce the

number of propagules of Phytophthora nicotianae, V. dahliae, and

M. phaseolina, respectively, using rice bran. Furthermore, Márquez-

Caro et al. (2022) and Hernández-Muñiz et al. (2023) observed a

decrease in disease severity caused by M. phaseolina and F.

oxysporum f. sp. fragariae, respectively, following treatments with

rice bran (20 t/ha) and residual strawberry extrudate (25 t/ha and 60

days of anaerobiosis).
4.1 Influence of the anaerobic conditions

Shennan et al. (2018) proposed that a threshold of 50,000 mVh

at 25°C is required to reduce 80–100% V. dahliae propagules.

Despite treatments in this study were conducted at 33°C, only the

amended treatments reached this threshold. Nevertheless, a
FIGURE 1

Effect of treatments on foliar and root disease severity (diseased tissue proportion) in strawberry. Columns represent the average values of foliar or
root severity (n = 18) and the bars represent the standard error. Different letters above columns indicate significant differences according to ANOVA
followed by the Ducan test (P<0.05). Data of root disease severity was transformed for statistical analysis as x1.8. *Treatments: RB, rice bran
amendment; RSE, residual strawberry extrudate amendment; Anaerobic unamended; Aerobic unamended; Metam sodium.
TABLE 5 Population densities of potential biocontrol microbes
post treatments.

Amendment Dose
Trichoderma
spp. densitya

Copiotrophic
bacteria
densityb

(t/ha)
CFU g-1 dry
soil (x103)

CFU g-1 dry
soil (x107)

Rice bran 13.50 16.2 ± 60.3 b 7.49 ± 0.83 b

Rice bran 20.00 50.2 ± 97.6 a 17.78 ± 3.02 a

Residual
strawberry
extrudate

16.89 4.51 ± 3.26 bc 1.36 ± 0.67 c

Residual
strawberry
extrudate

25.02 9.06 ± 2.69 bc 2.01 ± 0.91 c

Anaerobic
amended

– 4.19 ± 0.72 bc 1.33 ± 0.95 c

Aerobic
amended

– 3.57 ± 0.54 c 2.23 ± 0.96 c

Metam sodium
50% w/v,
300 l/ha

0 ± 0 c 1.33 ± 0.80 c
Data represent the mean ± standard error (n = 6). Values followed by different letters indicate
significant differences according to ANOVA and Duncan test (P<0.05).
aColony forming unit (CFU) of Trichoderma spp. post treatments after one week of aeration;
bCFU of copiotrophic bacteria post treatments after one week of aeration.
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reduction of V. dahliae inoculum density in soil was recorded in all

treatments under anaerobic conditions, including the unamended

treatment. However, only the amended treatments exhibited a

reduction in foliar severity compared to the aerobic unamended

treatment, an effect not observed in the unamended treatment

under anaerobic conditions. This suggests that, besides the

reduction of inoculum density of V. dahliae in soil, additional

modifications were induced by using such by-products in soil

amendment under anaerobic conditions.
4.2 Influence of soil pH

Several authors have reported changes in soil physico-chemical

parameters following ASD treatments, including alterations in soil

pH that were related to soil type, amendments used, anaerobic

conditions and temperature (Rosskopf et al., 2015). Soil type is a

crucial factor in the impact of ASD treatment on soil pH. Previous

research has shown that soils rich in organic matter with finer-

texture (clay soils) and alkaline pH have high buffering capacity so

that the effect of ASD treatment on soil pH is limited (Bohn et al.,

1985), and even the pH of alkaline soils can decrease due to the

generation of organic acids and the accumulation of dissolved

carbon dioxide (Inglett et al., 2005). In contrast, other studies

have indicated that coarser-textured soils (sandy soils) have low

buffering capacity so are more likely to show significant responses in

soil pH to ASD treatment or organic matter additions (Butler et al.,

2012a). Therefore, in studies related to ASD, it is common to find

studies where authors reported a decrease in pH, attributed to the

release of volatile acids (Momma et al., 2006; Muramoto et al.,

2016), and others, where an increase in pH was reported after

anaerobic treatments (Shrestha et al., 2021; Márquez-Caro et al.,

2022; Hernández-Muñiz et al., 2023).

Previous studies have observed that decomposition of organic

amendments can potentially raise soil pH by releasing basic cations

(Marschner and Noble, 2000; Xu et al., 2006). This phenomenon

may become the predominant process in the absence of significant

organic acid formation during anaerobic decomposition. On the

other hand, studies by Littrell et al. (2024) described the importance

of volatile fatty acids in the suppression of F. oxysporum (Fo).

Furthermore, they observed a higher suppression of the disease in

sandy soils than in clay soils at the same concentration of added

VFAs, which was attributed to the lower buffering capacity in sandy

soils than in clay soils. Similarly, studies by Littrell et al. (2024) also

observed that at higher soil pH, VFAs dissociation increases,

reducing Fo suppression by VFAs. Therefore, they deduced that

volatile fatty acids are not the only ones involved in disease

suppression. Studies by Hernández-Muñiz et al. (2023) and

Márquez-Caro et al. (2022) on sandy soils with a similar structure

to the one used in this research, also detected an increase in pH in

soils treated with ASD. In addition, Hernández-Muñiz et al. (2023)

related the decrease of propagules and the severity of the disease

caused by F. oxysporum f.sp. fragariae since it is well established

that a basic soil pH reduces the severity of Fusarium wilt (Borrero

et al., 2004).
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Our study found that the ASD treatments resulted in an

increase in soil pH. The treatment that was amended with rice

bran at 20 t/ha had the highest pH value among all treatments. In

addition, this treatment had the highest reduction of V. dahliae

inoculum density in the soil and the lowest foliar severity among the

amended treatments. However, it is important to note that V.

dahliae usually thrives in alkaline soils with a pH between 6 and

9. Therefore, the reduction of propagules in our study observed in

soils with higher pH indicates that the reduction of propagules and

disease severity may be influenced by other variables such as soil

texture, the rate of mineralization of organic matter and soil

microbial activity (Gamliel et al., 2000).
4.3 Influence of certain
soil microorganisms

The study quantified the populations of Trichoderma spp.,

copiotrophic bacteria, Streptomyces spp., and fluorescent

Pseudomonas spp. after the treatments and plant trial. However,

only significant differences in the populations of Trichoderma spp.

and copiotrophic bacteria were found after the treatments, and no

differences were observed after the plant trials. In both cases, the

treatments amended with rice bran (both doses) showed an increase

in these populations, with the high amended dose (20 t/ha) resulting

in a higher population of these potential biocontrol agents.

Trichoderma spp. and copiotrophic bacteria are known to help

control of soil-borne diseases such as M. phaseolina, F. solani

(Pastrana et al., 2016), and V. dahliae (Mercado-Blanco et al., 2004;

Mirmajlessi et al., 2016). They are also suppressive soil indicators

against diseases (Van Bruggen and Semenov, 1999; Kotsou et al.,

2004). The population density of copiotrophic bacteria was higher in

the treatments amended with rice bran, with a significant difference

between the two doses. The higher dose of 20 t/ha of rice bran

recorded a higher population density of copiotrophic bacteria. This

could be due to the fact that rice bran provides more easily

assimilated carbon compared to the residual strawberry extrudate

(Cederlund et al., 2014). The higher pH in the treatment with 20 t/ha

of rice bran may have favored the greater presence of

microorganisms. Previous studies reported that copiotrophic

bacteria compete for organic nutrients (Jones et al., 1993) and

depend on a high pH (Woltz and Jones, 1981). Therefore, the

higher population numbers of Trichoderma spp. and copiotrophic

bacteria, aided by higher availability of labile carbon and a higher pH,

could explain the lower inoculum density of V. dahliae in soil and the

lower severity found in the rice bran amended treatments.

The addition of organic amendments to the soil can lead to

changes in the populations of microorganisms present in the soil

(De Corato, 2020). These populations can vary depending on the

carbon source used (Butler et al., 2012b). Encouraging soil

microbial communities could be an effective method to develop

natural suppression of soil-borne plant pathogens, including V.

dahliae (De Corato, 2021; Kowalska, 2021). Poret-Peterson et al.

(2019) through their metagenomic analysis of soil after ASD

treatments observed that microorganisms responsible for nitrogen
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fixation responded positively to ASD treatments. This increase in

nitrogen-fixing microorganisms in ASD-treated soils has

implications not only for crop health, but also for crop nutrition.

The ability of these microorganisms to fix atmospheric nitrogen

could potentially improve the availability of this essential plant

nutrient. This phenomenon suggests a beneficial mechanism for

optimizing the nutrition of ASD-treated crops, which could

translate into improved yields and overall health of agricultural

crops. However, further studies are required to fully understand the

implications and practical applications of this phenomenon

in agriculture.
4.4 Organic residue revaluation

One of the main targets for Spain is to implement environmental

legislation (EIRSs) for the improvement of waste management and the

development of the Circular Economy. The new Circular Economy

Action Plan adopted in March 2020 is one of the main pillars of the

European Green Deal. In addition, the new Common Agricultural

Policy (CAP) also supports the transition towards sustainable

agriculture. Among the objectives of this new policy are to reduce by

50% the use of pesticides and nutrient losses from fertilizers, while

ensuring that soil fertility is not impaired, and to increase by at least

25% the areas devoted to organic farming (European Commission,

2022). Therefore, the use of rice bran and residual strawberry extrudate

in anaerobic soil disinfestation in strawberry crop is proposed as a

promising technique that contributes to the circular economy and

meets CAP objectives. The addition of these residues and by-products

to agricultural soil could be used as substitutes for chemical fumigants

and fertilizers. By using agrowaste as soil amendment has a positive

impact on the organic matter content and fertility of soil, thereby

improving health (De Corato et al., 2024) and suppressiveness of the

soil against various stress factors, including those caused by soil-borne

plant pathogens (De Corato, 2023).This benefit could be utilized by

farmers to decrease the necessity of adding chemical fertilizers to the

soil, promoting the use of organic residues as fertilizers. Research

conducted by Shennan et al. (2018) has shown that soils with higher

levels of nitrogen or phosphorus have a lower incidence or higher

suppressiveness of diseases such as Verticilliumwilt in strawberries and

potatoes. Additionally, Shennan et al. (2018) noted an increase in

strawberry yield in the field with the addition of rice bran.

Consequently, both organic residues could be used as organic

fertilizers. This would improve crop productivity and soil

suppressiveness, while also meeting European regulatory

requirements. In addition, it would give added value to both the

waste and the strawberry crop bymaking it eligible for organic farming.
5 Conclusion

The reduction of the inoculum density of V. dahliae in soil,

achieved by the tested treatments, does not necessarily result in a

reduction in the severity of Verticillium wilt of strawberry. Only the

treatments that included organic amendments and metam sodium

managed to reduce the severity compared to the control.
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These residues can also be used as amendments for ASD in

other horticultural crops. The pathogen V. dahliae is particularly

problematic due to its wide host range and the issues that arise after

the removal of methyl bromide and other soil fumigants used for

soil disinfestation. Therefore, the ASD technique utilizing these

residues could be a viable alternative for other crops.
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