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Roles of mycorrhizal fungi on
seed germination of two Chinese
medicinal orchids: need or do
not need a fungus?
Jing Yang, Neng-Qi Li and Jiang-Yun Gao*

Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming,
Yunnan, China
Generally, orchids highly depend on specific fungi for seed germination and

subsequent seedling development in nature. For medicinal orchids, obtaining

compatible fungi is prerequisite for imitation of wild cultivation and conservation.

In this study, the two important traditional Chinese medicinal orchids, Pleione

bulbocodioides and Bletilla striata, were studied to screen out effective fungi for

seed germination and seedling development. P. bulbocodioides seeds

germinated and formed protocorms in all fungal and control treatments, but

seedlings only developed in fungal Serendipita officinale (SO) and S. indica (SI)

treatments and nutrient-rich medium MS treatment. At 90 days after incubation,

the percentages of seedlings were 34.83 ± 3.4% and 27.59 ± 3.5% in SO and SI

treatments, which were significantly higher than the MS treatment (18.39 ± 2.0%;

all P < 0.05). At this stage, most seedlings in SO and SI treatments bore two leaves

(Stage 5), and pelotons inside the basal cells of seedlings were clearly observed.

For B. striata, seeds germinated up to seedlings with or without fungus, but

seedlings developed rapidly in SI treatment. At 90 days after incubation, the

percentage of seedlings in SI treatment reached 77.90 ± 4.1%, but was

significantly lower than the nutrient-poor medium OMA treatment (85.18 ±

3.7%; P < 0.01), however, the seedlings in SI treatment were stronger than the

seedlings in OMA treatment. The results suggested that P. bulbocodioides rely on

compatible fungi for seeds germinated up to seedlings, and fungus SO could

effectively promote seed germination and support seedling development; while

B. striata can germinate up to seedling without any fungus, but compatible

fungus S. indica can greatly speed up seed germination and promote seedling

development. We suggest that S. officinale and S. indica fungi can be used in

conservation practices or imitation of wild cultivation of these two important

medicinal orchids, respectively.
KEYWORDS

traditional medicinal plants, mycorrhizal fungi, orchid conservation, symbiotic seed
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Introduction

Orchids have high species diversity and widely distributed in

almost all land-ecosystems (Cribb et al., 2003). In different cultures

and countries, large numbers of orchid species have a long history

of use as traditional medicines, health food supplements, or

nutritional sources (see reviewed by Hossain, 2011), and these

orchids have been massively collected (Ghorbani et al., 2014; Liu

et al., 2014). Globally, over-exploitation is one of the major impacts

driving many orchid species to become rare and endangered, and

some species even have been extinct from the wild (Swarts and

Dixon, 2009; Fay, 2018; Wraith and Pickering, 2019). Therefore,

orchids are among the most threatened of all flowering plants and

have been considered as flagship species for plant conservation

globally (Baillie et al., 2004; Fay, 2018).

China is one of the orchid-rich countries with 1708 species, has

a very long history in using many orchid species as traditional

Chinese medicines (TCM) (Zhou et al., 2021). About 350 orchid

species are used in TCM, 97 of which are Chinese endemics (Liu

et al., 2014). Beside the well-known Dendrobium species (Shi-Hu in

Chinese) and Gastrodia species (Tian-Ma in Chinese), other

orchids, such as species of Pleione and Bletilla are also widely

used in TCM (The State Pharmacopoeia Commission of P. R.

China, 2010). Without exception, such medicinal orchids have

been over-collected for a long time, and many species even

reached to the point of local extirpation (Liu et al., 2014).

Fortunately, in the newly issued National Key Protected Wild

Plants, about 350 orchid species from 23 genera have been listed,

which includes some over-collected medicinal and/or ornamental

genera such as Anoectochilus, Cymbidium, Cypripedium,

Dendrobium, Paphiopedilum, Pleione and Renanthera. All

species of the genera are listed as class I and II of protection

c a t e go r i e s ( h t t p : / /www . f o r e s t r y . g ov . cn /ma in / 5461 /

20210908/162515850572900.html).

For those endangered medicinal plants, the concept of

restoration-friendly cultivation or imitation of wild cultivation, in

which medicinal plants are cultured in natural forests, has been

proposed to achieve effective conservation and sustainable

utilization (Huang and Guo, 2009; Liu et al., 2014). The idea is

increasingly recognized by practitioners, and developing different

cultivation modes is also encouraged by China government. The

imitation of wild cultivation of Chinese medicinal materials has

now become an important direction for the sustainable and healthy

development of Chinese herbal medicine industry, and has also

been considered as an important way in the future to link the

commercial TCM industry together with initiatives of biodiversity

conservation in China (Cheng et al., 2019).

For medicinal orchids, it is quite difficult to develop a successful

mode for such imitation of wild cultivation in natural condition,

because most of orchid species highly depend on specific fungi for

seed germination and subsequent seedling development (Arditti

and Ghani, 2000; Rasmussen et al., 2015). Although, asymbiotic

seed germination is still the most straightforward way of producing

seedlings in large quantities and has been widely used in many

orchids for commercial seedling production (Chen et al., 2015),

symbiotic seed germination has practical merits for species
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conservation (e.g., Stewart et al., 2003; Batty et al., 2008; Otero

et al., 2013). It could also be particularly important for imitation of

wild cultivation for orchids, as in medicinal Dendrobium species

and other endangered orchids, germinating seeds together with

compatible mycorrhizal fungi resulted in a success of obtaining

massive seedlings with low-cost and seedlings better adapting to the

environment with higher survivorship and fast growth (Wang et al.,

2021; Yang et al., 2023). Obtaining compatible fungi and using fungi

to facilitate seed germination in practice are two key steps for

imitation of wild cultivation or reintroduction based on symbiotic

seed germination (Zhou and Gao, 2011; Yang et al., 2023).

Pleione bulbocodioides (Franchet) Rolfe is a terrestrial or

lithophytic orchid widely distributed in subtropical area or

temperate zone in China (Chen et al., 2009). It is a traditional

Chinese medicinal orchid, and its tuber is commonly known as

Bing-Qiu-Zi in folk. Its tuber is used to clear and detoxify heat and

eliminate swelling and pain, and is also the main ingredient of

several Chinese patent drugs (The State Pharmacopoeia

Commission of P. R. China, 2010). Bletilla striata (Thunberg) H.

G. Reichenbach is a terrestrial orchid widely distributed in

subtropical area with altitude of 100-3200 m in China (Chen

et al., 2009), and is also a traditional Chinese medicinal orchid,

and its tuber is commonly known as Bai-Ji which has been used to

treat tuberculosis, hemoptysis, gastric, and duodenal ulcers (He

et al., 2017). In the local medicine markets, the dried tubers of

Bletilla striata are often used to sell as fake Bing-Qiu-Zi (Zhou,

2001). Because it already formed a large Bai-Ji industry in China,

the market price of Bai-Ji is much cheaper than Bing-Qiu-Zi.

There are relatively few studies on mycorrhizal associations in

Pleione species. Based on ITS-rDNA sequencing for mycobionts

of 15 Pleione species, Tulasnellaceae, Ceratobasidiaceae,

Serendipitaceae (Sebacinales), Atractiellales, and Auriculariales

were reported as putative mycobionts of Pleione, and different

Pleione species with a sympatric distribution showed preferences

for different fungi (Qin et al., 2019). By continuous samplings

during a whole root lifecycle, a interesting study released that plants

of P. bulbocodioides could be quickly colonized by OMF at root

emergence and had a constant OMF composition throughout one

root lifecycle, although the OMF richness declined with root aging

after a peak occurrence during root elongation, the richness of root-

inhabiting fungal endophytes kept increasing with root aging and

more drastic turnovers were found in their species compositions

(Qin et al., 2021). In an early study, 9 non-OMFs belonging to

Trichoderma, Paecilomyces and Fusarium were isolated from roots

of P. bulbocodioides, and found that all 9 fungal strains could

stimulate seeds germinated to protocorms (Yang et al., 2008).

As a very popular medicinal orchid, B. striata has received

much research attentions including symbiotic seed germination.

Interestingly, many studies found that a wide range of fungi

including orchid mycorrhizal fungi (OMF) and non-OMFs, could

promote seed germination and seedling development in B. striata

(e.g., Fusarium oxysporum, Jiang et al., 2019; Coprinus sp.,

Tulasnella sp., Sebacina sp. and Serendipita sp., Xu et al., 2019;

Serendipita sp. and Schizothecium fimbriatum, Xi et al., 2020;

Tulasnella spp., Yamamoto et al., 2017; Fuji et al., 2020; Liu et al.,

2022). It seems that any fungi can promote seed germination and
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seedling development in B. striata.However, an early study revealed

that, unlike most other orchids, seeds of B. striata contain a large

amount of starches and lipids which can provide nutrients for seed

germination (Guo and Xu, 1990). The same researchers also

suggested that fungi (Mycena osmundicola, etc) could promote

cotyledon differentiation and growth, as well as rhizoid formation

of B. striata protocorms after seeds are sown with fungi (Guo and

Xu, 1992). From these results, it is still unclear if seeds of B. striata

can autonomously germinate up to seedlings, and can fungus

Serendipita indica aid to seed germination and subsequently

seedling development in B. striata? Because S. indica has been

tested to be compatible to many orchid species and could promote

their seed germination and seedling development (Xu et al., 2023).

We are also curious if seeds of P. bulbocodioides can germinate up to

seedlings without any fungi, or associate with different fungi to

promote seed germination?

In this study, we compared the effects of four mycorrhizal fungi

on seed germination and seedling development of P. bulbocodioides,

and also comparably studied the seed germination and seedling

development of B. striata by incubating seeds with and without

fungus. The aims of this study are to screen out fungi which can

effectively promote seed germination of P. bulbocodioides to aid

further conservation and imitation of wild cultivation for this

endangered medicinal orchid; and to confirm if seed germination

of B. striata require any fungal association.
Materials and methods

Plant species and mycorrhizal fungi

Pleione bulbocodioides usually grows in humus-covered soil, on

mossy rocks (Figure 1A) with altitude from 900 to 3600 m (Chen

et al., 2009). It flowers from April to June, and fruits get mature

from October to November in Yunnan. Three naturally set fruits of

P. bulbocodioides were harvested from wild plants in November

2022. It flowers during April and May, and fruits get mature during

September and October. As an important TCM plant, B. striata now

has been commonly cultivated (Figure 1B). About 30,000 mature

fruits of B. striata resulted from artificial cross-pollination on

cultivated plants were collected in Oct. 2021. For all collected

fruits of the two orchids, seeds were carefully released and then

dried and stored in the Orchid Seed Bank of Yunnan University

following our previously established method (Gao et al., 2014).

Prior to use, seeds were tested using the 2,3,5-triphenyl tetrazolium

chloride (TTC) method to ensure high seed viability of over 90%

(Vujanovic et al., 2000).

In this study, four mycorrhizal fungal strains were used to

compare their effects on the seed germination and seedling

development of P. bulbocodioides. The original sources and

related information about the four fungal strains are summarized

in Table 1. Among them, Serendipita officinale SO, Tulasnella sp.

GYBQ01 and Tulasnella sp. Agp-1 were obtained from our previous

studies. Serendipita indica SI (syn. Piriformospora indica;

DSM11827) was originally obtained from the Leibniz Institute

DSMZ-German Collection of Microorganisms and Cell Cultures,
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Braunschweig, Germany, and the identity has also been confirmed

again by ITS sequence. S. indica has been considered as an

endophytic fungus, and can associate with a variety of plant

species to increase host plant tolerance to abiotic stresses (Wan

et al., 2024).
Seed morphology

Seed morphology of P. bulbocodioides and B. striata were

compared using a scanning electron microscopy (SEM; FEI

Quanta FEG 650, Thermo Fisher, American). The dried seeds

were removed from refrigerator and stuck on the sample table,

and then sputter coated with goldpalladium for 40s using a Quorum

Q150R high vacuum sputter coater prior to SEM inspection. The

seeds of the two species were photographed, and the number of cells

on the longitudinal axis of each seed were counted. The length and

width of the seed were measured using ImageJ, and compared using

one-way ANOVA between two species.
Effectiveness of fungal strains on seed
germination and seedling development

Seeds of P. bulbocodioides and B. striata were sterilized with 2%

(w/v) sodium hypochlorite solution (NaClO) for five minutes and

then washed with sterile distilled water 3-5 times. Sterilized seeds

were suspended in 0.1% agar solution and kept ca. 30 seeds for each

300 mL agar solution. A circular nylon cloth with a radius of 6 cm

was placed on each oatmeal agar medium (OMA) of Petri dish, and

300 mL seed-agar suspensions were transferred onto the nylon cloth

using a pipette.

For P. bulbocodioides, four fungal treatments and two control

treatments were conducted. The four fungal treatments were fungal

SO, GYBQ01, Agp-1 and SI treatments, in which one 0.5 cm3 piece

of corresponding fungal inoculum was place in the center of the

Petri dish for each of treatment. The two control treatments were

conducted on two media without fungal strain, which were OMA

treatment (nutrient-poor medium; Oatmeal agar medium) and MS

treatment (nutrient-rich medium; Murashige and Skoog, 1962). For

B. striata, two treatments, fungal SI treatment and OMA control

treatment were conducted. All above treatments were replicated in

30 Petri dishes and incubated at 25 ± 2°C and 12/12-h light/dark

cycle in germination chambers (RXZ300B, Ningbo Southeast

Instruments Co., Ltd, Ningbo, China).
Observations on symbiosis establishment

To determine if mycorrhizal symbiosis had been successfully

established, the symbiotic protocorms or seedlings were randomly

selected at different stages at 30, 60 and 90 days after incubation to

examine the formation of pelotons. The samples were cleared using

10% KOH solution at 90°C for 30 min, and treated with 3% H2O2

solution for 3-4 min, washed with 1% HCl solution, and then

stained in 0.05% (w/v) trypan blue in lactic acid glycerol solution at
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37°C for 30 min (adapted from Phillips and Hayman, 1970), and

then de-stained in acetic glycerol solution before observation under

the microscope (DM2000, Leica Microsystems GmbH, Wetzlar,

Germany). In addition, transverse sections of 4-mm thickness were
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cut from the LR white-embedded samples using an ultra-microtome

(LEICA RM2245), and stained with 1% (w/v) toluidine blue, and

then used to observe and photograph the formation of pelotons

inside cells.
FIGURE 1

Plants and seeds of Pleione bulbocodioides and Bletilla striata. (A) Plants of P. bulbocodioides grows on mossy rocks with red arrows indicting flowers;
(B) Cultivated plants of B. striata; (C) Seeds of P. bulbocodioides; (D) Seeds of B. striata; (E) A seed of P. bulbocodioides; (F) A seed of B. striata.
TABLE 1 The four fungal strains used in this study with the information of original sources and GenBank accession number.

Fungal codes Fungi species Original sources GenBank accession number References

SO Serendipita officinale Protocorms and roots of
Dendrobium officinale

MN173026 Wang et al., 2021; 2023

SI Serendipita indica Rhizosphere soil of desert shrubs DSM11827 Verma et al., 1998

GYBQ01 Tulasnella sp. Protocorms of Paphiopedilum spicerianum MN733451 Yang et al., 2020

Agp-1 Tulasnella sp. Protocorms of Arundina graminifolia MK651837 Meng et al., 2019
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Data collection and statistical analysis

Seed germination and seedling development are divided into

five stages as: Stage 0, non-germination; Stage 1, embryo swells and

turns green, and testa is propped up (germination); Stage 2,

continued embryo enlargement forms a spherule, seed coat

broken (protocorm formation); Stage 3, appearance of

protomeristem (protocorm differentiation); Stage 4, seedling with

emergence offirst leaf; Stage 5, emergence of second leaf and further

development (Arditti, 1967). For each Petri dish, the number of

seeds and the status of seed germination were assessed and recorded

under a dissection microscope at 30, 60 and 90 days after

incubation. We used Stages 0, 1, (2 + 3) and (4 + 5) to determine

no germination, seed germination, protocorm formation and

seedling development, respectively. The number of total seeds (t),

germinated seeds (g), protocorms (p), and seedlings (s) were used to

calculate the percentages of germinated seeds (G), protocorms (P),

and seedlings (S) as: G = (g + p + s)/t, P = (p + s)/t, and S = s/

t, respectively.

All data are presented as mean ± standard error (SE). Effects of

fungal inoculation on seed germination, protocorm formation and

seedling development were compared using Generalized Linear

Models (GLMs). The mean value of each treatment was tested

pairwise using Least Significant Difference (LSD). In addition, One-

way ANOVA was used to analyze the data of the two treatments for

B. striata. All statistical analyses were performed in SPSS 25.0 (SPSS

Inc., Chicago, USA) and graphs were made using SigmaPlot 13.0

(SYSTAT Inc., Chicago, USA).
Results

Seed morphology

Seeds of P. bulbocodioides were nearly white, and its shape was

somewhere between spoon and spindle shaped (Figure 1C), while

seeds of B. striata were light yellow, and spindle-shaped

(Figure 1D). A seed of P. bulbocodioides contained 7-9 cells with

696.48 ± 85.0 µm in length and 166.25 ± 4.7 µm in width, which was

significantly smaller than the seed of B. striata containing 9-11 cells

with 1395.89 ± 74.0 µm in length and 205.00 ± 4.1 µm in width (n =

12, all P < 0.05; one-way ANOVA; Figures 1E, F).
Effectiveness of fungal strains on seed
germination and seedling development in
Pleione bulbocodioides

At 30 days after incubation, seeds of P. bulbocodioides

germinated in all six treatments, and the percentage of seed

germination in MS treatment (91.38 ± 2.0%) was significantly

higher than in other five treatments (all P<0.001; Figure 2A). At

this stage, a few protocorms had already formed in SO, SI, MS and

OMA treatments (Figures 2B, 3A), but no seedlings were found in

all treatments (Figure 2C). The percentage of protocorms in fungal

SI treatment (9.58 ± 2.3%) was significantly higher than in fungal
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SO treatment (3.45 ± 3.4%; P<0.001), and pelotons were also

observed in the basa l ce l l s of the protocorm in SI

treatment (Figure 3B).

At 60 days after incubation, seed germination was increased in

GYBQ01, Agp-1, SO and OMA treatments, while no further

germination was observed in MS and SI treatments (Figure 2D).

Some of the germinated seeds on MS and SI treatments gradually

become necrotic (Figure 3C). At this stage, protocorms (Stages 2 or

3) formed in all treatments. The highest protocorm formation

occurred in MS treatment (51.72 ± 6.0%), following by SI

treatment which yielded 34.48 ± 5.3% of protocorms which was

significantly higher than the other treatments (all P < 0.05;

Figure 2E). A few seedlings were found in SO (0.34 ± 0.8%), SI

(1.72 ± 1.0%) and MS (0.69 ± 0.5%) treatments (Figure 2F), and

massive fungal hyphae were observed clustered on seedling surfaces

and grew into seedlings in SI treatment (Figure 3D).

At 90 days after incubation, seed germination was decreased in

all treatments while in SI treatment seed germination was recorded

37.93 ± 3.4% (Figure 2G). The percentage of seed germination in SI

was very close to that of the percentage of protocorm formation

(35.17 ± 3.8%), indicating that almost all the seeds germinated

earlier developed in to protocorms or seedlings. At this stage, the

percentages of protocorm formation were significantly higher in the

two control treatments than in the four fungal treatments (all P <

0.05; Figure 2H). Meanwhile, seedlings were developed in SO, SI

and MS treatments (Figure 2I). The percentage of seedlings in SO

treatment (34.83 ± 3.4%) was significantly higher than in SI

treatment (27.59 ± 3.5%) and MS treatment (18.39 ± 2.0%),

respectively (all P < 0.05; Figure 2I). Most seedlings in SO and SI

treatments bore two leaves (Stage 5; Figure 3E) and pelotons inside

basal cells of seedlings (Stage 5; Figure 3F), while seedlings in MS

treatment only developed one leaf.
Asymbiotic and symbiotic seed
germination of Bletilla striata

Overall, seeds of B. striata could germinate up to seedlings on

OMA media with or without fungus SI, but seedlings developed

much quickly in fungal SI treatment. At 30 days after incubation,

the percentages of seed germination, protocorm formation and

seedling development in fungal SI treatment were all significantly

higher than in OMA treatment, respectively (Table 2). In fungal SI

treatment, 72.92 ± 3.9% seeds already developed into seedlings

(Stage 4; Figure 4A), and at the same time point, most of seeds in

OMA treatment were still in protocorm stage (Stage 3; Figure 4B).

Many pelotons have been observed inside the basal cells of seedlings

in fungal SI treatment (Figure 4C).

At 60 days after incubation, there were no significant differences

on the percentages of seed germination and protocorm formation

between the two treatments, but the percentage of seedling

development in fungal SI treatment was significantly higher than

on OMA treatment (P < 0.05; Table 2). At this stage, seedlings

showed great differences in quality between the two treatments. All

seedlings in fungal SI treatment had already developed two or three

leaves with strong roots (beyond Stage 5; Figure 4D), while most of
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seedlings in OMA treatment were much smaller and just bore one

or two leaves (Stage 4; Figure 4E).

At 90 days after incubation, all germinated seeds in SI treatment

had developed into seedlings as indicated by the same percentages

of seed germination, protocorm formation and seedling

development, and SI treatment finally yielded 77.90 ± 4.1% seeds

germinated into seedlings (Table 2). At the same time, the

percentage of seedlings in OMA treatment reached 85.18 ± 3.7%,

which was significantly higher than in SI treatment (P < 0.01;

Table 2). However, the seedlings in SI treatment were obviously

larger than seedlings from OMA treatment (Figure 4F, G).
Discussion

Orchids normally produce an enormous quantity of dust-like

seeds, the tiny seeds only have a small and undeveloped embryo

without an endosperm, and highly rely on specific mycorrhizal fungi to

provide mineral and carbon resources for germination and subsequent

seedling growth (Arditti, 1967; Dearnaley, 2007; Rasmussen and

Rasmussen, 2009). Orchids recruit mycorrhizal fungi from the so-
Frontiers in Plant Science 06
called rhizoctonia aggregate, a polyphyletic group of fungi belonging to

Tulasnellaceae, Ceratobasidiaceae and Serendipitaceae (Dearnaley

et al., 2012; Weiß et al., 2016). Hence, optimal source of fungal

mycobionts is essential for conservation practices through symbiotic

germination (Yang et al., 2020; Wang et al., 2021).
Effectiveness of different fungi on seed
germination and seedling development in
Pleione bulbocodioides

In this study, four fungi were used to test their abilities to

promote seed germination in P. bulbocodioides. Overall, in fungal

GYBQ01 and Agp-1 treatments, seeds only reached protocorm

stage (Stage 3) until 90 days after incubation, while in fungal SO and

SI treatments, seeds germinated and quickly developed into

seedlings (Stage 4 and 5). The two control treatments well

matched to the two situations occurred in fungal treatments, in

nutrient-poor OMA treatment, seeds can germinate and form

protocorms but no seedling differentiation; while in nutrient-rich

MS treatment, seedlings differentiated quickly (Figure 2).
B C

D E F

G H I

A

FIGURE 2

The percentages of seed germination, protocorm formation and seedling development (mean ± SE) in four fungal treatments (fungal SO, GYBQ01,
Agp-1 and SI) and two control treatments (OMA and MS) of Pleione bulbocodioides at 30, 60 and 90 days after incubation. In each panel, different
letters indicate significant differences (p < 0.05) based on the Generalized Linear Models (GLMs).
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In a previous study, 9 fungal strains, obtained from roots of P.

bulbocodioides and strains belong to Trichoderma, Paecilomyces and

Fusarium, were used to assess their effects on P. bulbocodioides seed

germination (Yang et al., 2008). All 9 fungal strains could stimulate

seeds germinated till protocorm formation (Stage 2 or Stage 3), but

no seedlings were observed in all treatments (Yang et al., 2008). In

orchid symbiotic germination, compatible fungi could effectively

promote germination up to seedlings, while incompatible fungi may

stimulate germination but do not support subsequent seedling

development (e.g., Zi et al., 2014; Rasmussen et al., 2015; Ma
Frontiers in Plant Science 07
et al., 2022). The hyphae of compatible fungi could quickly

colonize seeds and form pelotons to continuously provide

nutrients supporting seedling development (Ma et al., 2022). In

current study, pelotons were observed inside the basal cells of

seedlings in SO and SI treatments (Figures 3D, F). The results

showed that the fungi SO and SI were compatible to P.

bulbocodioides, and seeds of P. bulbocodioides completely relayed

on compatible fungi to germinate and develop into seedlings.

The two compatible fungal strains SO and SI had different

effects on seedlings development and growth. At 60 days after
FIGURE 3

Protocorms or seedlings, status of fungal hyphae colonization, and cross-sections of protocorm or seedling showing pelotons under different fungal
treatments at 30, 60 and 90 days after incubation in Pleione bulbocodioides. (A) Protocorms in SO, SI, MS or OMA treatments at 30 days after
incubation; (B) The red arrows indicate pelotons inside the cells of a protocorm at 30 days after incubation SI treatment. (C) At 60 days after
incubation, some already germinated seeds were no longer continue to differentiate and gradually die in MS and SI treatments; (D) The fungal
hyphae clustered on seedling surfaces and grew into seedlings in SI treatment at 60 days after incubation; (E) Seedlings with two leaves in SO and SI
treatments at 90 days after incubation; (F) A cross-sections of seedlings showing pelotons inside basal cells of seedlings in SO and SI treatments at
90 days after incubation.
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incubation, many germinated seeds were found no longer continue

to differentiate and gradually die in SI treatments, as well as in MS

treatment, which resulted in a reduction of the total percentages of

seed germination (Figure 2). The possible reason could be the seeds

germinated quickly in the two treatments leaving limited nutrients

in a petri dish failed to continuously support all germinated seeds

developing into seedlings. This still need to be confirmed in future

studies. Finally, the highest seedling ratio occurred in SO treatment,

and hence the strain SO was the most effective symbiont to promote

seed germination and seedling development in P. bulbocodioides.

All four fungi strains used in this study were not isolated

originally from P. bulbocodioides. Two Tulasnella fungi, GYBQ01

and Agp-1, were originally isolated from two terrestrial orchids

Paphiopedilum spicerianum and Arundina graminifolia, and were

incompatible to P. bulbocodioides; while two compatible fungi,

Serendipita officinale (SO) was originally isolated from epiphytic

orchid Dendrobium officinale and Serendipita indica (SI) was

obtained from rhizosphere soil (Table 1). Although, many studies

suggested that the most efficient fungal isolates for seed germination

were not necessarily those isolated originally from these orchids

(e.g., Fracchia et al., 2014; Fuji et al., 2020; Zhang et al., 2020). Even

the strain SO could promote 34.83 ± 3.4% seeds germinated into

seedling in 90 days after incubation, its performance under the

nature conditions in its original habitat is yet to be studied.

Under nature conditions, orchid mycorrhizal fungi (OMFs) live

as saprobes in soil around the roots or on tree bark around epiphytic

orchids (Weiß et al., 2016; Selosse et al., 2021), and their occurrence

is bounded by specific habitat conditions that is related to ecological

specificity (Porras-Alfaro and Bayman, 2007; Herrera et al., 2019).

Orchids may associate with a wide range of mycorrhizal fungi, and

the broadening and/or changing of a mycorrhizal association may

enable orchids to adapt to the varied physiological changes during

seed germination and seedling development (Těs ̌itelová et al.,

2012). The patchy distribution of mycorrhizal fungi can affect key

processes such as seed germination, plant growth and survival, and

host-fungal compatibility may be influenced by environmental

factors (Harley and Smith, 1983; Jacquemyn et al., 2012). For the

conservation purpose, orchid plants should be grown with

mycorrhizal fungi tailored to the recipient site (Reiter et al., 2018;

Wang et al., 2021). With increasing studies, using in situ/ex situ seed

baiting to capture fungi has been considered efficient and easy way

to obtain ecological/habitat-specific fungi for seed germination, in

which the fungi obtained from naturally formed protocorms or

seedlings tend to effectively promote seeds germination up to

seedlings (e.g., Rasmussen and Whigham, 1993; Brundrett et al.,

2003; Zi et al., 2014; Meng et al., 2019; Wang et al., 2021). This is

also need to be done for P. bulbocodioides.
Asymbiotic and symbiotic seed
germination of Bletilla striata

It is commonly known that all orchids require mycorrhizal

fungi for germination, but exceptions always occur in orchids. The

results of current study clearly showed that seeds of B. striata could

spontaneously germinate up to seedlings on the nutrient-poor
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OMA medium without any fungi. Seeds of B. striata were

significantly larger than seeds of P. bulbocodioides (Figure 1), and

this may also result from a large amount of starches and lipids

reserved in the seeds of B. striata (Guo and Xu, 1990).

However, in fungal SI treatment, seeds of B. striata germinated

and developed much quickly with 72.92 ± 3.9% seeds already

developed into seedlings at 30 days after incubation, while only
Frontiers in Plant Science 09
10.42 ± 4.17% seedlings occurred in OMA treatment (Table 2).

Finally, at 90 days after incubation, the percentage of seedlings in

OMA treatment was significantly higher than the SI treatment

(Table 2), however the seedlings were much weak in OMA

treatment (Figure 4G). Because the two treatments were all

conducted on OMA medium and nutrients in OMA medium can

be used by fungi but not by plants, seeds of B. striata only depended
FIGURE 4

Protocorms, seedlings, and cross-sections of seedling showing pelotons under fungal SI treatment and OMA treatment at different time points after
incubation in Bletilla striata. (A) Seedling in SI treatment at 30 days after incubation; (B) Protocorms at 30 days after incubation OMA treatment. (C) A cross-
sections of seedlings showing pelotons inside basal cells of seedling in SI treatment at 30 days after incubation; (D) Seedlings in SI treatment at 60 days after
incubation; (E) Seedlings in OMA treatment at 60 days after incubation; (F) Seedlings in SI treatment at 90 days after incubation; (G) Seedlings in OMA
treatment at 90 days after incubation.
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their own nutrient reserves to germinate and develop into seedlings

in OMA treatment, while in SI treatment, seeds could continuously

obtain exogenous nutrients via symbiosis with fungus. The pelotons

inside basal cells of seedlings were observed at 30 days after

incubation (Figure 4C), indicated that the symbiosis had already

established at this time.

The fungus Serendipita indica was not originally isolated from

orchids (Verma et al., 1998), but fungi of Serendipita is considered

typical OMFs (Dearnaley et al., 2012). S. indica has been well-

studied as a root-colonizing fungus that confers diverse beneficial

effects on a broad range of host plants (Zuccaro et al., 2011; Qiang

et al., 2012), and our recent study also revealed that S. indica

associated with different orchids such as Dendrobium and

Cymbidium, and well promote seed germination up to seedling

development (Xu et al., 2023).

Many previous studies reported that a wide range of fungi

including orchid mycorrhizal fungi (OMF) and non-OMFs could

promote seed germination and seedling development in B. striata

(e.g., Yamamoto et al., 2017; Xu et al., 2019; Fuji et al., 2020; Xi et al.,

2020; Liu et al., 2022). However, we don’t know if all these fungi

could establish symbiosis with seeds of B. striata, and if not, how did

fungi transfer nutrients to seeds and support seed germination and

seedling development? Some of these studies may ignore that seeds

of B. striata contain nutrients and can spontaneously germinate up

to seedlings. The results of current study supported that B. striata

seeds easily germinated without any fungi, but compatible fungi can

speed seed germination and promote seedling development (Guo

and Xu, 1992). The symbiotic mechanisms between orchids and

fungi are still unclear but may involve fungal effector and plant

receptor genes similar in plant-pathogen interactions (Favre-Godal

et al., 2020). During symbiotic seed germination of Dendrobium

catenatum with Serendipita indica, hypoxia-responsive genes, such

as those encoding alcohol dehydrogenase (ADH), are highly

induced in symbiotic protocorms, suggesting that ADH and its

related hypoxia-responsive pathway are involved in establishing

successful symbiotic relationships in germinating orchids (Xu et al.,

2023). In the recent study on another medicinal orchidGymnadenia

conopsea, it revealed that bio-active steroids may play a crucial role

in the symbiotic germination (Shi et al., 2023).

Nowadays, seeds sowing directly to produce seedlings has also

been successfully applied in practices (Zhang et al., 2019).

According to our investigation, this low-cost method has replaced

in vitro seed germination to produce massive seedling and sped the

development of Bai-Ji industry in Yunnan Province of China.

Under the natural conditions, B. striata seeds may associate with

different soil fungi to obtain exogenous nutrients, and we could use

some compatible fungi, for example S. indica, in the practices of

seeds sowing directly to speed seedling developments and improve

seedling qualities.
Conclusions

Seeds of B. striata do not need “helps” from any mycorrhizal

fungi for germination and seedling development, but compatible

fungus S. indica (SI) can greatly speed germination and promote
Frontiers in Plant Science 10
seedling development. Unlike B. striata, seeds of P. bulbocodioides

completely relayed on compatible fungi to germinate up to

seedlings. Both fungi SO and SI were compatible to P.

bulbocodioides, but strain SO showed stronger abilities on

promoting seed germination and supporting seedling

development than strain SI. Obtaining compatible fungi and

using fungi to facilitate seed germination in practice are two key

steps for orchid population recovery or imitation of wild cultivation

based on symbiotic seed germination. Recently, a new method of

seed-fungus complexes, in which orchid seeds and specific fungi are

embedded together to form granules used as propagules, has been

developed and considered useful for conservation of terrestrial or

lithophytic orchids (Yang et al., 2023). Based on the results of

current study, we suggested that fungi Serendipita officinale and S.

indica could be used to produce seed-fungus complexes for the

conservation or imitation of wild cultivation in P. bulbocodioides

and B. striata, respectively.
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