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Converging forms: an
examination of sub-Arctic,
circumarctic, and Central
Asian Ranunculus auricomus
agg. populations
John Paul Bradican1,2*, Salvatore Tomasello1,
Judith Vollmer3 and Elvira Hörandl1

1Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-
Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany, 2Georg-August
University School of Sciences (GAUSS), University of Göttingen, Göttingen, Germany, 3Department of
Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
Introduction: Phenotypic complexity in species complexes and recently radiated

lineages has resulted in a diversity of forms that have historically been classified

into separate taxa. Increasingly, with the proliferation of high-throughput

sequencing methods, additional layers of complexity have been recognized,

such as frequent hybridization and reticulation, which may call into question the

previous morphological groupings of closely related organisms.

Methods: We investigated Northern European, Asian, and Beringian populations

of Ranunculus auricomus agg. with phylogenomic analysis of 736 genes and

27,586 SNPs in order to deduce the interrelatedness and hybrid origin of this

phenotypically and taxonomically complicated group from Europe characterized

by a history of hybridization, polyploidy, apomixis, and recent radiation. The

ploidy levels and the reproductive mode of the Northern European populations

were assessed via flow cytometric seed screening. In addition, in order to

examine the phenotypic plasticity of the dwarf forms previously described as

species and summarized as the Ranunculus monophyllus group, we

conducted climate chamber experiments under cold (northern) and warm

(temperate) conditions.

Results: The Northern European populations are tetra- to hexaploid and

propagate primarily through apomixis. The complex is characterized by highly

reticulate relationships. Genetic differentiation of the main clusters has occurred

between the above-mentioned geographical regions. We find evidence for the

hybrid origin of the taxa in these areas with differing genomic contributions from

the geographically nearest European sexual progenitor species. Furthermore,

polyphyly in the taxa of the R. monophyllus group is supported. Experiments

show low lability in the traits associated with the R. monophyllus group.
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Discussion: We conclude that multiple adaptations of hybrids to colder climates

and shorter vegetation periods have shaped the phenotypes of the R.

monophyllus group, and we suggest a formal classification as nothotaxa within

the R. auricomus group.
KEYWORDS

apomixis, polyploidy, hybridization, geographical parthenogenesis, cold
adaptation, Ranunculus
1 Introduction

The broad- and fine-scale gradations in the morphological

diversity present within the angiosperms has provided the basis for

the study of the systematics of this branch of life (Endress et al., 2000;

Rouhan and Gaudeul, 2014). This history of observation has provided

key and long-lasting demarcations between the types and forms of

plants, accompanying cultural, medicinal, agricultural, and scientific

development (Hill, 1915; Li, 1974; Soltis et al., 2019). In recent

decades, the development of DNA sequencing and the progress in

sequence interpretation methods have continued to refine our

understanding of the tree of life, resulting in changes to some long-

standing concepts of phylogenetic relationships (The Angiosperm

Phylogeny Group, 2003; Saarela et al., 2007). This general trend

extends to the intraspecific level, where high-throughput sequencing

techniques have generated large quantities of data, contributing to the

recent advancements in the understanding of cryptic diversity and

the often intricate interrelationships present in species complexes (Li

et al., 2020; Boucher et al., 2021; Bobrov et al., 2022; Buck and Flores-

Renterıá, 2022). Both species complexes and species with high

phenotypic plasticity and diversity present challenges to the clear

demarcation between groups, particularly when accompanied by a

history of hybridization and whole-genome duplication

(Hörandl, 2022). Such lineages are also often associated with recent

radiations, with varying degrees of range expansion (Liu et al., 2017;

Karbstein et al., 2021; Romeiro-Brito et al., 2023). In the case of

groups with a large distribution range and a broad range of

morphological variation, it can be considered whether these

morphological differences represent an increased adaptation to the

broader range of local conditions (Hoffmann et al., 2010; Pease

et al., 2016).

Physiological change as an adaptation to novel environments

may present itself as a novel phenotype, but this may also be a result

of the aforementioned hybridization and/or polyploidy

(Ramsey, 2011; Shimizu-Inatsugi et al., 2017; Van De Peer

et al., 2021). Such changes often occur in the context of the

expansion of a lineage into newly available habitats, whether the

result of large-scale landscape-altering processes such as climate

change or long-distance dispersal to islands, among other

possibilities (Kapralov et al., 2013; Schwarzer and Joshi, 2019).

These events may be particularly climactic, facilitating rapid
02
expansions of formerly more restricted lineages (Karbstein et al.,

2021). Rapid radiations have been a subject of interest for

researchers, owing to the pace of diversification sometimes

associated with these events (Schenk, 2021). Aside from the

natural and artificial processes that open the door to rapid

expansion, other characteristics may facilitate an organism’s

ability to cover ground quickly, for example reproductive

characteristics such as selfing, vegetative propagation, and

apomixis and the development of seeds in lieu of meiotic division

and recombination (Bierzychudek, 1985; Asker and Jerling, 1992;

Kearney, 2005; Kirchheimer et al., 2018). This combination of

asexual propagation and rapid expansion in an organism’s range

has been dubbed geographic parthenogenesis (Vandel, 1928;

Hörandl, 2006; Tilquin and Kokko, 2016).

Evidence for recent radiations can be found in many of the plant

lineages resident to the Arctic biome (Guggisberg et al., 2009;

Hoffmann et al., 2010; Hörandl, 2023). Diversification of the

lineages of Artemisia and Ranunculus occurred in this region,

contributing to the rich flora of at least 2,300 species (Hoffmann

et al., 2010). In addition, a high incidence of polyploidy has been

observed in the Arctic flora, increasing with latitude (Brochmann

et al., 2004). This can be partly attributed to the climatic oscillations

that occurred during the Quaternary, driving allopatric speciation

during glacial accretion, and the development of contact zones as

glaciers ebbed, leading to hybridization and whole-genome

duplication events (Kadereit and Abbott, 2021). It has been

debated whether certain vigor-inducing effects observed in hybrid

plants are a factor for their high frequency in the Arctic flora, such

as an increase in heterozygosity in selfing or clonal populations

(Brochmann et al., 2004). Moreover, for some lineages, expansion

into and across the sub-Arctic and Arctic was probably facilitated

by apomixis (Brochmann and Brysting, 2008; Mráz et al., 2009;

Hörandl, 2023). In some Arctic plant lineages, diversification

appears to have occurred as the result of novel adaptation to

colder, more open, and/or wetter environments, for instance in

some Artemisia lineages, as well as in some Ranunculus lineages

where previous affinities for wet habitats or tundra vegetation may

have primed diversification in the Arctic (Hoffmann et al., 2010;

Emadzade et al., 2015).

The Ranunculus auricomus species complex includes five basal

sexually reproducing taxa endemic to areas in Central and Western
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Europe and hundreds of facultatively asexual morphotypes spread across

Eurasia and into the Seward Peninsula, Alaska (Figure 1) (Fagerström

and Kvist, 1983; Jalas and Suominen, 1989; Ericsson, 1992; Parker, 1999;

Krasnoborov, 2000; Kozhevnikov et al., 2019). Owing to periods of

hybridization during the last glacial cycles in Europe, hybrid forms are

frequent, representing the vast majority of populations in Europe

(Tomasello et al., 2020; Karbstein et al., 2022). Hybrid genotypes are

typically polyploid, most often tetraploid or hexaploid, and propagate via

apomixis to varying degrees (Nogler, 1984; Hörandl, 1998; Barke

et al., 2020). Some populations, for example in Southern Europe, seem

to be obligate apomicts (Bradican et al., 2023).Morphological diversity in

the group is found in the variety of plant heights, basal and stem leaf

shapes, petal sizes, and number of stems and basal leaves, among other

traits (Marklund, 1961a; Marklund, 1961b; Ericsson, 2001). Ranunculus

monophyllus Ovcz. represents a reduced form of the more robust

morphotypes present in the R. auricomus species complex

(Ericsson, 2001; Kozhevnikov et al., 2019). In contrast to R.

auricomus, flowers are typically few and borne on one to several

flowering stems per plant (Ericsson, 2001). Basal leaves are similarly

present in lower numbers and typically exhibit fewer sinuses than that in

R. auricomuswith up to three lobes (Ericsson, 2001). In addition, a basal

leaf sheath is typically present (Ericsson, 2001). R. monophyllus and

approximately 12 other similar dwarfish taxa have been described as

species and summarized as the R. monophyllus group (Borchers-Kolb,

1983, Ericsson, 2001) and are largely restricted to higher latitudes and

elevations in Europe, but are widely distributed in the range of R.

auricomus agg. east of the Caucasus and in northern Fennoscandia, on

Arctic islands, and in Greenland (Fagerström and Kvist, 1983; Jalas and

Suominen, 1989; Parker, 1999; Krasnoborov, 2000; Ericsson, 2001).

In this study, we elucidate the form of reproduction present in the

Northern European populations of R. auricomus agg., as well as the

phylogenetic placement of the hitherto understudied R. monophyllus

morphogroup and of other populations in Northern Europe, Asia,

and Beringia. Furthermore, we incorporate studies of groups of

dwarfed and robust forms from boreal Fennoscandia subjected to

artificial cold and temperate climate regimes, recording the

morphological traits in order to examine the phenotypic plasticity

in response to climate. As previous studies would seem to indicate

that sexual reproduction is rare in populations present at the margins

of this group’s range, we examine whether this extends to Northern
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Europe where the populations are typically less isolated and more

numerous than those in Southern Europe (Ericsson, 2001; Bradican

et al., 2023). Although phenotype has previously been the basis for the

classification of many of the taxa in this species complex, more recent

research has demonstrated in multiple cases that the morphological

taxa are often polyphyletic when sequence data are taken into

consideration (George et al., 2014; Bradican et al., 2023; Hodač

et al., 2023). To date, it is unclear whether the relatively widespread

R. monophyllus morphogroup represents a distinct lineage, as

opposed to the many mosaic-like hybrid networks typical of this

group (Karbstein et al., 2022). In the case of hybrid populations,

certain geographic trends in the admixture involving several sexual

progenitor species have been observed in Europe, proceeding along

longitudinal gradients (Karbstein et al., 2022; Bradican et al., 2023).

As Europe represents a fraction of the total range of this group, albeit

the most well-documented fraction, it remains to be seen whether

such trends extend to the Asian and North American representatives

of R. auricomus agg. Beyond this, it has been suggested that additional

hitherto undiscovered or possibly extinct sexual lineages may be

present, which may be detectable in populations outside of Central,

Southern, and Eastern Europe (Karbstein et al., 2022; Hodač

et al., 2023).
2 Materials and methods

2.1 Collection and sampling

The collection details for the sexual progenitor species utilized

here are listed in Tomasello et al. (2020). A total of 36

Fennoscandian populations of R. auricomus agg. were collected in

the summers of 2021 and 2022. Living plants were kept at the Old

Botanical Garden of the University of Göttingen, and herbarium

specimens from each population were stored at the Department of

Systematics, Biodiversity and Evolution of Plants, Albrecht von-

Haller Institute for Plant Sciences, University of Göttingen

(herbarium GOET). In addition, material from one population in

Alaska (JBAK01) was collected in the summer of 2022, with the

herbarium specimens gathered as above. All remaining individuals

were sourced from other herbaria due to travel restrictions
FIGURE 1

Locations of the individuals sampled. Points are color coded according to taxonomic determination, with red corresponding to the Ranunculus
auricomus morphogroup, blue to the Ranunculus monophyllus morphogroup, yellow to Ranunculus cassubicifolius, green to Ranunculus
envalirensis, turquoise to Ranunculus flabellifolius, and pink to Ranunculus notabilis. Shapes correspond to key groups, with dots indicating the R.
auricomus morphogroup members, triangles representing the R. monophyllus morphogroup members, and squares indicating the sexual progenitor
species. Plot was produced in R using the ggplot2, sf, and ggspatial packages. Full location details are given in Supplementary Table S1.
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(Supplementary Table S1). See Supplementary Table S1 for the GPS

coordinates and taxonomic determination of all individuals.
2.2 Determination of reproductive mode

We utilized an established method for the determination of sexual

versus apomictic reproduction in individual seeds, dubbed flow

cytometry single-seed screening (FCSS), which was developed after

Matzk et al. (2000) (Karbstein et al., 2021). Seeds from the

Fennoscandian populations were collected from plants either in situ

or, if undeveloped, in the field after the collection and bagging of

developing achenes. The data were gathered as described in Karbstein

et al. (2020) through the extraction of nuclei from seed tissue after lysis

using a Tissue Lyzer II (Qiagen, Hilden, Germany) and shaking the

samples for 10–15 s at 30 Hz for maceration while suspended in a lysis

buffer. The solution after maceration was filtered through 30-µm filters

to obtain a suspended nuclei solution. The nuclei were stained with

DAPI and the solution measured using a CyFlow Ploidy Analyzer

(Sysmex, Nordstedt, Germany) and CUBE16 v.1.6 software (Sysmex,

Nordstedt, Germany) (Barke et al., 2020). Peaks of the detected genetic

material corresponding to the nuclei were marked, and the median

sizes of these were inferred as either embryo or endosperm nuclei. The

median embryo and endosperm nuclei sizes were then compared to the

median nuclei size of somatic tissue from a diploid Ranunculus

cassubicifolius standard in order to determine ploidy (Barke et al.,

2020). The reproduction mode was then inferred via a peak index (PI)

metric, which corresponds to the ploidy of the endosperm tissue

divided by that of the embryonic tissue. In R. auricomus agg., the

sexual production of seeds corresponds to a PI between 1.7 and 2,

whereas a PI above 2 indicates that the seed was produced through

apomixis (Karbstein et al., 2020).

Somatic ploidy was similarly measured, except that the tissue

(silica-dried leaf material) was macerated before being added to the

lysis buffer, and the peaks of nuclei were interpreted as somatic tissue.

When the embryonic tissue was not detectable during FCSS and the

endosperm tissue was measured to be more than twice that of the

somatic tissue from the mother plant, somatic ploidy was used in lieu

of embryo ploidy to obtain a PI metric. The full list of the somatic and

seed ploidies is included in Supplementary Table S1.
2.3 Gathering of sequence data

A modified extraction protocol using the Qiagen Dneasy Plant

Mini Kit (Qiagen, Hilden, Germany) and silica-dried leaf or herbarium

material was utilized for the extraction of DNA as described in

Bradican et al. (2023). Amplified libraries were generated via target

enrichment using a bait set designed for R. auricomus agg., which

consisted of 17,988 probes covering 736 low-copy nuclear regions, as in

Tomasello et al. (2020). Details of the pooling concentration are

included in Supplementary Table S1. Sequences were generated on

an Illumina MiSeq platform (Illumina, San Diego, CA, USA) in two

paired-end runs. The sequences of sexual progenitor species have been

generated previously in Tomasello et al. (2020), from which we

included representatives of each lineage. Here, we generated the

sequence data for 79 individuals. Of these, 17 populations including
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a total of 23 individuals were determined to fall into the R. monophyllus

morphogroup (Supplementary Table S1). The remaining 38

populations, which included 56 individuals, were determined to fall

into a broader R. auricomus morphogroup (Supplementary Table S1).
2.4 Phylogenomic analyses

We utilized the HybPhyloMaker pipeline in order to process raw

reads for adapter sequences and low-quality reads, retaining filtered

reads after running “HybPhyloMaker1_rawprocess” (Fér and

Schmickl, 2018). The filtered reads were then run through the

HybPiper pipeline in order to gather supercontig sequences (Johnson

et al., 2016; Bradican et al., 2023). The HybPiper functions “assemble”

and “intronerate” were used, incorporating bwa for mapping (Li and

Durbin, 2009; Johnson et al., 2016). A single nucleotide polymorphism

(SNP) dataset was constructed using HybPiper supercontigs as a

reference (see https://github.com/lindsawi/HybSeq-SNP-Extraction)

by mapping the trimmed reads utilizing “bwa mem.” Variant sites

were identified using HaplotypeCaller in GATK (Li and Durbin, 2009;

McKenna et al., 2010; Danecek et al., 2021). The GVCF files were then

combined and called using “CombineGVCF” and “GenotypeGVCF.”

Subsequently, variants were selected with “SelectVariants” and filtered

with “VariantFiltration” using a hard filter and the following

expression: – filterExpression “QD < 5.0 || FS > 60.0 || MQ < 40.0 ||

MQRankSum < −12.5 || ReadPosRankSum < −8.0” (McKenna et al.,

2010; Cooper et al., 2023). We filtered the SNPs using PLINK,

executing –vcf-filter –vcf V87107.snp.filtered.nodot.vcf –allow-extra-

chr –recode –make-bed –geno –const-fid –out V87107, utilizing the

individual with the highest read count and depth (V87107) as a

reference (Purcell et al., 2007). The filtered VCF matrix was then

imported into R and converted into a genind object for principal

component analysis using the dudi.pca function without scaling in the

adegenet package (Jombart, 2008).

For use in SplitsTree v. 4.17.1, the filtered SNP matrix produced

from the above-mentioned method was converted into Nexus format

in R using vcf2phylip (Huson and Bryant, 2006; Ortiz, 2019). A

phylogenetic network was produced on a filtered SNP dataset with

27,586 polymorphic sites. The clusters in the network were assessed

via 1,000 bootstrap replicates using uncorrected p character

transformation and NeighborNet distance transformation with a

lambda frac of 1.0 and ordinary least squares variance (Bryant, 2003).

The HybPhaser pipeline was utilized for clade association

analysis (Nauheimer et al., 2021). The clade association values

were plotted next to a phylogenetic tree calculated in RAxML-NG

from the PHYLIP matrix detailed above (Kozlov et al., 2019). This

was done in R using the “phylo.heatmap” function in the phytools

package (Revell, 2012). For the full parameters used in HybPhaser

and RAxML-NG, see Supplementary Table S2.
2.5 Climate chamber experiments

Living plants were used in 2 years (2022 and 2023) for climate

chamber experiments using two regineering climate chambers

(regineering GmbH, Pollenfeld, Bavaria, Germany). The plants were
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divided into four groups: robust plants in a cold and a temperate

treatment and dwarf plants in a cold and a temperate treatment. The

grouping into “dwarf” and “robust” followed phenotypes as observed

in the field, following the descriptions of Ericsson (2001) for grade 4

for “dwarf” and grades 1–3 for “robust.” The climate regimes consisted

of a simulated spring and early summer, with temperatures staying

above 6°C and the humidity kept at 65% relative humidity. The

temperatures and light durations/intensities were stepped up at 2-

week intervals. Temperate treatment ranged from 10°C to 20°C, and

the light intensity and durations were comparable to open conditions

in Central Europe. In contrast, the cold treatment was kept at 67% of

the light intensity, but with a longer light duration, comparable to

northern Sweden, and with temperatures ranging from 6°C to 10°C

(see Supplementary Table S1 for the full climate regimes). In 2022, the

measurements could be taken from 26 robust plants and 16 dwarf

plants (Supplementary Table S1). In 2023, the measurements were

taken from 42 robust plants and 36 dwarf plants (Supplementary

Table S1). All plants were collected from the field in northern Finland,

Norway, and Sweden. After treatments, measurements were taken for

stature, number of basal leaves, number of stems, number of flowers,

and leaf surface area. Stature was measured directly in centimeters,

while organ numbers were counted. The leaf surface area was

measured by taking pictures of the flattened leaves with a metric

ruler, without detaching the leaves from the plants. Images were then

processed in ImageJ by establishing a known length of 1 mm from the

metric ruler, then tracing around the edge of leaves and calculating the

surface area (Schneider et al., 2012).

The measurement values were tested for normality with the

Shapiro–Wilk test and for homogeneity of variance with Levene’s

test. Outliers were removed after being identified using the Grubbs

test function in the outlier package in R (Komsta, 2006). Multi-way

ANOVA and Tukey’s honest comparison of means were utilized to

examine differences between groups. All data are included in

Supplementary Table S1, and the statistical results are listed in

Supplementary Table S2 (Fox and Weisberg, 2019; R Core

Team, 2022).
3 Results

3.1 Apomixis in northern
Fennoscandian populations

The somatic ploidy of the R. auricomus agg. populations in

northern Fennoscandia was determined to be tetraploid or hexaploid

(Table 1; Supplementary Table S1). We observed a strong tendency

toward apomictic propagation in the populations examined (Table 1).

Sexual reproduction was observed in only three of the 33 populations

investigated, with overall low percentages of sex in these populations

(ranging from 2.6% to 7.7% sexual) (Table 1).
3.2 Network analysis

A phylogenetic network was produced in SplitsTree4 from a

filtered SNP dataset that included representatives of four diploid
Frontiers in Plant Science 05
sexual progenitor species (i.e., R. cassubicifolius, Ranunculus

envalirensis, Ranunculus flabellifolius, and Ranunculus notabilis),

representatives of 36 Fennoscandian populations, and 15 Asian and

North American populations (Figure 2). A primary split (BS

support = 96.3) was observed between the Fennoscandian

individuals and all of the Asian and North American populations

(Figure 2). Within the latter, the Beringian individuals largely
TABLE 1 Percentage of sexual seeds in 33 populations of Ranunculus
auricomus agg. collected in northern Fennoscandia.

Population
ID

Somatic
ploidy

Percentage
sexual reproduction

No.
of

seeds

SE2 4x 0 24

SE3 6x 0 25

SE4 6x 7.7 13

SE5 4x 0 20

SE6 4x 0 27

SE7 4x 0 24

SE8 4x 0 26

SE9 4x 0 17

SE10 4x 0 30

SE11 4x 0 27

SE12 4x 0 13

SE13 4x 0 38

SE14 4x 0 28

SE15 4x and 6x 0 20

SE16 6x 0 31

SE17 6x 0 28

SE18 4x 0 28

SE19 4x 0 29

JB020 4x 0 39

JB022 4x 0 20

JB025 4x 4.2 24

JB027 4x and 6x 0 15

JB029 4x 0 40

JB030 4x 0 17

JB031 4x 0 10

JB032 4x 0 57

JB033 4x 2.6 38

JB034 4x 0 27

JB035 4x 0 53

JB036 4x 0 50
fro
Sexual versus apomictic reproduction was determined using flow cytometry single-seed
screening. Listed are the somatic ploidy levels found in each population. Full values per
population, ploidy, and individuals are listed in Supplementary Table S1.
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clustered together, except for V129074, being nested among the

Central Asian individuals (Figure 2). Comparison of the individuals

determined as R. monophyllus to the other R. auricomus agg.

individuals revealed no clear pattern or distinction, with R.

monophyllus being present across the network (Figure 2).

3.3 Clade association

Detection of similarity between putative R. auricomus agg.

hybrids and sexual progenitor taxa suggested a hybrid origin for

most individuals (Figure 3). All Asian and Alaskan individuals

tended toward a higher similarity to R. cassubicifolius (Figure 3,

highlighted in light orange and pink). Fennoscandian individuals

showed a broader mixture, with some western Swedish individuals

having high admixture from R. envalirensis (Figure 3, top six rows).

3.4 Principal component analysis

Plotting of the first two principal components of a filtered SNP

dataset showed some differentiation between geographic origins

(Figure 4). Except for the sexual progenitor taxa (right, labeled as W

Europe and C Europe), the Fennoscandian individuals exhibited the
Frontiers in Plant Science 06
highest variation in differences within a geographic group

(Figure 4). Some separation was observed between the

Fennoscandian, the Central Asian, and the Beringian individuals,

with some overlap between the latter two (Figure 4). Those most

leftward on the x-axis in the Fennoscandian group are all known

hexaploid individuals in the dataset (Figure 4).
3.5 Climate chamber experiments

Over the course of 2 years, few differences were observed

between the corresponding morphogroups subjected to differing

climate regimes. A significantly larger leaf area in the dwarf plants

under a temperate regime was observed during the 2022 trial (p =

0.0032) (Figure 5). In addition, in 2023, the dwarf plants under a

temperate treatment exhibited a lower height than the dwarf plants

under a cold treatment (p = 0.0027) (Supplementary Table S2). All

other characteristics did not show significant lability in response to

climate (Supplementary Table S2).
4 Discussion

The reproductive data from Northern Europe reinforced

previous observations of a predominantly apomictic propagation in

the marginal areas of the range of R. auricomus agg (Bradican et al.,

2023). In contrast to the Southern European populations, which are

relegated to mesic, shady, and relatively high elevation habitats, the

populations of R. auricomus agg. in northern Fennoscandia tolerate a

wider range of conditions, inhabiting mountain birch and spruce

forests, natural meadows, pasture meadows, and disturbed sites such

as roadsides, ditches, parks, and campgrounds (Marklund, 1961a;

Marklund, 1961b; Ericsson, 2001). Occurrence in a greater variety of

habitats, as well as a more contiguous distribution, would suggest a

less isolated and prolific status of the Northern European R.

auricomus agg. compared with the Southern European populations

(Dunkel, 2021; Dunkel, 2015; Dunkel, 2010; Jalas and Suominen,

1989). Similar to populations at the southern margins, apomixis

remains common, suggesting a certain stability in the traits

underlying a tendency toward the apomictic mode. As previously

hypothesized, this mode of reproduction could prove advantageous

in the rapid spread into and the occupation of newly open habitats,

congruent with a geographical parthenogenesis scenario (Tilquin and

Kokko, 2016; Karbstein et al., 2021; Hörandl, 2022). Factors relating

to the reversibility of this trait under stable conditions remain to be

thoroughly investigated, and although obligate asexual propagation

has been theorized to be deleterious in the long term, advantageous

traits gained through heterozygosity as a result of hybridization

events may be stabilized through asexual propagation (Muller,

1964; Hörandl et al., 2020).

Examination of the individual representatives of the R.

monophyllus group across Eurasia revealed significant differentiation

but no clear grouping of the samples of this taxon. This mirrored

previous investigations into other taxa within R. auricomus agg.,

whereby habit did not correspond to genetic relatedness (Karbstein
FIGURE 2

SplitsTree NeighborNet network of a filtered SNP matrix for the
Fennoscandian, Central Asian, Beringian Ranunculus auricomus
members, and four sexual progenitor species (i.e., Ranunculus
cassubicifolius, Ranunculus envalirensis, Ranunculus flabellifolius, and
Ranunculus notabilis). Sections of the network are color coded
according to the geographic location of individual clades: blue,
Fennoscandia; light orange, Central Asia; pink, Beringia. Tips are color
coded according to taxonomic determination, with red corresponding
to Ranunculus monophyllus, green to the sexual progenitor taxa, and
black to R. auricomus hybrids (IDs not shown). Bootstrap values for
the major clusters and sexual progenitor taxa are indicated in black.
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et al., 2022; Bradican et al., 2023; Hodač et al., 2023). This is likely due

to factors facilitating significant phenotypic plasticity in the group,

perhaps further facilitated by the history of hybridization and

concurrent polyploidy (Hodač et al., 2023). The patchwork genetic
Frontiers in Plant Science 07
makeup of many R. auricomus agg. consisting of subgenomic elements

from divergent progenitor species lends itself to the diverse expression

of and the selection for favorable traits (Karbstein et al., 2022; Hodač

et al., 2023). Environmental pressures consistent across the range of R.

monophyllus include a trend toward colder temperatures, a factor

previously associated with the presence of dwarf or cushion forms of

widespread lineages (Hijmans et al., 2005; Körner, 2021). The climate

chamber experiments detailed here, however, suggested that a

hypothesized dwarfing response to climate is not quickly inducible,

more likely representing either long-term adaptation to a colder climate

or local adaptation to other factors such as edaphic conditions and

wind exposure. This contrasts with the alpine plant Ranunculus

kuepferi, a species with autotetraploid apomictic populations, for

which similar temperature treatments revealed phenotypic plasticity

in vegetative traits (Syngelaki et al., 2020). Considering this, the

morphology associated with R. monophyllus may represent multiple

separate adaptive expressions of hybrid genotypes, possibly including

significant epigenetic control (Lloyd and Lister, 2022). It must be noted,

however, that we did not incorporate here the alpine Central European

taxa previously included in the R. monophyllus group, such as

Ranunculus allemanni, Ranunculus melzeri, and Ranunculus braun-

blanquetii (Hörandl and Gutermann, 1998). Thus, it remains an open

question whether different evolutionary histories or ecological

differences between Arctic and temperate alpine conditions play a

role in phenotypic plasticity. Taking hybrid origin and non-monophyly

into account, it is suggested that the microspecies described under the

R. monophyllus group may better be recognized as nothotaxa, as

suggested for the other apomictic taxa of the R. auricomus complex

(Karbstein et al., 2022; Bradican et al., 2023; Hodač et al., 2023).

Considering the findings listed here and in earlier research, an

integrative approach to taxonomy in R. auricomus agg. examining
FIGURE 3

Clade association heatmap representing admixture to Ranunculus auricomus agg. individuals from basal sexual progenitor members. A RAxML-NG
phylogeny is displayed to the right, computed from a filtered SNP dataset, and color coded according to the geographic location of individuals: pink,
Beringia; light orange, Central Asia; light blue, Fennoscandia. A standardized clade association heatmap (red indicates higher association and blue
indicates lower association) is displayed to the right, with rows corresponding to individual tips of the RAxML phylogeny and columns representing
sexual progenitor species: Cass., Ranunculus cassubicifolius; Flab., Ranunculus flabellifolius; Nota., Ranunculus notabilis; Enva., Ranunculus
envalirensis. Values were calculated using HybPhaser. See Supplementary Table S1 for full clade association values.
FIGURE 4

Principal coordinate analysis of a filtered SNP dataset for all putative
hybrid individuals and sexual progenitor species. X-axis: principal
component 1, representing 21.14% of variation; Y-axis: principal
component 2, representing 9.29% of variation. Groupings by
geographic location are indicated by lines connecting points and an
ellipse. Individuals are segregated according to the following
geographic locations: Western (W Europe) and Central (C Eu)
Europe for the four sexual progenitor species, Fennoscandia for
putative hybrids, Central Asia (C Asia) for putative hybrids, and
Beringia for putative hybrids. Known hexaploid individuals are
bordered by the orange dashed box. Eigenvalues are plotted as a
bar plot in the bottom right corner. Values were calculated in R
using the adegenet package.
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populations and/or taxa on a case-by-case basis utilizing reproductive

and sequence data is necessary for classification (Hörandl, 2022).

When examining the similarities between genotypes across

northern Eurasia, certain groups become evident. This concerns

primarily as differentiation according to geographic location,

roughly segregating into Fennoscandian, Central Asian, and

Beringian groups, echoing previous findings in Southern and

Central Europe (Karbstein et al., 2022; Bradican et al., 2023).

Reinforcing the observations on R. monophyllus above, this is

particularly striking given the taxonomic and morphological

complexity present in Fennoscandia (Marklund, 1961a;

Marklund, 1961b; Ericsson, 1992; Ericsson, 2001). Taking into

account the likelihood of a rapid expansion into these regions, the

differences observed may reflect observable post-hybridization

genome evolution (Eroukhmanoff et al., 2013). Some sources and

observation data suggest that R. monophyllus may be more isolated

in Siberia and the Russian Far East, which may also contribute to

their differentiation from European R. auricomus agg (Kozhevnikov

et al., 2019; GBIF.org, 2024). If the trend observed in Europe

continues to the east, and Asian/Alaskan populations are also

largely apomictic, further isolation and geographic differentiation

is likely. Despite genetic similarity, it cannot be concluded that the

geographic groups found here correspond to distinct hybridization

events. Indeed, as discussed further below, different levels of

admixture from predecessor species are detected within

geographic groups.
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Taking into account the likely hybrid origin of the populations

examined here, clade association revealed diversity in the admixture

from sexual progenitor species to Northern Eurasian R. auricomus

agg. Almost all individuals show evidence of the presence of all

known sexual progenitor genomes in their respective genotypes.

Mirroring findings in Southern Europe, the southwestern

progenitor R. envalirensis from the Pyrenees and Massif Central

appears to be represented more in the hybrid genomes present in

western Sweden. Possibly, the contact zone that may have formed in

the southwestern areas of Europe where R. envalirensis was present

during the genesis of hybrid genotypes led to expansion along more

western longitudes both southward and northward. With lower sea

levels and the fluctuating presence of land connecting Western

Europe and the Fennoscandian Peninsula following the last glacial

maximum, further investigation of the Northwestern European R.

auricomus agg. might help reveal the expansion routes (Björck,

1995; Paus et al., 2023). Land-based migration corridors bridging

modern-day Denmark and Sweden would have been most

hospitable to R. auricomus agg. from circa 13.1–12.7 ka BP and

12.1–10.3 ka BP due to the presence of solid sediment bridges

spanning the Baltic Ice Lake (Björck, 1995; Herman et al., 2014). In

Asia and Alaska, the Central to Eastern European R. cassubicifolius

appears to be the predominant contributor to hybrid genotypes.

This again would theoretically align with the likely expansion

routes, given the more eastern range of R. cassubicifolius.

However, we cannot rule out that one or more unknown sexual

progenitors contributed to the origins of the populations in Asia,

Beringia, and Alaska. As we do not yet have reproductive data from

these areas, progenitors can be only theoretically postulated.
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