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The timely and accurate acquisition of crop-growth information is a prerequisite

for implementing intelligent crop-growth management, and portable

multispectral imaging devices offer reliable tools for monitoring field-scale

crop growth. To meet the demand for obtaining crop spectra information over

a wide band range and to achieve the real-time interpretation of multiple growth

characteristics, we developed a novel portable snapshot multispectral imaging

crop-growth sensor (PSMICGS) based on the spectral sensing of crop growth. A

wide-band co-optical path imaging system utilizing mosaic filter spectroscopy

combined with dichroic mirror beam separation is designed to acquire crop

spectra information over a wide band range and enhance the device’s portability

and integration. Additionally, a sensor information and crop growth monitoring

model, coupled with a processor system based on an embedded control module,

is developed to enable the real-time interpretation of the aboveground biomass

(AGB) and leaf area index (LAI) of rice and wheat. Field experiments showed that

the prediction models for rice AGB and LAI, constructed using the PSMICGS, had

determination coefficients (R²) of 0.7 and root mean square error (RMSE) values

of 1.611 t/ha and 1.051, respectively. For wheat, the AGB and LAI prediction

models had R² values of 0.72 and 0.76, respectively, and RMSE values of 1.711 t/ha

and 0.773, respectively. In summary, this research provides a foundational tool

for monitoring field-scale crop growth, which is important for promoting high-

quality and high-yield crops.
KEYWORDS

crop growth monitoring, portable snapshot multispectral imaging crop-growth sensor,
wide band co-optical path imaging system, mosaic filter spectroscopy, field
experiments, prediction models
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1416221/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1416221/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1416221/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1416221&domain=pdf&date_stamp=2024-08-26
mailto:zhoudong@njau.edu.cn
mailto:yanzhu@njau.edu.cn
https://doi.org/10.3389/fpls.2024.1416221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1416221
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2024.1416221
1 Introduction

Real-time and accurate estimations of crop growth conditions

provide fundamental agricultural information for crop growth

diagnosis and precise management, playing a crucial role in

enhancing crop yields and quality (Karthikeyan et al., 2020;

Berger et al., 2022). Traditional methods of obtaining crop

growth information have relied on subjective observations by

agricultural experts or destructive sampling combined with

physical and chemical experiments in the laboratory. However,

these methods have several disadvantages, such as their poor

timeliness, time-consuming processes, and labor-intensive

procedures (Zou et al., 2001; Yuan et al., 2022). In recent years,

crop growth monitoring technologies based on spectral imaging

have been developed; these technologies are non-destructive,

provide data in real time, and are highly efficient. These

technologies have found widespread applications in estimating

the nitrogen content in rice leaves (Zhou et al., 2018), monitoring

wheat biomass (Jia et al., 2019), and detecting powdery mildew in

wheat (Xuan et al., 2022). Spectral imaging sensors, which can

serve as an implementation platform for spectral imaging

technology, are foundational tools for crop growth monitoring

(Sun et al., 2022).

Agricultural scientists demand crop growthmonitoring at various

scales, and different types of spectral imaging sensing devices offer

possibilities for fulfilling this need. Portable spectral imaging devices,

characterized by their portability and ease of operation, have

demonstrated significant advantages in acquiring information on

crop organs and canopies at the field scale (Pallottino et al., 2019;

Kim et al., 2023). Jia et al. (2019) utilized a commercial hyperspectral

imaging device, the GaiaField-V10E (400−1000 nm), to estimate

wheat leaf biomass. They used the synergistic interval partial least

squares (SIPLS) and successive projection algorithm (SPA) to select

eight feature wavelengths and construct a wheat leaf biomass

prediction model based on partial least squares regression (PLSR)

(R²=0.79, RMSE=0.059 kg/m2). While this type of device enables rich

spectral information acquisition, data processing relies on specialized

remote sensing personnel, and it cannot directly output crop growth

information. Shao et al. (2023) used a portable pole-mounted

commercial multispectral camera, RedEdge, for acquiring

multispectral images of maize. After offline cropping, registration,

and radiometric correction of the obtained images, they achieved

maize leaf area index (LAI) prediction (accuracy R²=0.816,

RMSE=0.399). However, the multi-channel multispectral camera

used in this study was affected by field-of-view differences between

lenses in near-ground applications, and the process from crop spectral

information acquisition to agricultural parameter interpretation relied

on a multi-step offline processing approach.

In comparison with commercial spectral imaging devices, some

research institutions have developed agriculture-specific spectral

imaging devices. Wang et al. (2020b) designed a handheld corn

hyperspectral imaging system that included a commercial

hyperspectral camera, a leaf scanner, a lightbox, and a controller.

Using the normalized difference vegetation index (NDVI) combined

with PLSR, they constructed models to predict corn leaf nitrogen
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content and relative water content. However, the device is relatively

large, and efficient imaging requires moving the hyperspectral camera

for the push-broom acquisition of corn leaf images. The development

of prediction models for multiple crop growth parameters is still

ongoing. Tang et al. (2022) developed a portable wheat chlorophyll

detector using a commercial mosaic multispectral camera (700−900

nm) with 25 bands. This instrument, which comprised a spectral

camera, a control module, and a network module, could construct a

wheat chlorophyll content prediction model by selecting optimal

feature bands. Although this device provided direct interpretation of

wheat chlorophyll, its bands were concentrated in the near-infrared

and red-edge spectra, offering a limited wavelength range, and the

output indicators were relatively singular. Wang et al. (2020a) also

created a portable soybean leaf multispectral imaging device

consisting of a monochrome camera, different wavelength light-

emitting diodes (LEDs), and a controller. This device captured

multispectral images of soybeans by pressing the soybeans flat and

then constructed NDVI images. However, research findings did

not present a prediction model specifically for soybean

chlorophyll content.

To address the aforementioned typical issues, this study

introduces a novel portable snapshot multispectral imaging crop

growth sensor (PSMICGS) capable of real-time interpretation of

rice and wheat aboveground biomass (AGB) and leaf area index

(LAI). In contrast to previous work, this study offers the following

significant contributions:
1. A design approach for PSMICGS using mosaic filters (MFs)

in conjunction with dichroic mirrors (DMs) to achieve

wide-band integrated co-optical imaging is proposed. This

method enables the real-time acquisition, processing, and

interpretation of crop spectral information across a broad

wavelength range.

2. Assembly and adjustment methods for a wide-band co-

optical front imaging system incorporating DMs for beam

separation were explored, as well as methods for the

registration of multispectral images. This method

included strategies for real-time online image registration

and multispectral image fusion, enhancing capabilities for

crop analysis.

3. A processor system that integrated sensor data with crop

growth monitoring models based on an embedded control

module was developed. This addressed the limitation of

existing devices that struggle with real-time crop growth

interpretation. Field experiments were conducted in rice

and wheat fields using the PSMICGS, resulting in the

construction of prediction models for rice and wheat

AGB and LAI.
2 Materials and methods

In this section, we detail the design process of the PSMICGS and

the construction of the models for estimating AGB and LAI in rice
frontiersin.org
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and wheat fields. Specifically, we outline the design approach of a

wide-band co-optical path imaging system based on MFs combined

with DMs for spectral separation. Additionally, we describe the

experimental design for monitoring AGB and LAI in rice and wheat

using the PSMICGS, along with the process used to construct

prediction models.
2.1 Design of the PSMICGS for wide band
integrated co-optical path imaging

2.1.1 Selection of crop growth-sensitive
spectral bands

After solar radiation interacts with crops, spectral information

is formed through absorption, transmission, and reflection. This

information reflects canopy structure, growth conditions, and

physiological and biochemical characteristics of crops, with

reflection spectra being commonly used in crop growth

monitoring (Xue et al., 2003; Zhu et al., 2007a). To develop a

PSMICGS capable of direct crop growth interpretation, it is

necessary to carefully select crop growth-sensitive bands. Based

on our unit’s research on crop growth monitoring (Zhu et al.,

2007b; Wang et al., 2012; Li et al., 2022) and diagnostic equipment

development (Ni et al., 2018; Yao et al., 2020; Yuan et al., 2022) at

the National Engineering and Technology Center for Information

Agriculture, Nanjing Agricultural University, China, it was found

that canopy reflectance in rice and wheat is closely related to specific

spectral ranges: 413–434 nm, 517–538 nm, 553–577 nm, 660–680

nm, and 700–770 nm for nitrogen content (Wang et al., 2012; Yao

et al., 2013); 706–738 nm and 806–816 nm for biomass (Yao et al.,

2018; Jia et al., 2019); and 590–710 nm and 745–1130 nm for wheat

leaf dry weight and LAI (Feng et al., 2009). Considering these

studies, we selected 458, 487, 527, 558, 644, 716, 737, and 813 nm as

characteristic bands for the PSMICGS.
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2.1.2 Design of the PSMICGS control system
The hardware architecture of the PSMICGS consisted of a front

imaging system, primary control module, auxiliary cameras, power

module, and control display. The front imaging system, which is

crucial for capturing crop information across different spectral

bands integrated a lens (AF Nikkor 50 mm F/1.8D, Tochigi

Nikon Precision Co., Ltd., Japan) with a minimum focusing

distance of 0.45 meters and a diagonal field of view of 46°. It

utilized DMs for spectral separation and two mosaic multispectral

cameras (MMC1 and MMC2) equipped with mosaic filters (MF1

and MF2). To capture crop light information at preset wavelengths,

we used MF for spectral splitting. This spectral splitting technique

can deposit different bands on the same mosaic template. However,

due to manufacturing constraints, the eight preset bands were

divided between MF1 and MF2, each fabricated using a

narrowband Fabry-Pérot microcavity array method to ensure over

95% light transmittance at each central wavelength. Figures 1A, B

show the specific band settings and transmittance curves, with MF1

containing the first four and MF2 the last four of the selected

characteristic bands.

The MMC1 and MMC2 detectors were complementary metal

oxide semiconductor (CMOS) image sensors with a spectral

response range of 400−1000 nm, used for capturing and

converting crop light information. To minimize field of view

differences, a DM was employed to separate crop light

information, with a reflecting wavelength range of 380−580 nm

and transmitting wavelength range of 610−880 nm. The DM was

positioned at a 45° angle in the system (Figure 1C). The primary

control module of the PSMICGS utilized an NVIDIA Jetson TX2

(NVIDIA Corporation, USA), which was responsible for the real-

time control of MMCs, and auxiliary cameras to collect and process

crop spectral information. Communication and power supply to

MMC and the auxiliary camera were facilitated using universal

serial bus (USB) 3.0 and USB 2.0 technology, respectively. The
FIGURE 1

Portable snapshot multispectral imaging crop growth sensor (PSMICGS) hardware system. (A) MF1 band settings and transmittance curves for each
band. (B) MF2 band settings and transmittance curves of each band. (C) Schematic diagram of the PSMICGS hardware system architecture.
(D) Three-dimensional model of the entire PSMICGS machine structure. (E) Physical diagram of the entire PSMICGS machine structure.
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auxiliary camera, a five-megapixel driver-free module, captured

crop red-green-blue (RGB) images and monitored sensor field of

view status in real-time. A 14.8-V lithium battery powered the

primary control module, while a 5.5-inch capacitive touchscreen

served as the control display for interactive sensor information

processing. Data storage utilized a 256-GB high-speed TransFlash

(TF) memory card (Western Digital Corporation, USA) inserted

into the Secure Digital (SD) card slot on the development board.

Figures 1D, E depict the three-dimensional model and physical

appearance of the PSMICGS, respectively, with a black coating

applied to the housing to minimize external light interference.

The PSMICGS software system was developed using the Qt

development platform in conjunction with the detector software

development toolkit (Figure 2). The software workflow is illustrated

in Figure 2A and comprises three primary steps: initial sensor setup,

spectral image acquisition and processing, and data storage.

Figure 2B shows the graphical user interface (GUI), featuring five

main sections: camera parameter settings, acquisition control,

information prompts, single-band image display, and analysis

result display.
2.2 Research on spectral image processing
methods of the PSMICGS

A dual-detector integrated co-optical path imaging system was

designed to achieve real-time acquisition of wide-band crop spectral

information and improve device miniaturization and integration, as

illustrated in Figure 3A. However, achieving precise alignment of

the field of view for the two cameras posed challenges due to

machining tolerances in mechanical components and assembly

errors, and required calibration. Figure 3B shows the system

calibration process, which involved using black-and-white

checkerboard patterns. Initially, MMC1 and MMC2 were focused
Frontiers in Plant Science 04
by adjusting them to clearly display registration reference lines,

checkerboard patterns, and hybrid images. Subsequently, we

adjusted MMC2 laterally or longitudinally using the second fixed

adjusting piece’s square slot and second hexagon socket set screws

with cup points until the registration reference line and

checkerboard patterns were aligned both horizontally and

vertically in their respective real-time views. MMC1 was then

rotated using the circular slot of the first fixed adjustment

component until the checkerboard patterns were perfectly aligned

along the edge direction, and it was then secured with the first

hexagon socket set screws with cup points. Finally, fine-tuning of

MMC1 and MMC2 was conducted using the first and second

hexagon socket set screws with cup points until the checkerboard

patterns in all directions were aligned, thereby concluding the

assembly and adjustment process of the front imaging system.

Upon completing the assembly and adjustment of the front

imaging system, we utilized the scale-invariant feature transform

(SIFT) algorithm for image registration between the two fields to

further enhance co-field of view imaging accuracy (Lowe, 2004).

Additionally, an affine transformation was applied for image fusion.

For the specific application scenario, images were captured at a

height of 70 cm above the canopy. Post-registration, fusion and the

root mean square error (RMSE) were employed to assess

registration accuracy, as expressed in Equation 1. If the RMSE

value exceeded four, the image registration was deemed

unsuccessful (Gong et al., 2013; Ma et al., 2016). To distinguish it

from RMSE below, we used the RMSEr here to denote the RMSE.

RMSEr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
(xi − xi

0 )2 − (yi − yi
0 )2

s
(1)

where m represents the total number of pixels and (xi, yi) and

(xi
0, yi 0 ) represent the pixel coordinates of the reference image and

the image to be registered, respectively.
FIGURE 2

PSMICGS software system. (A) Workflow of the software system and (B) diagram of the software interface.
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2.3 Research on calibration methods for
the PSMICGS

2.3.1 Spectral calibration of the PSMICGS
To characterize the response of each spectral channel of the

PSMICGS, we used a spectral calibration system based on an

adjustable monochromatic light source (Zolix Instruments Co.,

Ltd., China). As shown in Figure 4A, this system was composed of

an integrating sphere, an adjustable monochromatic light source, a

spectrometer, and a computer. The monochromatic light source

covered a spectral range of 350−1000 nm, which was sufficient to

cover all bands used by the PSMICGS in this study. During

calibration, the sensor lens was initially aligned with the integrating

sphere’s light port. The exposure time and gain of the MMC were set

to 100 ms and 6 dB, respectively. The monochromator was adjusted

to each of the eight MF bands to determine the band with the highest

digital number (DN) response, which served as the reference band.

Using this reference band as a benchmark, the monochromator was

tuned to corresponding bands. When the DN reached approximately

60−80% of its maximum value, the exposure time and gain settings

were recorded as benchmark parameters. Subsequently, the

spectrometer bands of the monochromatic light source system were

adjusted in 2-nm increments, and internal images of the integrating

sphere were captured and stored for each increment. The wavelength

adjustment ranges for MMC1 andMMC2 were 350−700 nm and 500

−900 nm, respectively. Finally, DN values corresponding to each

band were extracted based on MMC band settings, followed by

fitting analysis.

2.3.2 Radiometric calibration of the PSMICGS
Since the original pixel values obtained by the PSMICGS were in

DN (a dimensionless unit), it was necessary to convert these values

into meaningful radiance or reflectance units for interpreting crop

growth parameters. Thus, we investigated the linear relationship
Frontiers in Plant Science 05
between sensor DN and radiance, which is crucial for improving

the quality and accuracy of crop multispectral images. The

radiometric calibration system used in this study is illustrated in

Figures 4B, C, and it primarily consisted of a 4-inch aperture

integrating sphere (USLR-V12F-NMNN, Labsphere Inc., USA).

The spectrometers used in the system were the Maya2000 Pro,

with a spectral range of 165−1100 nm, and the NIRQuest, with a

range of 900−1700 nm (Ocean Optics, USA). In the specific

calibration procedure, four exposure time levels were set: 60, 80,

100, and 120 ms. For each exposure time, seven radiance levels were

adjusted, and ten images were acquired for each radiance level. The

average DN values of these images were calculated, and the DN values

corresponding to each band were extracted for the fitting analysis.
2.4 Design of the performance test
experiment based on the PSMICGS

2.4.1 Signal-to-noise ratio testing experiment
The signal-to-noise ratio (SNR) is a key indicator for assessing the

performance of spectral imaging sensors, and a high image SNR is a

prerequisite for effective crop-growth monitoring (Li et al., 2023). In

this study, we used an adjustable monochromatic light source system

(Figure 4A) to capture images of a uniform surface light source.

Initially, we set the exposure time and gain values determined during

the spectral calibration process as benchmark parameters.

Subsequently, the monochromator was set to 0 nm, and the

exposure time and gain values of the MMC were adjusted to these

benchmark parameters to avoid image overexposure. The adjustment

was then halted, and the MMC captured 10 images within the

integrating sphere. Finally, pixel values from the corresponding

channels were extracted based on the defined positions of the

reference bands on the MF, and the SNR was calculated using the

following formula (Zaunseder et al., 2022):
FIGURE 3

Assembly and adjustment of the PSMICGS. (A) Three-dimensional diagram of the front imaging system: 1. Lens, 2. Front panel, 3. Component fixing
device, 4. DM and mounting fixing device, 5. Second hexagon socket set screws with cup point, 6. Second fixing adjustment piece, 7. MMC2, 8. First
hexagon socket set screws with cup point, 9. First fixing adjustment piece, and 10. MMC1. (B) On-site image of the front imaging system assembly
and adjustment.
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SNR(l) =
D(l)
N

=
1
noDi(l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o½Di(l) −
1
noDi(l)�

2

n−1

s , (2)

where D(l) represents the mean value of the DN from multiple

acquired spectral images, indicating the signal value, and N

represents the RMSE of the DN from multiple acquired spectral

images, representing the noise value.

2.4.2 Radiometric response accuracy
testing experiment

Accurate radiometric response is essential for quantitative

monitoring of crop growth using the PSMICGS. We tested the
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PSMICGS with eight standard diffuse reflectance panels: A1−A7

(Labsphere Inc., North Sutton, NH, USA) and A8 (Changhui

Electronic Technology Co., Ltd., China) (Figures 5A, B). The

reflectance values of panels A1−A7 were 5%, 10%, 20%, 40%,

60%, 75%, and 99%, respectively, while the reflectance of panel

A8 ranged from 20% to 30%.

During the experiment, the hyperspectral sensor ASD FieldSpec

4 (Analytical Spectral Devices, Boulder, CO, USA) was used to

measure the actual values of each panel, with the values obtained

using the PSMICGS considered as the test values. The distance

between the PSMICGS device and each panel was maintained at 70

cm during data collection, and image reconstruction by the

PSMICGS used a bicubic interpolation algorithm (Keys, 1981).
FIGURE 5

Radiometric response accuracy test of the PSMICGS. (A) Standard diffuse reflective panels with varying reflectivities, and (B) test site.
FIGURE 4

Spectral and radiometric calibration system of the PSMICGS. (A) On-site image of the spectral calibration. (B) System block diagram of the radiation
calibration. (C) Site diagram of the setup for radiation calibration.
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Due to an integration gap between the MF and the detector,

crosstalk between different bands can occur, affecting data

accuracy. Therefore, correcting crosstalk in each reconstructed

band image is fundamental for sensor data analysis. In this study,

spectral crosstalk correction was achieved using Equation 3, which

corrected crosstalk information within each macro-pixel region

using a linear combination of crosstalk correction coefficients, Cij

(provided by the MMC manufacturer; see the Supplementary

Material) and the original pixel response values, POj.

Pi =o
n

j=1
Cij · POj (3)

where Pi is the crosstalk-corrected response value; PO is the

original response value within the macro-pixel region before

crosstalk correction; Cij is the crosstalk correction coefficient

matrix; and i and j are the pixel indices within the reconstructed

and original macro-pixel regions, respectively.

To control for errors, both the ASD and PSMICGS underwent

radiometric calibration using panel A7 with a reflectance of 99%

prior to actual testing. The reflective values of the target measured

using the PSMICGS were calculated using Equation 4. Post data

collection, ENVI 5.3 software (Environment for Visualizing Images,

Research Systems Inc., Boulder, CO, USA) was used to select

regions of interest (ROI) to obtain the reflectance values of each

panel. Due to inconsistent wavelength ranges and spectral

resolutions between the two devices, Equation 5 was employed

to convert the ASD test data to equivalent PSMICGS data,

as suggested by Luo et al. (2023). Finally, by analyzing the test

values of each panel, relative error values were calculated using

Equation 6.

R =
Dr − Dd

Dw − Dd
*Rw (4)

where R is the target reflectance value; Dr , Dd , and Dw are the

image DNs of the target, the dark background (obtained using the

lens cap to cover the lens), and the 99% reflectance calibration plate,

respectively; and Rw is the reflectance value of the 99% reflectance

plate, set to 0.99 for this calculation.

Rr(bi) =

Z l2

l1
Rr(l)SRF(l)d(l)Z l2

l1
SRF(l)d(l)

(5)

where Rr(bi) is the equivalent reflectance of the i-th band; l1 and

l2 are the band ranges, which here are 350−700 and 500−900 nm,

respectively; Rr(l) is the spectral reflectance of the target panels

measured by the ASD; and SRF(l) is the spectral response function

at wavelength l (obtained using through spectral calibration).

d =
x − Dj j
D *100% (6)

where x is the measured value; D is the true value; and d denotes
the relative error.
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2.5 Rice and wheat growth monitoring
experiment based on the PSMICGS

2.5.1 Experimental design
The wheat growth monitoring experiment was conducted from

March to May 2023 at the Baipu Experimental Station in Rugao

City, Jiangsu Province, China (32°26′N, 120°75′E) (Figure 6A). The
experiment included three sowing periods: October 25, 2022

(sowing period 1), November 10, 2023 (sowing period 2), and

November 25, 2023 (sowing period 3). The wheat varieties used

were V1 (Yangmai 23) and V2 (Jimai 22). Four nitrogen levels were

applied: N0 (0 kg/ha), N1 (52 kg/ha), N2 (104 kg/ha), and N3 (156

kg/ha). Three seeding densities were implemented: D1 (125 plants/

m2), D2 (225 plants/m2), and D3 (325 plants/m2), with a row

spacing of 30 cm. Each treatment had three replicates. Wheat was

sown manually in rows, totaling 80 plots, with each plot covering an

area of 18 m2 (4.5 m × 4 m). Spectral images and agronomic

parameters were simultaneously collected during the tillering,

jointing, and booting stages of wheat growth, and the total

sample size was 190.

The rice growth monitoring experiment was conducted from

July to September 2023 at the Baipu Experimental Station in Rugao

City, Jiangsu Province, China (32°26′N, 120°75′E) (Figure 6B). The
experiment used seven rice varieties: V1 (Yingxiang 1), V2 (Nanjing

Yinggu), V3 (Taixiangjing 1402), V4 (Sidao 20), V5 (Yangxiangyu

1), V6 (Sidao 17), and V7 (Yanjing 23). Three nitrogen levels were

considered: N0 (0 kg/ha), N1 (150 kg/ha), and N2 (300 kg/ha). Two

planting row spacings were used: D1 (60 cm) and D2 (30 cm). Rice

planting was conducted using a machine transplanting method,

totaling 72 plots. Spectral images and agronomic parameters were

simultaneously collected during the rice jointing, booting, and

heading stages of the rice growth, and the total sample size was 126.

2.5.2 Test equipment and methods
After assembling the hardware system of the PSMICGS as

designed in this study and finalizing the software packages, the

PSMICGS was comprehensively prepared for field growth

monitoring of rice and wheat (Figure 6C). To obtain crop

reflectance values, radiometric calibration was performed using a

40% reflectance Lambertian diffuser prior to the experiment. The

reflectance was then calculated online using the control module in

the system combined with Equation 3, where Rw was set to 0.4.

During the collection of rice and wheat multispectral images, the

PSMICGS was positioned at a height of 70 cm from the canopy, and

data collection was conducted under clear weather conditions

between 10:00 a.m. and 2:00 p.m.

To obtain the required agronomic parameters for rice and

wheat, in the wheat experiment, five representative wheat plants

were selected from each plot. In the rice experiment, three

representative rice plants were selected from each plot. The rice

and wheat samples were then separated into stems, leaves, and

panicles. The Li–3000c leaf area meter (Li–Cor., Lincoln, NE, USA)

was used to measure the leaf area of the rice and wheat samples, and
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the LAI of the population was calculated by multiplying the number

of plants by the tillers per square meter. After dissection, the plants

were placed in an oven, blanched at 105°C for half an hour, dried at

80°C to a constant weight, and finally, the AGB per unit land area

was calculated based on the sampled area.

2.5.3 Multispectral image processing and
VI selection

Following the acquisition of crop multispectral image, the

software ENVI was utilized for selecting ROI. The entire field of

view was designated as the ROI, and the reflectance values for rice

and wheat were averaged from these areas. Vegetation indices (VIs)

were computed using Matlab2021 (The MathWorks, Natick, MA,

USA). To achieve quantitative monitoring of rice and wheat AGB

and LAI, this study calculated six VIs based on the extracted canopy

reflectance, as shown in Table 1. These selected VIs have been

widely used in previous studies focused on monitoring rice and

wheat growth.
2.5.4 Modeling methods and validation
Before constructing the AGB and LAI prediction models for rice

and wheat based on the PSMICGS, the sample set was divided using

a random selection method. To prevent model overfitting, we split
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the data for rice and wheat into modeling and validation sets at

ratios of 8:2 and 7:3, respectively. Subsequently, nonlinear

regression analysis was conducted to construct models to estimate

the AGB and LAI of rice and wheat based on the VIs and agronomic

parameters. After model construction, the models were evaluated

using the coefficient of determination, R², and RMSE (Lu et al.,

2021). A higher R² value closer to one and a lower RMSE indicated a

better prediction performance of the model. The calculation

equations are as follows:

R2 = 1 −
o
n

i=1
(yi − ŷ i)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − �yi)

s , (7)

where n is the number of samples; yi is the actual value of the ith

sample; ŷ i is the predicted value of the ith sample; and �yi is the

average value of all samples.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
(yi − ŷ i)

2

s
, (8)

where n represents the number of samples; yi represents the

actual value; and ŷ i represents the predicted value.
FIGURE 6

Research location and field experimental layout. (A) Layout of the wheat trial site. (B) Layout of the rice trial site. (C) Layout diagram of the PSMICGS
collection of crop spectral images.
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3 Results and discussion

This section introduces the structural assembly and calibration

of the PSMICGS, along with the results of image registration. It

analyzes the PSMICGS performance in terms of SNR and

radiometric response accuracy testing. Furthermore, it elaborates

on the results of the constructed models for estimating the AGB and

LAI of rice and wheat based on the PSMICGS.
3.1 Analysis of the spectral image
processing results based on the PSMICGS

Figures 7A−C shows that prior to adjusting the front imaging

system, the checkerboard pattern at the middle position of the fields

of view for MMC1 and MMC2 was difficult to align accurately,
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resulting in noticeable misalignment. This indicated that the fields of

view of the two MMCs were not in the same position. Figures 7D−F

shows that after adjustment, the checkerboard pattern at the middle

position of the fields of view for MMC1 and MMC2 achieved

accurate alignments in both the horizontal and vertical directions.

Further adjustment of the first and second hexagon socket set screws

resulted in the alignment of the checkerboard patterns at the four

edge positions, indicating that the checkerboard elements in the dual

fields of view achieved alignment at the edges, as shown in

Figures 7G–J. These adjustments successfully achieved co-optical

path imaging of the dual detectors, laying the foundation for crop

growth monitoring activities.

To address image registration errors resulting from mechanical

assembly inaccuracies, the results of image registration based on the

SIFT algorithm are illustrated in Figure 8. Figure 8A shows the

reference image, while Figure 8B shows the image to be registered,
FIGURE 7

Checkerboard pattern status within the fields of view before and after the calibration of the front imaging system. Prior to calibration: (A) MMC1,
(B) MMC2, (C) composite image of the checkerboard pattern at the middle position. Post-calibration: (D) MMC1, (E) MMC2, (F) composite image of
the checkerboard pattern at the middle position, (G–J) composite images of the checkerboard pattern at the edge positions.
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with Figure 8B showing the result of the MMC2 image after

mirroring. During the algorithm execution phase, the nearest-

neighbor distance ratio (NNDR) method identified 939 matching

points, which were reduced to 340 after secondary feature point

screening (FSC), as shown in Figure 8C. The checkerboard pattern

images post-affine transformation of the dual field images, and the

corresponding results are shown in Figures 8D, E, demonstrating

precise overlap of the image regions. Following the image

registration fusion, the RMSEr for the image registration was

0.5829, indicating a favorable outcome of the image registration

fusion. This research underscores that the embedded control

module and image registration algorithm effectively accomplished

online registration of multispectral crop images.
3.2 Analysis of calibration results of
the PSMICGS

3.2.1 Analysis of the spectral calibration results of
the PSMICGS

When the exposure time and gain values of the MMC1 and

MMC2 were set to 100 ms and 6 dB, respectively, the maximum DN

spectral channels were 558 nm and 813 nm, respectively. After

adjusting the spectrometer bands in the spectral calibration system

to the corresponding settings, to prevent overexposure of captured
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images, the maximum exposure times for MMC1 and MMC2 were

400 ms and 850ms, respectively, when the DN values ranged between

650 and 970. Under these maximum exposure settings, we extracted

and fitted the DN values from the images of each stepped spectral

band according to the band arrangement in the MMC. The response

DNs of each channel are shown in Figure 9A. The Gaussian curves of

each band after further Gaussian fitting of each channel are shown in

Figure 9B. The deviation of the central wavelength from the preset

band centers remained within ±0.5 nm, with a maximum error of

0.49 nm (channel 4), as detailed in Table 2. This calibration result

indicated that the actual central wavelengths of each channel in the

PSMICGS met the requirements of the selected characteristic bands.

Additionally, Figure 9C shows the curves after correcting the original

response data using the crosstalk correction coefficient matrix. The

crosstalk information between the channels was effectively corrected,

and the average correlation coefficient between the corrected data for

each channel and the Gaussian data exceeded 0.98.

3.2.2 Analysis of the radiometric calibration
results of the PSMICGS

For the radiometric calibration of the PSMICGS, four exposure

times were set (60, 80, 100, and 120 ms). The relationship curves

between the response DN of the PSMICGS and the different

radiance values are shown in Figure 10. The DN of each channel

under different exposure times was derived from the average DN
FIGURE 8

Image registration based on SIFT: (A) Reference image (MMC1), (B) image to be registered (MMC2), (C) feature matching graph, (D) mosaicked
checkerboard image, and (E) image registration fusion graph.
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values of each channel in images with a uniform light source. As

shown in Figure 10, the obtained radiance values ranged from 0 to

0.35 W/sr/m²/nm. Linear fitting of the DN and radiance at different

exposure times revealed that the coefficient of determination (R²)

was greater than 0.99. The calibration results indicated that the

response DN of the PSMICGS had an excellent linear relationship

with different radiance values at various exposure times, making it

fully suitable for crop growth monitoring.
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3.3 Analysis of the performance test results
for the PSMICGS

We analyzed the acquired images and found that the DN values

for the 558 and 813 nm channels in MMC1 and MMC2 were highest

when the exposure time and gain values were set to 100 ms and 6 dB,

respectively. Subsequently, adjusting the exposure times to 400 for

MMC1 and 850 ms for MMC2 ensured that the DN values fell within

a reasonable range, establishing these settings as benchmark

parameters. After setting MMC1 and MMC2 to these benchmark

values, the tunable monochromatic light source imaging system was

adjusted to a wavelength of 0 nm, and uniformly illuminated images

were then captured. The DN values for the 558 and 813 nm channels

were then extracted, and the SNRs were calculated using Equation 2.

Figures 11A, B show that the average SNR for each column pixel

exceeded 120 dB. These test results indicated that the PSMICGS

exhibited excellent SNR performance, meeting the requirements for

quantitative crop growth monitoring.

Figure 11C shows the test results for panels A1−A8 using the

PSMICGS and ASD, revealing a consistent trend in the reflectance

values for the different panels. The relative error values between the

PSMICGS and ASD for panels with different reflectances are shown

in Figure 11D, with relative errors within 7% across all eight bands.

This demonstrates the high accuracy of the PSMICGS in terms of

radiometric response.
FIGURE 9

Spectral calibration results of the PSMICGS: (A) Original response DN curves of each channel, (B) Gaussian fitted response DN curves of each
channel, and (C) DN curves after spectral crosstalk correction.
TABLE 1 VIs for the LAI and AGB estimations in rice and wheat.

VI Name Formulation Reference

GNDVI
Green normalized difference

vegetation index
NIR − G
NIR + G

(Gitelson
et al., 1996)

NDVI
Normalized difference

vegetation index
NIR − R
NIR + R

(Candiago
et al., 2015)

NDRE
Normalized difference

red-edge
NIR − RE
NIR + RE

(Fitzgerald
et al., 2006)

RVI Ratio vegetation index NIR
R

(Pearson and
Miller, 1972)

OSAVI
Optimization soil-adjusted

vegetation index
NIR − R

NIR + R + 0:16
(Steven, 1998)

RESAVI
Red edge soil adjusted

vegetation index
1:5*(NIR − RE)

NIR + RE + 0:5

(Cao
et al., 2013)
TABLE 2 Spectral calibration results of the PSMICGS.

Channel
Theoretical central
wavelength (nm)

Actual central
wavelength (nm)

FWHM (nm) Deviation (nm)

B1 458 457.60 14.12 –0.40

B2 487 486.63 12.71 –0.37

B3 527 527.41 16.15 0.41

B4 558 558.49 16.82 0.49

B5 644 644.43 14.12 0.43

B6 716 715.91 13.80 -0.09

B7 737 736.74 12.94 -0.26

B8 813 812.68 16.61 -0.32
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FIGURE 11

Performance test results of the PSMICGS: (A) Signal-to-noise ratio (SNR) statistics for MMC1, (B) SNR statistics for MMC2, (C) test values for panels
A1–A8 using the PSMICGS and ASD, and (D) relative error values between the PSMICGS and ASD.
FIGURE 10

Radiometric calibration results of the PSMICGS: (A–D) Linear fitting graphs of the response DN of the PSMICGS and the different radiance values for
exposure times set to 60, 80, 100, and 120 ms.
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3.4 Rice and wheat growth monitoring
experiment based on the PSMICGS

3.4.1 Sample set division
In this study, we used pre-heading data of rice and wheat to

establish the prediction models for AGB and LAI. The dataset

encompassed variations arising from different factors such as

varieties, nitrogen levels, and planting densities. Table 3 shows

that the modeling set and validation set were partitioned using a

random selection method. The modeling set exhibited significant
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data variability, encompassing diverse possible scenarios, suggesting

that the dataset was suitable for the development of prediction

models for AGB and LAI in rice and wheat.

3.4.2 Relationship between AGB and LAI of rice
and wheat and VI

To formulate prediction models for AGB and LAI in rice and

wheat based on the PSMICGS, a correlation analysis between the VIs

constructed using the PSMICGS and AGB and LAI was conducted.

Figure 12 shows that the VI GNDVI exhibited the highest correlation
FIGURE 12

Correlation of the PSMICGS-constructed VIs with rice and wheat AGB and LAI.
TABLE 3 Descriptive statistics of AGB and LAI in rice and wheat.

Crop Indicators Sample number Min Max Mean SD

Rice

Modeled dataset

AGB (t/ha) 101 1.5653 14.7338 4.8396 2.3937

LAI 101 0.1322 11.1145 1.5569 1.6120

Validated dataset

AGB (t/ha) 25 2.0464 8.6708 4.2401 1.6492

LAI 25 0.2226 4.4175 1.0977 0.9701

Wheat

Modeled dataset

AGB (t/ha) 133 0.3730 12.1556 4.7960 2.8263

LAI 133 0.4220 7.9354 2.9261 1.3127

Validated dataset

AGB (t/ha) 57 0.3784 11.9300 4.2322 2.2259

LAI 57 0.4568 6.5178 2.7605 1.3502
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with rice AGB and LAI, with correlation coefficients (R) of 0.76 and

0.654, respectively. Additionally, the VIs, GNDVI, and RESAVI

exhibited the highest correlation with wheat AGB and LAI, having

correlation coefficients (R) of 0.807 and 0.834, respectively.

Subsequent modeling analyses for rice and wheat AGB and LAI

were conducted using the selectively optimized VIs.

3.4.3 Construction of AGB and LAI monitoring
model for rice and wheat based on the PSMICGS

Based on the selected VIs, prediction models for AGB and LAI in

rice and wheat were established. Figures 13A, B show the models for rice

AGB and LAI developed using the VI GNDVI, resulting in

determination coefficients R² of 0.7 and RMSE values of 1.611 t/ha

and 1.051, respectively. For wheat (Figures 13C, D), the AGB and LAI

predictionmodels were constructed using the VIs GNDVI and RESAVI,

yielding R² values of 0.72 and 0.76, respectively, with corresponding

RMSE values of 1.711 t/ha and 0.773, respectively. In summary, the

predictionmodels for AGB and LAI in rice and wheat constructed based

on the PSMICGS demonstrated satisfactory performance.

3.4.4 Validation of the AGB and LAI monitoring
model for rice and wheat based on the PSMICGS

The constructed prediction models for the AGB and LAI in rice

and wheat were validated using the validation dataset. Figure 14

shows that the validation determination coefficients, R², for the rice

AGB and LAI estimation models based on the PSMICGS were 0.78

and 0.70, respectively, with RMSE values of 1.404 t/ha and 1.287,
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respectively. For the wheat AGB and LAI estimation models, the

validation R² values were 0.68 and 0.79, respectively, with

corresponding RMSE values of 1.769 t/ha and 0.861, respectively.

Overall, the validation results for the constructed AGB and LAI

models in rice and wheat were favorable, indicating the feasibility of

the developed estimation models.

4 Discussion

Portable spectral imaging devices play crucial roles in real-time and

non-destructive crop growth monitoring at the field scale. However,

many commercially available sensors do not provide direct output of

crop growth parameters (Jia et al., 2019; Shao et al., 2023). Customized

devices often lack specific bands tailored for crop growth characteristic,

limiting their effectiveness (Tang et al., 2022; Wang et al., 2022; Wang

et al., 2020a). To address these challenges and capitalize on the spectral

sensing mechanism in crop growth, we developed the PSMICGS using

MF spectrometry with a wide band range. This device allows for real-

time online acquisition and interpretation of crop spectrum

information. However, due to constraints in band settings and

associated processes, achieving optimal characteristic bands using a

singleMFwas challenging. Thus, further exploration and refinement of

these processes are required.

The online processing of spectral information lays the

foundation for real-time crop growth interpretation. By

leveraging the structural features of the PSMICGS, we

introduced mechanical adjustments and a multi-spectral image
FIGURE 13

Prediction models of the rice and wheat AGB and LAI constructed based on the PSMICGS. (A, B) are rice AGB and LAI, respectively, and (C, D) are
wheat AGB and LAI, respectively.
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registration method using the SIFT algorithm to achieve precise

registration of dual-field images and acquire comprehensive

crop spectrum data. However, our study on SIFT-based image

registration underscored the need for further exploration into

optimizing image registration methods tailored to different crops

and varying collection heights, especially for monitoring diverse

crop growth characteristics.

Real-time interpretation of crop growth information provides

reference data for crop growth diagnosis. We constructed

estimation models for rice and wheat AGB and LAI based on the

PSMICGS and successfully completed the entire data collection and

analysis process, from crop spectrum acquisition to growth

interpretation. However, the overall accuracy of the constructed

models still requires further improvement. Future research

should focus on estimating different ecological points and

additional agronomic parameters, particularly in complex field

environments. Exploring algorithms to remove water and soil

background effects will be essential for improving prediction

accuracy and stability. Moreover, extending crop growth

monitoring studies to include different crops such as soybeans,

oilseed rape, and maize will improve the applicability of

the PSMICGS.
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5 Conclusion

In this study, we developed a novel PSMICGS based on crop

spectral sensing mechanisms utilizing MFs. The design included

a front imaging system utilizing DMs for spectral splitting, and it

used wide-band integrated co-optical path imaging to acquire

crop spectral images across a broad range. We explored

mechanical adjustment methods for the wide-band range front

imaging system and developed image registration fusion

algorithms, enhancing the precision of multispectral image

registration fusion for crops. Additionally, we integrated

sensor information with crop growth monitoring models,

enabling the real-time interpretation of multiple agronomic

features. Performance tests demonstrated that the device

achieved a good SNR (>120 dB) and accurate radiometric

response (re la t ive error < 7%) . Growth moni tor ing

experiments for rice and wheat validated the prediction models

for AGB and LAI and achieved determination coefficients (R²)

greater than 0.7, indicating that the models had good prediction

accuracy. In summary, this research provides a foundational tool

for monitoring crop organs and canopies, with potential

applications in advancing agricultural production efficiency.
FIGURE 14

Scatter plots for the validation of the prediction models of rice and wheat AGB and LAI constructed based on the PSMICGS: (A, B) are the rice AGB
and LAI, respectively, and (C, D) are the wheat AGB and LAI, respectively.
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