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The pollination process of kiwifruit flowers plays a crucial role in kiwifruit yield.

Achieving accurate and rapid identification of the four stages of kiwifruit flowers

is essential for enhancing pollination efficiency. In this study, to improve the

efficiency of kiwifruit pollination, we propose a novel full-stage kiwifruit flower

pollination detection algorithm named KIWI-YOLO, based on the fusion of

frequency-domain features. Our algorithm leverages frequency-domain and

spatial-domain information to improve recognition of contour-detailed

features and integrates decision-making with contextual information.

Additionally, we incorporate the Bi-Level Routing Attention (BRA) mechanism

with C3 to enhance the algorithm’s focus on critical areas, resulting in accurate,

lightweight, and fast detection. The algorithm achieves a mAP0:5 of 91.6% with

only 1.8M parameters, the AP of the Female class and the Male class reaches 95%

and 93.5%, which is an improvement of 3.8%, 1.2%, and 6.2% compared with the

original algorithm. Furthermore, the Recall and F1-score of the algorithm are

enhanced by 5.5% and 3.1%, respectively. Moreover, our model demonstrates

significant advantages in detection speed, taking only 0.016s to process an

image. The experimental results show that the algorithmic model proposed in

this study can better assist the pollination of kiwifruit in the process of precision

agriculture production and help the development of the kiwifruit industry.
KEYWORDS

YOLO, frequency domain feature fusion, BRA, kiwifruit flower, precision
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1 Introduction

Kiwifruit, one of the most widely consumed fruits globally, is

prominent in the fruit market due to its distinctive characteristics

and unique medicinal properties (Gökdoğan, 2022). Kiwifruit is a

dioecious vine whose sex is recognized only at flowering and

requires cross-pollination for fruiting. However, in practical

orchards, natural biological pollination is often less efficient,

which can adversely affect both fruit quality and the economic

viability of production (Castro et al., 2021). Artificial pollination is

commonly used to improve kiwifruit pollination rates in kiwifruit

plantations. However, this method comes with high labor costs and

the inability to accurately determine the success of pollination,

leading to redundant work and increased planting expenses. In

recent years, there has been rapid growth in precision agriculture

and smart industry, with automated robots increasingly utilized

across various agricultural domains (Yépez-Ponce et al., 2023),

including robotic intelligent harvesting (Wang et al., 2022b),

plant protection (Chen et al., 2021), and now, robotic pollination

(Yang et al., 2023a). Robotic pollination is also expected to improve

kiwifruit pollination efficiency and reduce labor costs (Gao et al.,

2023a). The crux of this technology lies in accurately recognizing

kiwifruit flower status and sex, particularly in complex orchard

settings. Target detection, one of machine vision’s basic and

challenging tasks, has been widely applied in agriculture by

integrating deep learning techniques. These include fruit ripeness

detection (Lu et al., 2022), pest and disease identification (Qi et al.,

2022), weed detection (Hasan et al., 2021), fruit and vegetable

quantity counting (Wang et al., 2022a), and pesticide residue

detection (Liu et al., 2019). Deep learning and target detection

techniques offer potential technical support for automating

kiwifruit pollination.

Target detection algorithms based on deep learning mainly

include two-step and one-step frameworks. Two-stage algorithms

(e.g., the Faster R-CNN (Ren et al., 2017)) achieve object detection

through candidate region generation and classification. However,

they are computationally intensive and slow, limiting their

applicability in real-world agricultural scenarios. In contrast,

single-stage algorithms (e.g., the YOLO (Redmon et al., 2016))

extract features directly from the image for target classification and

localization. This approach balances speed and accuracy, making it

well-suited for real-time applications and capable of meeting

industrial-grade detection standards. The advancement of these

algorithms continues to drive forward computer vision technology,

offering effective tools for a wide range of practical applications.

The YOLO algorithm stands out as one of the most popular

methods in the field of target detection, widely adopted in artificial

intelligence and computer vision for its speed and accuracy. In the

domain of flower recognition, Wu (Wu et al., 2020) and colleagues

developed a real-time apple blossom detection method based on

YOLOv4 and CSPDarknet53 and optimized the model structure by

channel pruning algorithm. The model reduces the number of

parameters by 96.74% while maintaining high accuracy (mAP0:5
of 97.31%). However, their study primarily focused on detecting

flower clusters, lacking a comprehensive exploration of extracting

overall features of individual apple blossoms and failing to address
Frontiers in Plant Science 02
detection challenges posed by fuzzy influences. Similarly, Xu et al.

(Xu et al., 2022) introduced FlowerYolov5, a tomato bloom

detection method based on the YOLOv5s architecture. This

method incorporates a novel feature fusion layer. It integrates the

Convolutional Block Attention Module (CBAM) to identify the

bud, bloom, and fruiting stages of tomato flowers, leading to a

notable improvement inmAP0:5 by 7.8%, with a parameter count of

23.9M. However, the method neglected the detection of flowers in

dense situations with a large number of parameters. Mithra (Mithra

and Nagamalleswari, 2023) et al. employed UAV images to discern

the sex of cucurbit plant flowers using deep transfer learning and a

YOLOv4-based approach to support research on autonomous

pollination. They manually labeled sex characteristics to identify

and classify flowers in complex contexts, including interference,

overlap, and ambiguous situations. This method achieves a mAP0:5
of 91.2%, demonstrating its capability to quickly and effectively

recognize small target objects in dense environments.

Researchers are also committed to identifying kiwifruit flowers to

address the issue of autonomous pollination in kiwifruit. Williams

et al. (Williams et al., 2020) first proposed a kiwifruit pollination

robot and achieved an accuracy of 79.5% in flower recognition using

convolutional neural networks. Lim et al. (Lim et al., 2020) utilized

the Faster R-CNN Inception V2 model to achieve an accuracy of

91.9% in kiwifruit flower detection to enhance detection accuracy

further. However, the Williams (Williams et al., 2020) and Lim et al.

(Lim et al., 2020) teams only annotated female flowers, overlooking

the potential occurrence of multi-class flowers during kiwifruit

pollination. Consequently, Li et al. (Li et al., 2022b) emphasized the

significance of identifying kiwifruit flowers and buds for robotic

pollination, establishing a dataset that includes both flowers and

buds. They achieved a mAP0:5 of 91.49% with YOLOv4.

Subsequently, in another study (Li et al., 2022a), the team

introduced a novel method for multi-class detection and

distribution recognition of kiwifruit flowers using YOLOv5l and

Euclidean distance, further refining the classification of kiwifruit

flowers. Their YOLOv5l model achieved a of 91.60%. In the

agricultural sector, numerous researchers (Gai et al., 2023; Tian

et al., 2023; Yu et al., 2023; Zeng et al., 2023) are refining the

YOLO algorithm for the best performance in natural agricultural

environments. Despite prior studies demonstrating commendable

performance in detection accuracy, practical application issues such

as model size and detection speed have been overlooked. The

previously proposed models are larger and not applicable to real

production environments.

Although the YOLO algorithm demonstrates advantages in target

detection tasks, its performance in detecting dense targets within

complex environments may be hindered by interference. The

frequency domain features of the image contain essential

information about the structure and content of the image, which

helps to solve the dense detection problem of the YOLO algorithm in

complex environments. Qin et al. (Qin et al., 2021) studied the

channel attention problem by combining frequency domain features

with a channel attention mechanism that compresses the channel

using a customized Discrete Cosine Transform (DCT) but only

utilizes a portion of each low-frequency message. Su et al. (Su et al.,

2021) proposed a complete frequency channel attention network
frontiersin.org
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based on the attention mechanism in remote sensing. This approach

enhances Qin et al.’s (Qin et al., 2021) weight acquisition method by

attenuating high-frequency details and maximizing the utilization of

low-frequency components. However, this network may lose some

high-frequency details during noise filtering, leading to the omission

of certain features. Duan et al. (Duan et al., 2023) introduced a

detection method for infrared small targets integrating frequency-

domain clutter suppression and spatial-domain feature extraction

using deep learning techniques. They applied DCT to convert spatial-

domain infrared images into the frequency domain. Following this

transformation, the frequency domain information was filtered using

an attention mechanism to adaptively enhance the target suppression

background. Ultimately, they reversed the processed frequency-

domain data to the spatial domain to facilitate feature extraction

and fusion. The method was a lossy transform in which the image in

the frequency domain does not retain all the details of the original

image, resulting in the loss of important information. Through

meticulous analysis and adept utilization of frequency domain

information within an image, researchers can finely adjust feature

extraction methodologies to accommodate diverse frequency ranges.

This meticulous approach significantly enhances the precision with

which critical image features are captured within deep learning

frameworks. Nevertheless, the aforementioned methods do not

fully exploit all features of the frequency domain and each incurs

some degree of loss in frequency domain information.

Research models for flower recognition currently face

challenges, especially in identifying kiwifruit flowers, such as

oversized model dimensions and Ambiguous categorization of

flower categories. This study proposes a lightweight algorithm

called KIWI-YOLO in response to these challenges. KIWI-YOLO

effectively reduces the parameters of the kiwifruit flower detection

model and improves the accuracy of flower detection. The main

contributions of this study are as follows:
Fron
(1) The kiwifruit flower’s whole stage image data set is

constructed. In order to solve the problem of multi-

category recognition of kiwifruit flowers in the natural

environment, this study collected four kinds of kiwifruit

flower image data covering spore, female flower, male

flower, and pollination success state in real orchard

environment. The original image is screened and labeled

to form a full-stage image data set of kiwifruit flowers.

(2) A frequency domain feature fusion module is proposed. In

order to improve the detection accuracy of the model in

complex and dense environments, this study proposes a

frequency domain feature fusion module (FDFF). This

module enhances the model’s feature integration ability

by extracting the high-frequency components of the

original image and fusing them with the original image.

(3) BiFormerBlock is introduced to improve the model. In this

study, by introducing BiFormerBlock into the C3 module of

YOLOv5n, the perception ability of the model to fine-

grained features is improved, and the accurate detection

of smaller targets is realized.
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Experimental data demonstrate that with 1,816,147 parameters,

KIWI-YOLO achieves a mAP0:5 of 91.6% and an F1-score of 86.5%.

Compared to YOLOv5n, KIWI-YOLO shows an improvement of

3.8% in mAP0:5 and 3.1% in F1-score. The experimental results

show that KIWI-YOLO maintains a high recognition accuracy and

significantly improves the feature expression ability on the basis of

lightweight. It can quickly and accurately detect kiwifruit flowers

and promote the further development of industrial automatic

pollination technology.
2 Materials and methods

2.1 Data collection and processing

The experimentally collected data on all stages of the kiwifruit

flower were obtained from Yucheng kiwifruit, a Chinese National

Geographical Indication product, cultivated in Yucheng District,

Ya’an City, Sichuan Province, China. This data was gathered during

the 2023 flowering season in Longquan Village, Yucheng District,

Ya’an City, Sichuan Province (103.03305, 30.00531). The angles of

different growth states in the stage of kiwifruit flower and fruit are

relatively consistent, all facing the ground. Therefore, when shooting,

the shooting angle was from bottom to top in the vertical direction.

The camera used was an iPhone 13 Pro Max with a resolution of

4032*3024, and data collection occurred under natural lighting

conditions at 10:00 a.m., 2:00 p.m., and 6:00 p.m. The light during

image acquisition includes low light, normal light, and overexposed

high light to increase the richness of the data, as shown in Figure 1.

In the orchard environment, kiwifruit flowers, especially bracts, are

usually densely distributed. The data set of this study covers such small

and dense targets to ensure the effectiveness of the proposed algorithm

in practical applications. The kiwifruit flower dataset consists of four

stages: bud, female flower, male flower, and successful pollination, as

depicted in Figure 2. The collection time of bud data was in early April

2023. Subsequently, according to the growth cycle of kiwifruit flowers,

the collection time was from mid-April to mid-May. The data of male

and female flowers were collected at the pollination stage after

flowering, and the data of the pollination success category were

collected one week after pollination. The dataset consists of 1594

images, which were divided into training sets and test sets at a ratio of

9: 1. Labelimg was used to manually annotate the collected data. The

annotation file is in YOLO format. The total number of tags is 13450,

covering the four characteristic classes of kiwifruit flowers, including

Female (female flower), Bud (bud), Male (male flower), and Success

(successful pollination state). Their distribution ratio is about 3:3:2:2.

Data augmentation was implemented on the collected data

using an online approach to enhance the model’s robustness and

generalization during training. Online enhancement preprocesses

the data without altering the dataset size. In the online data

augmentation approach, Mosaic (Bochkovskiy et al., 2020)

randomly selects four images from the dataset, applies random

cropping and scaling to each, and then arranges and stitches them

together to create a single image. Mosaic enriches the dataset by
frontiersin.org
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adding small target samples. On the other hand, a mixup

superimposes the two images according to their weights to

generate a new image. Mixup makes the model focus more on the

commonality of the data, which effectively improves the

generalization ability and robustness of the model. This study

combines Mosaic and Mixup to enhance the original data online.
Frontiers in Plant Science 04
2.2 YOLOv5 algorithm

The YOLOv5 architecture comprises three main components:

Backbone, Neck, and Head. The Backbone aggregates image

features across different scales using modules like Focus,

BottleneckCSP, and SPP. It generates five feature layers from the
B

C D

A

FIGURE 2

Four stages of kiwifruit flowers. Panel (A) is the bud stage of kiwifruit flower, panel (B) is the female flower of kiwifruit flower to be pollinated, panel
(C) is the female flower of kiwifruit flower to be pollinated successfully, and panel (D) is the male flower of kiwifruit flower.
B CA

FIGURE 1

Examples of the different light. Panel (A) depicts the scenario under low light intensity, panel (B) demonstrates moderate light intensity, and panel (C)
showcases high light intensity.
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input image, which are fused with feature maps from the Neck layer

to enhance feature extraction. The Neck, adopting the FPN (Feature

Pyramid Network)+PAN (Pixel Aggregation Network) structure,

combines semantic and localization features. It integrates mixed

image features and forwards them to the prediction layer. The Head

is the classifier and regressor of YOLOv5. It determines the object

corresponding to the feature based on the feature layer, recursively

derives the target result of the detection, generates the bounding

box, and predicts the category.
2.3 The proposed FDFF: frequency domain
feature fusion module

In the whole stage of kiwifruit flower pollination, no matter

whether it is the bud, female, male, or successful pollination

kiwifruit flower state, the difference in color characteristics is

small. When the neural network extracts the image features, the

features provided by the color information are not enough to

support the neural network in distinguishing the above four

categories. In the actual production process, farmers distinguish

the above four categories in the following ways:
Fron
(1) Shape: The bud exhibits a nearly circular shape, clearly

distinct from the other three types.

(2) Presence of stigma: Distinguish male and female flowers by

whether there is a stigma.

(3) Set fruit: Successful pollination of kiwifruit flowers is

characterized by set fruit, and the main feature of this

stage is whether the petals are in a state of shedding, and its

shape is also significantly different from the other stages.
The above three points can be summarized as the result of

judging the kiwifruit flower by the contour information. In order to

make the model extract the contour information more effectively,
tiers in Plant Science 05
this study proposes a frequency domain feature fusion module

(FDFF). FDFF transforms the feature map from the spatial domain

to the frequency domain for processing and obtains the high-

frequency component of the kiwifruit flower image (the high-

frequency component correlates the part of the image with a

faster gray change, videlicet the edge and contour of the image).

The high-frequency component processed by the module is fused

with the original feature map that retains the low-frequency

component. After adding the FDFF module, the model can

enhance the ability to obtain the contour information of each

stage of kiwifruit flowers. The FDFF module consists of the Fast

Fourier Transformation (FFT) layer, a MaxPooling layer, a

Depthwise Separable Convolution (DSC) (Howard et al., 2017)

layer, and a Spatial Attention (Woo et al., 2018) layer. The overall

module flowchart of the FDFF module is shown in Figure 3A.

The FDFF module performs a two-dimensional Fourier

transform of the input image through the FFT layer to convert

the feature information in the spatial domain to the feature

information in the frequency domain to extract the frequency

domain features. Suppose the given tensor is XS ∈ RH�W�C ,

which is converted to XF By FFT module. The conversion process

is given by Equation 1:

XF=o
N−1

n=0
Xse

−j2pFn
N ,F=0,1,…,N−1 (1)

where Xs denotes spatial-domain feature information, XF

denotes frequency-domain feature information, and j denotes the

imaginary part; F denotes the subscript of the frequency-domain

sampling point, ranging from 0 to N-1; and n denotes the subscript

of the spatial-domain sampling point, ranging from 0 to N-1.

A two-dimensional complex matrix is obtained by FFT, with the

real part representing the magnitude of the information in the

frequency domain and the imaginary part representing the phase

information. In this study, the improvement effect of the frequency

domain data model is determined by comparing the use of only the
B

C

A

FIGURE 3

Panel (A) shows the overall flowchart of the FDFF module, which mainly includes the following modules: FFT layer, MaxPooling layer, DSC layer, and
SpatialAttention layer. Panels (B, C) are the critical modules in FDFF. Panel (B) is the DSC structure diagram. Panel (C) is a spatial attention diagram.
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real part, only the imaginary part, and the combination of the real

part and the imaginary part. The experimental results show that the

mAP0:5 using only the real part is 91%, using only the imaginary

part is 88.9%, and using both the real and imaginary parts is 90.01%.

It is speculated that the high-frequency component corresponds to

the important features of the image, and the amplitude is invariant.

However, the interpretation and utilization of phase is more

complex, the model is difficult to understand and use the relevant

information, and the performance enhancement is limited. The task

of this study is more important for the perception of global

structure and texture. Therefore, this study uses the amplitude

and spectrum and ignores the phase information by taking the real

part of the operation inside the FDFF, which simplifies the problem

and improves efficiency.

The max-pooling layer in this module aims to achieve frequency

domain filtering and reduce the dimensionality of the data. The

max-pooling selects the maximum value in each local region in the

frequency domain to extract the main high-frequency features,

which help identify the salient frequency domain components in

the image, including texture features.

After the max-pooling layer operation, the output feature map

XM is obtained. Before the data enters the DSC layer, these

frequency domain components are fused in the frequency domain

to strengthen the frequency domain feature information. The

multiplication of XM with the original input data XS is performed

as shown in Equation 2.

XMS=XM*XS (2)

where XMS is the output.

After completing the fusion of frequency domain components,

the FDFF module splices the obtained feature map containing high-

frequency contour information with the input feature map to

ensure the integrity of the spatial-frequency domain feature

information so that the model can make full use of the relevant

features. In order to reduce the complexity of the algorithm, the

FDFF module uses DSC to perform feature fusion and tensor

dimension transformation on the obtained feature map. DSC

divides the convolution operation into two sub-operations:

Depthwise Convolution and Pointwise Convolution. Compared

with ordinary convolution, DSC has the advantages of small

parameters and small computation, which can improve the speed

of convolution operation.

As shown in Figure 3B, Depth_conv uses a convolution kernel

for each channel separately, and the output channel of a single

channel is one after the convolution operation. For the three-

channel RGB map, Depth_conv outputs three feature maps with

channel 1. Then, the three feature maps are sequentially spliced to

get an output feature map with channel N. Through Ponit_conv

processing, the convolution kernel is 1*1*M(M is the number of

channels in the previous layer). Based on the previous map, a new

feature map is generated by a weighted combination in the depth

direction, which is used to reduce the dimension of the input feature

map while maintaining the feature information’s invariance. The

purpose of independent convolutional computation for each

channel is to reduce the number of parameters, reduce the
Frontiers in Plant Science 06
computational effort, and increase the computational efficiency.

The number of parameters for conventional convolution is

Equation 3, and the number of parameters for DSC is Equation 4.

The comparison of the formulas shows that the number of

parameters and computation of the depth separable convolution

is one-third of the conventional convolution.

parameterconv=WF�HF�CI�CO (3)

parameterdsc=WF�HF�CI+1�1�CI�CO (4)

where WF is the width of the convolution kernel, HF is the

height of the convolution kernel, CI is the number of input channels

and CO is the number of output channels.

The role of the spatial attention layer is to allow the task

network to focus more on finding helpful information related to

the current output to improve the quality of the output. Using

spatial attention can act on the pixels of the feature map to weigh

each pixel and fully use each pixel’s information, as shown in

Figure 3C. After the weights of spatial attention have been extracted,

they are multiplied by the original input XS. At this point, the spatial

attention will focus more on the position of the kiwi flower to be

recognized in the picture, and then the feature map FSCF is obtained.
2.4 C3BiF based on dynamic sparse
attention mechanism

The attention mechanism aids the model in focusing on the

most relevant parts of the input data, thereby capturing key

information and establishing correlations between inputs more

efficiently. In this study, the C3BiF module is proposed to replace

part of the C3 modules in YOLOv5 for feature extraction. The

C3BiF module introduces a BiFormerBlock module containing Bi-

level Routing Attention (Zhu et al., 2023) by utilizing the

constructor of the C3 module, as shown in Figure 4. The module

computes attention in two stages: first, coarse-grained attention is

performed. The image is divided into blocks to control sparsity, and

self-attention is performed at this level. Inter-block correlations are

computed using Q and K to form a relation matrix A. Next, A is

sparsified, retaining the largest elements and identifying pairs of

blocks that require further attention. Finally, based on the sparse

matrix from the first stage, fine-grained self-attention is performed,

and each patch only performs the attention computation on patches

in other blocks related to its block.

The calculation of attention mechanism (Woo et al., 2018; Hu

et al., 2018; Wang et al., 2020) weights requires the joint participation

of the target and all elements, which is the attention mechanism

between input and output. VIT (Dosovitskiy et al., 2020) uses the self-

attention mechanism (Vaswani et al., 2017) to capture long-term

dependencies for the problem of establishing the correlation between

multiple inputs in the visual field. However, the self-attention

mechanism often imposes a substantial computational burden and

memory overhead. In this paper, BRA is used to address the above

application bottlenecks. BRA leverages sparsity to reduce computation

and memory usage, enabling dense matrix multiplication suitable for
frontiersin.org
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GPUs. This approach demonstrates excellent performance and

computational efficiency, particularly in dense prediction tasks. A

series of studies (Gao et al., 2023b; Yang et al., 2023b; Zhang et al.,

2023) have indicated that, since BRA is based on sparse sampling

rather than downsampling, it can retain fine-grained detail

information. So, the BiFormerBlock containing the BRA module is

suitable for detecting small objects.
2.5 The improved KIWI-YOLO algorithm

Both YOLOv8n and YOLOv5n are considered excellent nano

models. In the preliminary experiments of this study, the number of

parameters was 1764577 for YOLOv5n and 3302624 for YOLOv8n.

The number of parameters for YOLOv8n was 1.8 times that of

YOLOv5n, and mAP0:5 was only improved by 0.03 points.

Compared with the exponential increase in the number of

parameters, the detection performance does not increase

exponentially but leads to an increase in model complexity.

Considering the subsequent application architectures of the study,

the lightweight variant of YOLOv5, known as YOLOv5n, optimized

for Nanodevices, has been chosen. It provides detection accuracy

suitable for edge devices while maintaining high speed. The model

has a channel number factor of 0.25 and a depth factor of 0.33.

This study was based on the improvement of the YOLOv5n

network structure. In order to improve the detection accuracy of the

algorithm, the fourth layer of the network (the next layer of P3) was

replaced by the FDFF structure mentioned in the article. The FDFF

improves the ability to extract and express network features. In

addition, the overall detection efficiency is affected by the presence

of small targets during the whole stage of pollination of kiwifruit
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flowers. Therefore, C3BiF containing BiFormer structure was

introduced in the Head part. The overall KIWI-YOLO algorithm

model is shown in Figure 5.
2.6 Training environment and
evaluation indicators

In this study, the hardware was NVIDIA Quadro RTX 5000

Graphics Processing Unit (GPU) with 16GB of graphics memory

and 128GB of RAM, and the Central Processing Unit (CPU) was i9-

10900K, 3.7GHz. The system was Windows Server 2019 Standard,

and PyCharm built the network environment with the deep

learning framework PyTorch 2.0.0, the Python version of which

was 3.8. For training, all images were uniformly resized to 640*640.

The batch size for input images during training was set to 16, and

the number of training rounds was 300. The optimizer employed

was the SGD optimizer to optimize the network parameters. The

initial learning rate (lr0) was set to 0.01, with an initial learning rate

momentum of 0.937 and a weight decay of 0.0005.

The YOLO algorithm assesses its object detection system based

on two core metrics: detection accuracy speed and detection

accuracy. Detection speed refers to the time taken to detect one

image. Detection accuracy is evaluated using metrics such as

Precision (P), Recall (R), F1-score, Average Precision (AP), and

mean Average Precision (mAP), calculated as described in

Equations 5–9. In target detection, Intersection over Union (IoU)

quantifies accuracy by comparing detection overlap and true labeled

boxes. Typically, a ratio greater than 0.5 indicates confident

detection. Moreover, the value of mean average precision,

denoted as mAP0:5, calculated at IoU = 0.5, is crucial for assessing
FIGURE 4

Components of the overall C3BIF architecture. BRA is the core of the C3BIF module. In the architecture of the BRA mechanism, Q is used to
compute the keywords that are weighted in relevance to the query. K denotes the keyword or identifier used to provide information or for matching
purposes. V is the value associated with the query result and the keyword information. A is the adjacency matrix denoting the semantic relevance
between two regions. O is the output of the attention mechanism.
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the overall detection accuracy of the model. A higher mAP0:5
signifies better detection accuracy.

Precision= TP
TP+FP �100% (5)

Recall= TP
TP+FN �100% (6)

F1= 2�Precision�Recall
Precision+Recall (7)

AP=
Z 1

0
P(R)dR (8)

mAP= 1
M o

M

m=1
APm (9)

In the above Equation, TP denotes True Positive, TN denotes

True Negative, FP denotes False Positive, FN denotes False

Negative, M is the number of target classes to be detected, and A

Pm is the average precision of the mth class of targets.
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3 Experiments and results

3.1 FDFF module analysis

In this study, the insertion position of FDFF was experimentally

compared to confirm the optimal insertion position of the FDFF

module. The role of FDFF is to extract and fuse the features, so it is

considered to be inserted into the backbone part of YOLOv5n to

enhance the performance of the model’s multilevel feature extraction.

FDFF is inserted into the Pn + 1 layer respectively for comparative

experiments to find the best effect. The experimental findings are

summarized in Table 1. According to the experimental results, when

the FDFF insertion is P3 + 1, the effect is the best, the parameter is

1790195, themAP0:5 reaches 91%, and themAP0:5 is 3.2% higher than

that of the non-insertion. The increase ofmAP0:5 inserted into the later

layer of P1, P2, P4 and P5 was 2.5%, 2.7%, 2.7% and 2.5% respectively.

Analyzing the FDFF module, it can be seen that the module

obtains the high-frequency information in the frequency domain

while retaining the low-frequency information, fuses the frequency
TABLE 1 Results of FDFF module experiments; [Pn] corresponds to the nth Conv layer in the YOLOv5 backbone feature extraction network.

FDFF Adds Location mAP0:5(%) Recall(%) Parameters Time(s)

Base 87.8 78.4 1764577 0.013

P1+1 90.3(+2.5) 82.6(+4.2) 1766899 0.015

P2+1 90.5(+2.7) 82.7(+4.3) 1772707 0.027

P3 + 1 91.0(+3.2) 83.6(+5.2) 1790195 0.016

P4 + 1 90.5(+2.7) 84.6(+6.2) 1882819 0.013

P5+1 90.3(+2.5) 82.1(+3.7) 2230339 0.016
Pn + 1 corresponds to the next layer of Pn .
The bold values in the table emphasize the experimental results of the methods used in this study.
FIGURE 5

The structure of the KIWI-YOLO model. KIWI-YOLO comprises CBS, C3, SPPF, FDFF, C3BIF, and other modules. CBS encapsulates the combination
of convolution, batch normalization, and activation function. C3 contains multiple CBS modules and a Bottleneck module. SFFP is a fast spatial
pyramid pooling containing multiple maximum pooling layers and CBS modules. FDFF and C3BIF are the innovative modules proposed in this study.
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domain with the spatial domain, and strengthens the contour

information of the kiwifruit flower image. The shallow layer of

the feature extraction network mainly learns some relatively simple

features, which are not abstract and complex enough for the task. In

the deeper layers of the network, the neural network can learn more

abstract and complex features, but at the same time, it faces the

problems of training difficulty and gradient. FDFF performs better

in the middle layer, which makes it easier for the gradient to be

propagated in the network. In this position, it can better balance the

abstraction, computational efficiency, and training effect.
3.2 C3BIF module analysis

In this study, in order to demonstrate the effect of the number of

C3BIFs and the position of adding them on the network results,

experiments were conducted on models that have been added with

the FDFF module. Table 2 presents the experimental results. As can

be seen from the table, the best effect is achieved when the first three

C3 layers of the Head layer are all replaced with C3BIF and the

mAP0:5 reaches 91.6%, which is a 0.6% growth compared to the

model with no replacements, and the number of parameters is

1816147. However, the growth effect of other replacement schemes

is not obvious, and it will even cause a decrease of mAP0:5.

Analyzing the C3BIF module, it is observed to contain the

BiFormerBlock featuring Bi-level Routing Attention, which exhibits

enhanced recognition capabilities for smaller targets. Since the
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fourth C3 in the head layer primarily deals with smaller feature

maps for detecting large-scale targets, the foremost requirement for

enhancement lies within the first three C3 layers of the Head. These

initial C3 layers contribute significantly to the detection of small

and medium-scale targets. Therefore, replacing three initial C3

layers with C3BIFs at the same time produces better results.
3.3 Ablation experiments of the KIWI-
YOLO network

Ablation experiments were conducted on each module to assess

the effectiveness of the enhanced KIWI-YOLO network model in

kiwifruit flower detection. The experimental results are summarized

in Table 3, and the visualization curve is shown in Figure 6.

As depicted in Table 3, the utilization of the FDFF module alone

yields a significant improvement in mAP, with mAP0:5 surging by 3

points, surpassing the 90% mark. Furthermore, mAP0:5 : 0:95
experiences an increase of nearly 5 points. The Recall and F1

parameters also exhibit a notable improvement of approximately

3 points each. Remarkably, the detection time per image only

marginally increases by 0.003 seconds. When solely incorporating

the C3BIF module into the original YOLOv5 network, the

enhancement is evident but not as pronounced. However, when

the FDFF module is combined with the C3BIF module, mAP0:5
notably rises to 91.6%, marking a 3.8-point increase compared to

the base network. Similarly, Recall improves to 83.9%, reflecting a

5.5-point enhancement. Despite this improvement, the increase in

the number of parameters remains minimal. Additionally, the

detection time per image also improves by 0.003 seconds. These

findings underscore the significant detection enhancements

achieved by the improved network at a minimal additional cost.
3.4 Multi-category recognition
accuracy analysis

The model distinguishes among four growth stages of kiwifruit

flowers that occur during kiwifruit flower pollination. The average

accuracies of the improved model were 95%, 89.6%, 93.5%, and

88.2% for the four categories: Female, Bud, Male, and Success,

respectively. Compared to the original YOLOv5n network, the

improvements were 1.7%, 3.9%, 6.2%, and 3.2%, respectively. A

comparison of the results is presented in Table 4.
TABLE 2 Results of C3BIF module experiments.

N mAP0:5 (%)
Recall
(%)

Parameters
Time
(s)

1 90.9 82.3 1801395 0.018

2 90.3(-0.6) 83.4(+1.1) 1793747 0.013

3 90.6(-0.3) 82.7(+0.4) 1801395 0.012

1、2 91.0(+0.1) 83.5(+1.2) 1804947 0.018

2、3 90.1(-0.8) 83.2(+0.9) 1804947 0.017

1、3 91.1(+0.2) 82.3(+0.0) 1812595 0.014

1、2、3 91.6(+0.7) 83.9(+1.6) 1816147 0.016
N represents the Nth C3 in the Head layer and is replaced with C3BIF.
The bold values in the table emphasize the experimental results of the methods used in
this study.
TABLE 3 Results of ablation experiments.

Baseline FDFF C3BIF
mAP0:5
(%)

mAP0:5 : 0:95
(%)

Recall
(%)

F1-
score
(%)

Parameters
Time
(s)

YOLOv5n

87.8 60.7 78.4 83.4 1764577 0.013

√ 90.8(+3.0) 65.1(+4.4) 82.2(+3.8) 86.1(+2.7) 1790195 0.016

√ 88.6(+0.8) 60.0(-0.7) 79.4(+1.0) 83.7(+0.3) 1790529 0.021

√ √ 91.6(+3.8) 65.8(+5.1) 83.9(+5.5) 86.5(+3.1) 1816147 0.016
mAP0:5 , mAP0:5 : 0:95, Recall, F1-score, parameter size, and detection time for ablation experiments with the improved model.
The bold values in the table emphasize the experimental results of the methods used in this study.
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The enhanced model exhibited more noticeable improvements in

detecting Bud and Male stages compared to Female and Success.

Nevertheless, the average detection accuracy exceeded 93% for both

the Female and Male categories. The successful class represents the

successfully pollinated kiwifruit flowers, which is challenging for this

type of detection. This difficulty arises from the slight morphological

differences between this class and Female in the early stages of

successful pollination, making them hard to distinguish.

Furthermore, in the later stages, when the petals are fully removed,

the morphology closely resembles that of Female without petals,

resulting in a slightly weaker detection performance. Figure 7

illustrates the detection efficacy under various conditions, including

different types, shading scenarios, and variations in lighting intensity.
3.5 Mainstream algorithm comparison

To evaluate the effectiveness of the KIWI-YOLO model

proposed in this paper for detecting all stages of kiwifruit flower
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pollination, we compared its performance with current mainstream

target detection models. The chosen algorithms include the two-

stage target detection model Faster R-CNN (Ren et al., 2017), the

one-stage target detection model SSD (Liu et al., 2016), YOLOv5s,

YOLOv5n, YOLOv8s, and YOLOv8n, as well as the excellent

lightweight target detection models at this stage, YOLOX-nano

(Ge et al., 2021), YOLOX-tiny (Ge et al., 2021), and YOLOv7- tiny

(Wang et al., 2023). The performance comparison of these detection

models is shown in Table 5.

Through analyzing the test results in this table, it can be concluded

that the mAP0:5 of the KIWI-YOLO model proposed in this paper is

higher than these several detection models, 21.48, and 10.55 percentage

points higher than Faster R-CNN, SSD. Compared to the current

popular one-stage models, it is 3.8, 0.9, 2.4, 1.9 and 3.5 percentage

points higher than YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8s and

YOLOv8n, respectively. Compared to YOLOv5s, the superiority in m

AP0:5 is small, but in the model’s size, it can be seen that KIWI-YOLO

reduces the number of parameters by almost 75% compared to

YOLOv5s. In comparing YOLOv5n, although the number of

parameters increased by 0.05M in model parameters, it increased by

3.8% in mAP0:5 and 3.01% in F1-score. For the lightweight YOLOX

model, KIWI-YOLO is weaker than YOLOX-nano in terms of the

advantage of the number of parameters, butmAP0:5 improves by 12.48

percentage points and by 7.69 percentage points over YOLOX-tiny.

Among them, the excellent one-stage target detection

algorithms YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8s, and

YOLOv8n at the present stage are selected and compared with

the KIWI-YOLO algorithm in this study and their average accuracy

curves and Recall curves are compared with the line graphs as

shown in Figure 8.
B

C D

A

FIGURE 6

Comparison of ablation experimental results. (A). Panels (A-D) are the result curves of mAP0.5, mAP0.5:0.95, recall and F1-score, respectively.
TABLE 4 Multi-category recognition effect.

Classification Original YOLOv5 Improved model

Female 93.3% 95.0%(+1.7)

Bud 85.7% 89.6%(+3.9)

Male 87.3% 93.5%(+6.2)

Success 85.0% 88.2%(+3.2)
The average accuracy of the four categories Female, Bud, Male, and Success on the original
YOLOv5 network and the improved KIWI-YOLO, respectively. The bold values in the table
emphasize the experimental results of the methods used in this study.
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The experimental results show that the improved model

KIWI-YOLO proposed in this study has a certain degree of

superiority in terms of comprehensive performance compared

with the currently popular target detection models. The model

can accurately and quickly realize the detection task of kiwifruit

pollination in all stages. In addition, the model can basically meet

the requirements of embedded devices in terms of size and

is lightweight.
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3.6 The Grad-CAM analysis

Grad-CAM (Selvaraju et al., 2017) can visualize the part of the

neural network that contributes the most to the prediction result. In

this paper, the decision-making process of the neural network is

visualized by the Grad-CAM technique, and the help of the improved

module on the detection task is illustrated. Figure 9 displays original

images of four different categories alongside heat maps generated for
B

A

FIGURE 7

Detection effect diagram: Panel (A) shows the real label, and panel (B) shows the predicted label, i.e., the model detection result.
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each improved key layer using Grad-CAM. In these heat maps, the

redder the color, the more the region contributes to the model results.

The heat map in Figure 9 shows that through the frequency

domain feature fusion in the FDFF module, the network model

gives more importance to the target contour but also pays attention

to the overall contour of the branches and leaves. This is due to the

overall frequency domain features of the image being extracted in

the FDFF module, and the context information in the frequency

domain is obtained by fusion with the global frequency domain

features. From the comparison between columns B and C, it can be

seen that the model with FDFF can combine the global frequency

domain information, make full use of the context information to

understand the relationship between the environment and the

detection target, and better identify the target. Observing the D

and E columns of Figure 9, it can be seen that before optimization

by the C3BIF module, the focus of the network is more dispersed,

and there are still some red areas that represent the focus of

attention outside the target. After optimization with the C3BIF

module, the network is more focused on the target. However, in

complex environments, the model still remains weakly focused on

the blade due to the similarity of the blade and target colors. From

the heat map, the improved KIWI-YOLO model has achieved a

more accurate detection of the four flower states during the whole

stage of kiwifruit flower pollination.
4 Discussion

At present, in the field of kiwifruit flower recognition, researchers

aim to improve the recognition accuracy of related models without

considering the actual situation of agricultural environment. Most of

the models have problems such as fuzzy categories (Lim et al., 2020;

Williams et al., 2020) and excessive size (Li et al., 2022a), which limit

the effective application of the model on embedded devices. In this

paper, we summarize the current problems of kiwifruit flower

recognition into the following three points:(1)The classification of
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kiwifruit flowers is fuzzy. (2)Existing model size is too large. (3)Small

size model accuracy is low. Therefore, this paper has carried out

relevant research on these three issues.

In this study, the dataset was manually collected and labeled to

solve the fuzzy problem of kiwifruit flower classification. Based on

the actual situation of the kiwifruit pollination period, the flowers

are mainly divided into four categories: Female(female flower),

Male(male flower), Bud(bud), and Success(successful pollination).

Aiming to address the problem of the model size being too large, the

existing mainstream models are compared. The two-stage detection

models, such as Faster R-CNN (Ren et al., 2017) and SSD (Liu et al.,

2016), require large memory and are inaccurate in localization. In

the one-stage detection model, YOLOv7 (Wang et al., 2023)

introduces an efficient layer aggregation network to improve

performance. However, it performs poorly on the small target

detection task and shows weak generalization ability. As a new

product of the YOLO series, YOLOv8 has a complex model

structure, and its size is too large to be suitable for embedded

devices. YOLOX (Ge et al., 2021) has an advantage in the number of

parameters, but performed mediocrely on the kiwifruit flower

recognition task. In contrast, YOLOv5 introduces CSPDarknet53

as the backbone network and utilizes the PANet(Path Aggregation

Network) structure to enhance feature fusion, demonstrating good

accuracy and speed. The KIWI-YOLO model proposed in this

paper is based on the lightweight YOLOv5n algorithm, which

meets the requirements of embedded devices for model size and

maintains speed and accuracy. In this study, the FDFF module is

proposed to solve the problem of low recognition accuracy of small-

size models. In kiwifruit cultivation, farmers usually distinguish

between different types of flowers by observing their morphological

characteristics. YOLOv5n has shortcomings in extracting contour

information, and the mAP0:5 in the experiment is only 87.80%. The

FDFF module can extract high-frequency information and fuse

spatial domain information, avoid the omission of important

information, and improve the lossy process of information

extraction in previous studies (Qin et al., 2021; Su et al., 2021;
TABLE 5 Results of mainstream algorithm comparison experiment.

Model mAP0:5(%) F1-score(%) Parameters
Average precision for each category (%)

Female Bud Male Success

Faster R-CNN 70.12 62.25 137098724 81.28 55.87 71.56 71.77

SSD 81.05 78.00 26285486 83.26 77.97 85.31 77.66

YOLOX-nano 79.12 76.00 912159 81.61 78.27 81.47 75.12

YOLOX-tiny 83.91 76.34 5033739 84.94 83.26 87.69 79.75

YOLOv5n 87.80 83.49 1764577 93.30 85.70 87.30 85.00

YOLOv5s 90.70 86.14 7020913 94.80 88.70 91.60 87.90

YOLOv7-tiny 89.20 86.09 6015714 93.90 86.10 90.90 85.70

YOLOv8n 88.10 83.13 3302624 92.80 87.30 88.40 83.80

YOLOv8s 89.70 85.94 11127132 92.90 88.40 91.40 86.00

KIWI-YOLO 91.60 86.50 1816147 95.00 89.60 93.50 88.20
mAP0:5 , F1-score, number of parameters, and average accuracy of each category for ten models on the kiwifruit flower dataset.
The bold values in the table emphasize the experimental results of the methods used in this study.
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Duan et al., 2023). After adding the FDFF module, themAP0:5 of the

model is increased by 3%. In addition, the bud characteristics are

significantly different from those of the other three types of kiwifruit

flowers, while the accuracy of YOLOv5n was still low, only 85.7%.

This study further proposes a C3BIF module combined with the

BRA mechanism. The module enhances the recognition accuracy of
Frontiers in Plant Science 13
the model for small targets and improves the detection accuracy of

the Bud by 3.9%.

The KIWI-YOLO algorithm proposed in this study shows

significant superiority over existing methods. Compared to the

baseline model, it achieved a 3.8% improvement in the overall mA

P0:5 and a 3% improvement in the F1-score, which fully
B

C

A

FIGURE 8

Mainstream Algorithm Performance Comparison. Panel (A) compares the average precision curves, (B) compares the recall, and (C) compares the
F1-score.
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demonstrated its effectiveness. In addition, the number of model

parameters is only 1.8M, the average accuracy is as high as 91.6%,

and it takes only 0.016 seconds to complete the processing of an

image. This high efficiency makes the KIWI-YOLO model very

suitable for deployment in automated systems. The model can

accurately identify the flowers in the pollination period, thus

significantly reducing invalid pollination attempts and saving

manpower and resources. Its accurate detection results provide

real-time data and accurate pollination timing for orchard

managers, avoiding failure and fruit quality decline caused by

premature or late pollination. It helps to optimize the production

process and resource allocation, improve the efficiency and

sustainability of agricultural production, and maintain the

stability and health of the orchard ecosystem.
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This study has made preliminary progress in improving the

classification accuracy of kiwifruit flowers, but there are still a

series of challenges. (1) The accuracy of the model in recognizing

the Bud and the Success targets is not satisfactory. This is mainly

because Bud targets are smaller, denser, and easily overlap. On the

other hand, the Success and the Female have similar features and

often appear in the same scene, which makes the model prone to

misidentification. In the future, this study will continue to solve the

difficult problem of small target recognition, explore the addition of a

small target detection head in KIWI-YOLO, add a lightweight

upsampling CARAF operator, and so on. (2) In terms of the

dataset, this study collected images with different light and different

shading situations to increase the richness of the data but did not

conduct separate experiments for light classification and experiments
B C D EA

FIGURE 9

Comparison of heat maps. The four rows represent Female, Bud, Male, and Success. Panel (A) is the original image. Panel (B) is the heat map of the
original P4 layer output. Panel (C) is the heat map output after adding FDFF. Panel (D) is the heat map of the original C3 output. Panel (E) is the heat
map of the added C3BIF output.
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with different shading situations. At the same time, the image data

failed to cover the whole environment of the actual orchard, and the

generalization of the model needs to be improved. To this end, future

work will focus on collecting more comprehensive data and

conducting specialized classification experiments on illumination

and occlusion effects. (3) Existing images contain noise and

sharpening problems due to the limitation of acquisition

equipment. It is planned to replace professional equipment such as

robots or drones to obtain higher-quality image data. (4) Currently,

more andmore researchers use multi-modal data for object detection.

Subsequent studies will consider collecting multi-modal data on

kiwifruit and test the fusion effect of the FDFFmodule onmodal data.
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Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D., and Sanchis, J. (2023).
Mobile robotics in smart farming: current trends and applications. Front. Artif. Intell. 6.
doi: 10.3389/frai.2023.1213330

Yu, K., Tang, G., Chen, W., Hu, S., Li, Y., and Gong, H. (2023). MobileNet-YOLO
v5s: an improved lightweight method for real-time detection of sugarcane stem nodes
in complex natural environments. IEEE Access 11, 104070–104083. doi: 10.1109/
ACCESS.2023.3317951

Zeng, T., Li, S., Song, Q., Zhong, F., andWei, X. (2023). Lightweight tomato real-time
detection method based on improved YOLO and mobile deployment. Comput.
Electron. Agric. 205, 107625. doi: 10.1016/j.compag.2023.107625

Zhang, Y., Yin, Y., and Shao, Z. (2023). An enhanced target detection algorithm for
maritime search and rescue based on aerial images. Remote Sens. 15, 4818. doi: 10.3390/
rs15194818

Zhu, L., Wang, X., Ke, Z., Zhang, W., and Lau, R. (2023). “BiFormer: vision
transformer with bi-level routing attention,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). (Vancouver, BC, Canada: IEEE),
10323–10333. doi: 10.1109/CVPR52729.2023.00995
frontiersin.org

https://doi.org/10.1007/s00500-023-08186-w
https://doi.org/10.1016/j.compag.2022.106780
https://doi.org/10.1109/ICCV48922.2021.00082
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/JSTARS.2021.3125107
https://doi.org/10.1109/JSTARS.2021.3125107
https://doi.org/10.1016/j.compag.2023.108233
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR42600.2020.01155
https://doi.org/10.25165/j.ijabe.20221501.7232
https://doi.org/10.25165/j.ijabe.20221501.7232
https://doi.org/10.3389/fpls.2022.839269
https://doi.org/10.1002/rob.21861
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1016/j.compag.2020.105742
https://doi.org/10.1016/j.compag.2020.105742
https://doi.org/10.3390/machines10111076
https://doi.org/10.3390/machines10111076
https://doi.org/10.3390/agriculture13051031
https://doi.org/10.1016/j.compag.2023.108274
https://doi.org/10.3389/frai.2023.1213330
https://doi.org/10.1109/ACCESS.2023.3317951
https://doi.org/10.1109/ACCESS.2023.3317951
https://doi.org/10.1016/j.compag.2023.107625
https://doi.org/10.3390/rs15194818
https://doi.org/10.3390/rs15194818
https://doi.org/10.1109/CVPR52729.2023.00995
https://doi.org/10.3389/fpls.2024.1415884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Enhancing kiwifruit flower pollination detection through frequency domain feature fusion: a novel approach to agricultural monitoring
	1 Introduction
	2 Materials and methods
	2.1 Data collection and processing
	2.2 YOLOv5 algorithm
	2.3 The proposed FDFF: frequency domain feature fusion module
	2.4 C3BiF based on dynamic sparse attention mechanism
	2.5 The improved KIWI-YOLO algorithm
	2.6 Training environment and evaluation indicators

	3 Experiments and results
	3.1 FDFF module analysis
	3.2 C3BIF module analysis
	3.3 Ablation experiments of the KIWI-YOLO network
	3.4 Multi-category recognition accuracy analysis
	3.5 Mainstream algorithm comparison
	3.6 The Grad-CAM analysis

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


