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This study addresses the challenges of low detection precision and limited

generalization across various ripeness levels and varieties for large non-green-

ripe citrus fruits in complex scenarios. We present a high-precision and lightweight

model, YOLOC-tiny, built upon YOLOv7, which utilizes EfficientNet-B0 as the

feature extraction backbone network. To augment sensing capabilities and

improve detection accuracy, we embed a spatial and channel composite

attention mechanism, the convolutional block attention module (CBAM), into

the head’s efficient aggregation network. Additionally, we introduce an adaptive

and complete intersection over union regression loss function, designed by

integrating the phenotypic features of large non-green-ripe citrus, to mitigate

the impact of data noise and efficiently calculate detection loss. Finally, a layer-

based adaptive magnitude pruning strategy is employed to further eliminate

redundant connections and parameters in the model. Targeting three types of

citrus widely planted in Sichuan Province—navel orange, Ehime Jelly orange, and

Harumi tangerine—YOLOC-tiny achieves an impressive mean average precision

(mAP) of 83.0%, surpassing most other state-of-the-art (SOTA) detectors in the

same class. Compared with YOLOv7 and YOLOv8x, its mAP improved by 1.7% and

1.9%, respectively, with a parameter count of only 4.2M. In picking robot

deployment applications, YOLOC-tiny attains an accuracy of 92.8% at a rate of

59 frames per second. This study provides a theoretical foundation and technical

reference for upgrading and optimizing low-computing-power ground-based

robots, such as those used for fruit picking and orchard inspection.
KEYWORDS

non-green-ripe citrus, multiripeness fruits, YOLOv7, EfficientNet, CBAM,
agricultural robot
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1 Introduction

Citrus is one of the most widely cultivated and highest-yielding

fruit crops globally, generating significant economic value (The

United States Department of Agriculture, 2024). However, the

citrus industry faces immense pressure due to skilled labor

shortages, rising production costs, market demand fluctuations,

and extreme climate changes (Castro-Garcia et al., 2019; Apolo-

Apolo et al., 2020a). Agricultural robots can mitigate these pressures

by reducing reliance on skilled labor, lowering economic and

environmental costs, and enhancing orchard management and

productivity (Bargoti and Underwood, 2017; Fu et al., 2020a).

Accurate fruit detection is essential for automated harvesting and

early yield prediction (Zhuang et al., 2018; Apolo-Apolo et al.,

2020b; Lu et al., 2023). Consequently, the detection of citrus fruits

has become a research hotspot (Wang et al., 2022c; Ma et al., 2024).

Particularly, there is an urgent need for high-performance detection

models that can be deployed on resource-limited robots and other

edge devices (Tang et al., 2020; Xu et al., 2023).

Multispectral cameras, optical digital cameras, 3D stereoscopic

cameras, and RGB-D depth cameras are the primary devices used

for fruit detection (Chen et al., 2020; Condotta et al., 2020).

Multispectral cameras can capture spectral information across

various bands from visible to near-infrared and are commonly

mounted on unmanned aerial vehicles for large-scale crop health,

yield estimation, and disease monitoring (Huang et al., 2020; Lan

et al., 2020). However, their high cost and complex data processing

requirements limit their application in ground-based agricultural

robots. Optical digital cameras, 3D stereoscopic cameras, and RGB-

D depth cameras typically produce RGB images with three visible

light bands: red, green, and blue. Many studies have shown that

RGB images are sufficient for fruit detection (Lu et al., 2018; Yu

et al., 2019; Gené-Mola et al., 2020; Liu et al., 2023). These devices

are cost-effective and require less computational power, making

them more suitable for the practical needs of real-time monitoring

and automated harvesting robots.

Over the past few decades, methods combining digital image

processing with traditional machine learning (ML) techniques have

been used for fruit detection, including citrus (Liu et al., 2018),

kiwifruit (Fu et al., 2019), and apples (Lu et al., 2022). However, the

pixel values in RGB images are highly sensitive to changes in

lighting and background interference. Traditional ML algorithms,

such as support vector machines and decision trees, rely on complex

feature extraction and manual rules to handle these variations (Fu

et al., 2018). Consequently, these algorithms exhibit performance

fluctuations in complex environments and fail to meet the need for

stable citrus fruit detection by robots in real-world scenarios.

In recent years, the advancement of deep learning (DL)

technology has significantly impacted the field of agricultural

detection due to its exceptional feature learning capability, robust

generalization performance, and substantial computational power

(Gené-Mola et al., 2020; Maheswari et al., 2021). DL methods for

fruit detection are broadly categorized into two main approaches:

region-based two-stage methods (Girshick et al., 2014; Shaoqing

et al., 2016) and end-to-end single-stage methods (Redmon et al.,

2016; Wei et al., 2016).
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Two-stage detection methods first extract a large number of

regions of interest (RoIs) that potentially contain target fruits. These

RoIs are then passed through a convolutional neural network

(CNN) for detection, with final detection results obtained after

post-processing (Girshick et al., 2014; Shaoqing et al., 2016).

Although this process is time-consuming, these methods typically

achieve high detection precision due to the utilization of CNNs for

fruit detection on RoIs (Redmon et al., 2016). For example, C.H.

Yang et al. (Yang et al., 2020) developed a citrus fruit detection

algorithm based on Mask R-CNN, achieving a detection precision

of 88.15%. Longsheng Fu et al. (Fu et al., 2020b) proposed an apple

detection algorithm based on Faster R-CNN, achieving a detection

precision of 89.3%. However, the inherent characteristics of two-

stage methods, including slower detection speed and high memory

consumption, limit their suitability for applications such as

harvesting robots, which require rapid detection and are

constrained by computational resources.

In contrast, the YOLO series of single-stage detection methods,

introduced in 2015, offers faster detection speeds and high detection

accuracy (Redmon et al., 2016). YOLO models perform target

detection in a single pass through a CNN, eliminating the need

for separate stages and reducing redundant operations (Redmon

et al., 2016; Wang et al., 2022a). While early YOLO models had

lower detection accuracy compared to two-stage models like R-

CNN, subsequent optimizations, and improvements by numerous

researchers have led to the development of several highly effective

fruit detection methods. For instance, Longsheng Fu et al. (Fu et al.,

2021) proposed a kiwifruit detection algorithm, DY3TNet, by

improving the YOLOv3-tiny model, achieving a detection

precision of 90.05%. Shenglian Lu et al. (Lu et al., 2022)

developed the CA-YOLOv4 detection algorithm for apples in

orchard environments, achieving a detection precision of 92.6%

for Envy apples during harvest. Additionally, Lijia Xu et al. (Xu

et al., 2023) proposed the HPL-YOLOv4 citrus detection model for

complex environments, achieving a detection precision of 93.45%.

Citrus is a general term for fruits belonging to the Citrus genus

of the Rutaceae family, with major types including grapefruit,

lemon, tangerine, and orange (Liu et al., 2012). Among these,

navel oranges, Ehime Jelly oranges, and Harumi tangerines are

widely cultivated in the southwestern regions of China, and their

fruits turn orange-red upon ripening. In this study, we refer to them

as non-green-ripe citrus. While existing models can detect single-

variety or single-degree ripeness fruits, such as apples or certain

citrus fruits (Lu et al., 2018, 2022), there remains an urgent need for

a real-time and accurate detection model for multi-ripeness fruits of

different non-green-ripe citrus varieties in complex orchards. To

address this issue, we first collected and created a custom image

dataset of non-green-ripe citrus, covering the detection needs of

unripe, semi-ripe, and ripe fruits. We then proposed a lightweight,

single-stage citrus detection model suitable for deployment on edge

devices such as robots. The main contributions of this work are

as follows:
(1) We designed a comprehensive image dataset, RC3025,

which includes images of non-green-ripe citrus fruits of

various varieties and ripeness levels in complex scenarios.
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(2) We discovered and proposed that incorporating a small

number of pure citrus fruit images into the training set

enhances the model ’s detection performance in

real orchards.

(3) We developed a general, lightweight, and high-

performance multi-ripeness citrus recognition model,

YOLOC-tiny, based on YOLOv7.

(4) We validated the practical performance and advantages of

YOLOC-tiny through robot deployment application

experiments, demonstrating its effectiveness in detecting

non-green-ripe citrus fruits in complex environments.
2 Materials and methods

2.1 Multiripeness non-green-ripe citrus
fruit image dataset

2.1.1 Raw image acquisition and labeling
To properly train the developed DL model, a number of raw

images are required as an initial dataset (Apolo-Apolo et al., 2020a).

Research suggests that 2,500 annotated instances are adequate for

training deep networks to recognize a certain type of fruit (Wang

et al., 2022b). From 2020 to late 2023, we continuously collected raw

images over four years using both manual and robotic photography,

as shown in Figure 1. Various imaging devices, including a 3D

stereoscopic camera (ZED), a Canon 80D camera, and four different

mobile phones (VIVO Y97, Mi 10, Redmi K40, and iPhone Xs),

were employed to capture images of citrus fruits at different ripeness

levels and varieties in three non-green-ripe citrus orchards. These

orchards are located in three different counties in the western part

of Sichuan Province: Yucheng District, Ya’an City (29°58′N, 102°
59′E); Jintang County, Chengdu City (30°43′N, 104°29′E); and
Danling County, Meishan City (29°58′N, 103°32′E). To meet the

operational needs of ground-based agricultural robots, the shooting

distance ranged from 0.3 to 1.2 meters.
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Experienced researchers screened the raw images and collected

a total of 2,905 image data samples covering three citrus varieties

(navel orange, Ehime Jelly orange, and Harumi tangerine) at

different ripeness levels in unstructured orchards. Additionally, to

investigate whether pure citrus images could enhance model

detection performance, 120 images featuring pure citrus fruits

were captured in the laboratory using both ZED and digital

cameras. Specifically, the sections pertaining to citrus images in

complex orchards and pure citrus images were separately labeled as

RC2905 and RC120. The labeling process for the 3,025 images was

completed using the open-source tool LabelImg (Tzutalin, 2015),

and the citrus image dataset RC3025 (raw citrus dataset with 3,025

images) was created, comprising a total of 10,653 labeled instances.

Details of the dataset are shown in Supplementary Table 1.

2.1.2 Dataset partitioning
Several studies have successfully used a 10% validation split (Lu

et al., 2022; Liu et al., 2023; Xu et al., 2023), achieving significant

detection results. To balance computational resources and maintain

training efficiency, the RC2905 dataset was partitioned into the raw

training set (TRAIN-R), the raw validation set (VAL-R), and the raw

test set (TEST-R) in an 8:1:1 ratio, as illustrated in Figure 2. The RC120

dataset was employed to investigate the impact of pure citrus images on

model performance by randomly substituting 120 images in TRAIN-R,

defining the refined training set as FTRAIN-R after fine-tuning. TEST-

R was further categorized based on background complexity and citrus

occlusion, resulting in a complex background test set comprising 166

images (TEST-RCE) and a simple background test set with 124 images

(TEST-RSE). Given the variations in light intensity, the test set was

further stratified into a set containing 228 images with normal light

intensity (TEST-RNL) and another set containing 62 images under

low-light conditions (TEST-RWL).

2.1.3 Image dataset augmentation
Many studies demonstrated that enhancing raw images can

improve the model’s generalization ability. In the present study,

seven enhancement methods, including affine transformation,
FIGURE 1

Schematic diagram of how to capture the images of non-green-ripe citrus fruits and some examples.
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luminance adjustment, cut-out, coarse dropout, Gaussian noise,

motion blur, and salt–pepper noise, were employed to augment the

training and validation sets, as illustrated in Figure 3. These

enhancement operations were executed on TRAIN-R, VAL-R,

TEST-R and FTRAIN-R, resulting in the corresponding enhanced

datasets TRAIN-A, VAL-A, TEST-A and FTRAIN-A, respectively.

Three enhancement methods—up and down flip, contrast

adjustment, and Gaussian blur—were simultaneously applied to

the test set. Two datasets, TEST-ANL and TEST-AWL, were

generated by enhancing the original test set of normal and weak

light environments. Additionally, the TEST-ACE and TEST-ASE

datasets were created by augmenting the original test sets of

complex and simple environments, respectively. These enhanced

datasets aim to simulate accurately the diverse lighting conditions,

backgrounds, and fruit states in real-life orchard scenes, thereby

bolstering the robustness and accuracy of the detection models in

practical scenarios. An overview of the augmented dataset and the

number of images is provided in Supplementary Table 2.
2.2 Design of the YOLOC-tiny model

Orchard operation robots face constraints due to limited

computational resources, whereas traditional DL models pose

challenges with their high computational complexity and demanding

hardware requirements. To ensure that robots can reliably, accurately,

and efficiently detect various types and ripeness levels of citrus fruits in

complex non-green-ripe citrus orchards, we initially used our custom

datasets TRAIN-A, VAL-A, and TEST-A to train and test most of the

popular SOTA object detectors, including YOLOv7 and YOLOv8.

Based on the practical needs of robotic operations and the experiment

results, we chose YOLOv7 (Wang et al., 2022a) as the foundational

network and conducted a series of optimizations and improvements.
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Given the large size of the YOLOv7 backbone network, we

selected a lightweight feature extraction network, EfficientNet-B0,

to replace the original backbone. After comparing various advanced

attention mechanisms, we introduced a composite efficient

attention mechanism, CBAM, to enhance target perception.

Subsequently, after numerous experiments, we carefully designed

an extended efficient aggregation network module incorporating

CBAM, called Efficient Layer Aggregation Networks in the Head

with CBAM (ELAN-HC). Considering the phenotypic features of

the targets, we proposed an adaptive and efficient complete

intersection over the union regression loss function (ACIoU).

This function allows for adjustments to the aspect ratio regression

loss penalty factor, enhancing the perception ability of citrus fruits

and consequently improving detection accuracy.

We integrated these measures to develop a generalized base

network, YOLOC, where C stands for citrus, to recognize non-

green-ripe citrus varieties such as navel orange, Ehime jelly orange,

and Harumi tangerine in complex environments, particularly in the

hilly areas of southwest China. The structure of YOLOC is depicted

in Figure 4, where RepConv denotes reparametrized convolution.

Furthermore, we leveraged transfer learning to train YOLOC on

FTRAIN-A and employed sparse training and Layer-based

Adaptive Magnitude Pruning (LAMP), a quantized pruning

technique, to derive a lightweight recognition model, YOLOC-tiny.

2.2.1 ACIoU
The accuracy of target detection and localization is significantly

influenced by the choice of the loss function (Yu et al., 2022). The

loss function was computed based on the intersection over union

(IoU), and the CIoU utilized by YOLOv7 comprehensively

considered the variations in the overlap area, center distance, and

aspect ratio between the predicted box and the ground truth box

(Zheng et al., 2020), as illustrated in (Equations 1–3).
FIGURE 2

Diagram of dataset partitions.
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LossCIoU = 1 − IoU +
r2( b, bgt )

c2
+ av, (1)

a =
v

1 − IoU + v
, (2)

v =
4
p2 arctan

wgt

hgt
− arctan

w
h

� �2

, (3)

where LossCIoU denotes the loss value, IoU represents the IoU

ratio between the ground truth box and the predicted box, r2( b, bgt )
signifies the Euclidean pixel distance between the ground truth box

and the predicted, c represents the diagonal length of the smallest

enclosing area that surrounds both the predicted and ground truth

bounding boxes, a is the acquired trade-off coefficient, v denotes the

consistency factor of the width and height of the predicted box and

the ground truth box, wgt and hgt are the width and height of the

ground truth box, respectively, and w and h are the width and height

of the predicted box, respectively.

The CIoU loss function is commonly employed in target

detection tasks; however, it exhibits the following drawbacks (Yu

et al., 2022): (1) The use of an inverse tangent function in CIoU

makes it highly sensitive to outliers, resulting in poor robustness.

(2) The value domain ( 0, p=2 ) of the inverse tangent function

cannot directly fulfill the normalization requirements of the loss

function. (3) Adaptability to adjust the corresponding features of

the loss function based on the detection object is lacking. Hence,

considering the phenotypic features of the large non-green-ripe
Frontiers in Plant Science 05
citrus fruits, we proposed ACIoU. This function can dynamically

adjust the length and width regression loss penalty factor based on

the phenotypic parameters of citrus fruits, as depicted in (Equations

4–6).

LossACIoU = 1 − IoU +
r2( b, bgt )

c2
+ ag , (4)

s( a, b, x ) =
1

1 + e−a(x−b)
, (5)

g = s a, b, wgt

hgt

� �
− s a, b, w

h

� �� �2
, (6)

where LossACIoU represents the value of the ACIoU function, a

and denotes the adaptive Sigmoid deformation parameters that can

be adjusted based on different aspect ratios of the detection targets,

and g signifies the adaptive consistency factor of the width and

height of the predicted box and the ground truth box.

The variation curves of the width and height difference loss

penalty terms corresponding to the real and predicted boxes for

different deformation parameters, a and b, are presented in Figure 5.

The disparity between the length and width of the ground truth box

of citrus fruits is smaller than that in Microsoft Common Objects in

Context (COCO). We randomly selected 47 citrus fruits with

different maturity levels from the orchard of Ya’an Yucheng

District, and their average transverse and longitudinal diameters

were measured using vernier calipers. The transverse diameter
B

A

FIGURE 3

Image augmentations. (A) Augmentation methods for TRAIN-R, FTRAIN-R, and VAL-R: affine transformation, brightness adjustment, cutout, coarse
dropout, Gaussian noise, motion blur, and salt and pepper noise. (B) Augmentation methods for TEST-R: up and down flip, contrast adjustment, and
Gaussian blur.
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represents the maximum equatorial diameter of the mandarin

orange. The longitudinal diameter is the straight-line distance

between the pith (at the stalk) and the center of the top of the

fruit, as shown in Figure 6. The measured average longitudinal

diameter of citrus was 68.04 mm, the average transverse diameter

was 64.94 mm, and the average aspect ratio was 1.05. These

measurements can serve as a reference for adaptively adjusting

the loss function width and high consistency evaluation index.

2.2.2 Efficient feature extraction backbone
This study utilized EfficientNet-B0 as the feature extraction

backbone to optimize the model parameters for practical

deployment in orchard robots for recognizing large non-green-

ripe citrus. EfficientNet-B0, a lightweight and high-performance

neural network, was designed using neural architecture search. The

architecture primarily consists of mobile inverted bottleneck

convolutions (MBConv), as illustrated in Supplementary Figure

1. MBConv integrates depthwise separable convolutions

(DWConv) with Squeeze-and-Excitation (SE) blocks and inverse

residual blocks. The SE module within MBConv dynamically

recalibrates channel-wise feature responses by explicitly modeling

interdependencies between the channels. With its DWConv and SE

modules, MBConv offers a lightweight structure while maintaining

good detection performance.

2.2.3 ELAN-HC
The spatial attention mechanism amplifies the model’s

capability to concentrate on specific regions within the image,

facilitating the extraction of features crucial for target detection.

The channel attention mechanism guides the model to prioritize

significant features in the image, thereby contributing to an overall

enhancement in target detection accuracy. CBAM integrates the

channel attention mechanism and the spatial attention mechanism.

YOLOv7 introduces efficient layer aggregation networks in the

detection head (ELAN-H), leading to significant performance

improvements. Empirically drawing on engineering experience,

we incorporated CBAM into the ELAN-H network module,
Frontiers in Plant Science 06
resulting in the formation of the ELAN-HC module, as depicted

in Figure 7. This integration is aimed at optimizing further the

model’s detection performance for non-green-ripe citrus in the

unstructured orchards.

2.2.4 Lightweight pruning strategy
We employed the LAMP pruning method on the trained

YOLOC model to eliminate redundant parameters and

connections, thereby enhancing the deployable performance and

detection efficiency of YOLOC-tiny (Supplementary Figure 2).

Subsequently, the pruned model underwent retraining in

FTRAIN-A, resulting in the development of a lightweight

detection model, YOLOC-tiny. The calculation for the LAMP
FIGURE 5

Loss penalty curves of the width and height differences with
different deformation parameters.
FIGURE 4

Structure of the YOLOC network.
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score is expressed in Equation 7. The LAMP score was used to

measure the importance of all weights in each layer of the YOLOC

network to the citrus detection performance. During each round of

pruning iterations, we removed the weights that contributed the

least to the detection performance until the global sparsity

constraint was satisfied. Thus, the model size was compressed,

with little impact on its detection accuracy. LAMP retained at

least one connection in each layer to ensure that at least one

surviving connection was retained in each layer, thereby avoiding

the loss of neurons and helping to maintain the ability to perceive

non-green-ripe large citrus.
Frontiers in Plant Science 07
score(ui) =
u2i

oi≥ju
2
j

, (7)

where ui is the ith weight magnitude in the kth (k = 0,⋯ 359)

layer of the YOLOC network after ascending order, and score(ui) is

the LAMP score of ui.
3 Experiments and results

In this study, three computers, namely, PC1, PC2 and PC3, were

employed for model training, testing, and deploying applications,

respectively. PC3 is a lightweight industrial control mainframe

computer integrated into the self-developed intelligent citrus

picking robot (ICPR), as shown in Figure 1. The detailed

hardware and software configurations of the three computers are

provided in Table 1.
3.1 Model training and performance
evaluation metrics

The model training was performed on PC1 and initialized with

pre-trained weights from the COCO dataset. The stochastic

gradient descent algorithm was used as the optimizer for model

training. The training parameters included an initial learning rate of

0.01, momentum decay of 0.937, weight decay of 0.0005, a model

input image size of 640 × 640, and a training epoch count of 300. A

label smoothing strategy was implemented to address potential

network overfitting resulting from incorrect data labeling by

improving the model’s generalization ability. Additionally, online

data augmentation using the mosaic method at each iteration was

employed to enrich the citrus image data and further enhance the

model’s generalization ability.

The model evaluation tests were conducted on PC2. The batch

size for model test inputs was set to 1, the confidence threshold was

0.001, the IOU threshold was 0.6, and the model input image size

was 640 × 640 by aligning with the practical conditions of the

orchard robot. Given the constraints of the robot’s limited hardware

resources, the models were comprehensively evaluated in this study

based on three aspects, namely, basic detection performance, degree

of lightweight, and detection speed, to assess the detection
B CA

FIGURE 6

Measurement methods of longitudinal and transverse diameters and samples. (A) Measurement method of citrus fruit longitudinal diameter. (B)
Measurement method of citrus fruit transverse diameter. (C) Samples of citrus fruits.
FIGURE 7

The structure of ELAN-HC.
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performance of different models. The evaluation of basic detection

performance includes detection precision (P), recall (R), and mean

average precision (mAP), which were calculated according to

(Equations 8–10).

P =
TP

TP + FP
� 100%, (8)

R =
TP

TP + FN
� 100%, (9)

mAP =
1
ko

k
i=1

Z 1

0
Pi(Ri)d(Ri)� 100%, (10)

where TP (true positive) represents the count of accurately

detected citrus fruits, FP (false positive) signifies the count of

erroneously identified objects or backgrounds as citrus fruits, FN

(false negative) corresponds to the count of undetected or

inaccurately identified citrus fruits, and k denotes the specific

fruit type to be detected. In this study, k is 3, indicating the three

categories of ripe, semi-ripe, and unripe citrus fruits.

The evaluation metrics for lightweight degree encompass the

memory size occupied by the model (model size), the number of

parameters (params), and the model detection speed measured by

the number of FPS. Additionally, we introduced four normalized

evaluation indicators, including the compound evaluator (CEval),

which provides a holistic assessment of the model considering basic

performance, the degree of lightweight, and detection speed. The

CEval, model size score, model parameter score, and frame rate

score are calculated as depicted in (Equations 11–14).
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CEval = a1P + a2mAP + a3SizeScore + a4ParamsScore

+ a5FPSScore, (11)

SizeScore =
1

1 + exp (0:1� (ModelSize − t1))
, (12)

ParamsScore =
1

1 + exp (0:1� (Params − t2))
, (13)

FPSScore =
1

1 + exp ( − (FPS − t3))
, (14)

where a1, a2, a3, a4, and a5 are the weight coefficients, and

their sum is 1.0. They differentiate the importance of various

indicators for intelligent operation robots in orchards. t1, t2 and

t2 control the thresholds for each evaluation indicator.

The curves illustrating the model size score, model parameter

score, and frame rate score are presented in Figure 8. Slight

variations in the FPS of each model were observed across

experiments; thus, the FPS rates of all models were averaged over

five tests after completing the graphics card warm-up. Aligned with

the real-time target detection task and the goal of maintaining

lightweight models, the threshold values (t1, t2, and t3) in this study

were set at 50, 50, and 30, respectively. A high frame rate score

indicates proximity to 1. However, the frame rate beyond the

robot’s real-time monitoring need of 30 FPS becomes barely

crucial. Conversely, parameter and model size scores approach 1

as they decrease and approach 0 as they increase.
3.2 Comparative experiments of different
attention mechanisms

YOLOv7 was employed as a baseline to elucidate the impact of

attention mechanisms on the detection performance of the YOLOC
TABLE 1 Key hardware and software configurations of the
experimental environment.

Hardware/
Software

PC1 PC2 PC3

CPU
Intel(R) Core
(TM) i9-10920X
CPU @ 3.50 GHz

Intel(R) Core
(TM) i9-10920X
CPU @ 3.50 GHz

Intel(R) Core
(TM) i7-1165G7
CPU @ 2.80 GHz

GPUs
NVIDIA GeForce
RTX 3090 (24576
MB) × 2

NVIDIA GeForce
RTX 3090
(24576MB) × 2

NVIDIA GeForce
MX450 (2048
MB)× 1

RAM
32 GB 3200 MHz
× 4

32 GB 3200 MHz
× 4

16 GB 3200 MHz
× 1

Motherboard
ASUS WS
X299 SAGE

ASUS WS
X299 SAGE

HP 87E2

Operating
system

Microsoft
Windows 10 Pro
(64-bit)

Microsoft
Windows 10 Pro
(64-bit)

Microsoft
Windows 10 Pro
(64-bit)

CUDA 11.7 11.8 11.8

cuDNN 8.5.0 8.7.0 8.7.0

PyTorch 2.0.0 2.0.1 2.0.1

OpenCV 4.7.0 4.8.0 4.8.0

Python 3.8.16 3.8.17 3.9.18

VS code 1.83.1 1.84.1 1.84.1
FIGURE 8

Evaluation metric score curves of model performance.
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model. Various attention mechanisms were incorporated into the

ELAN-H module, and comparative experiments were conducted to

assess the detection performance for non-green-ripe large citrus.

The results are presented in Table 2.

Table 2 reveals that the introduction of different attention

mechanisms impacts the model’s detection performance to

varying degrees. Regarding performance metrics, YOLOv7

+CBAM exhibits a detection accuracy of 83.8%, marking a 1.2

percentage point improvement over YOLOv7. Thus, it only ranks

second to the YOLOv7+CA model. Compared with the average

accuracy of YOLOv7, that of YOLOv7+CBAM reaches 82.5%,

indicating a 1.2 percentage point increase, whereas that of

YOLOv7+CA is only 81.9%. This finding suggests that YOLOv7

+CBAM excels in capturing citrus image features. Although the

model size and number of parameters of YOLOv7+CBAM

experience a slight increase compared with those of YOLOv7, its

detection accuracy is enhanced. The frame rate of YOLOv7+CBAM

is 86 FPS, satisfying the real-time target detection requirements. We

employed the GradCAM algorithm to generate detection heat maps

for multiripeness citrus images and gain deep insights into the

suitability of the CBAM attention mechanism in citrus fruit

detection. The corresponding detection results are presented in

Figure 9. All heat maps were generated at the same layer above the

detection head of the detect network layer of the model.

Figure 9 shows that different attention mechanisms allocate

varying degrees of focus to citrus fruits, leading to differences in the

detection performance of fruits at various ripeness levels. YOLOv7

+CBAM exhibits the highest attention to citrus fruits with diverse

ripeness, surpassing the attention given by YOLOv7, which allocates

minimal attention to citrus fruits. For green unripe citrus, YOLOv7

distributes attention across the surroundings evenly. Despite the

improvement in the model’s attention to citrus fruits with the

introduction of other attention mechanisms, it still falls short of the

performance achieved by the YOLOv7+CBAM model.

In terms of detection results, YOLOv7+CBAM and YOLOv7

exhibit no misdetections or omissions. By contrast, YOLOv7+CA
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has one omission and one misdetection in ripe citrus detection,

YOLOv7+ECA has two omissions, and YOLOv7+SE and YOLOv7

+SimAM have one omission in ripe citrus detection. In summary,

the CBAM attention mechanism demonstrates superior

performance in detecting multiripeness citrus fruits, particularly

for unripe green citrus. Thus, it maintains high-precision results

with no false or missed detections. Therefore, the CBAM attention

mechanism proves to be well-suited for citrus fruit detection.
3.3 Ablation experiments

We conducted ablation experiments to assess comprehensively

the impact of various enhancement measures on the model’s

detection performance by incrementally introducing these

measures with YOLOv7 as the baseline. The experimental results

are presented in Table 3.

Table 3 reveals that all proposed enhancements in this study

lead to varying degrees of improvement in the model’s detection

accuracy or lightweight characteristics. Compared with the training

set without the use of the fine-tuned training set, the YOLOv7

model with the fine-tuned training set FTRAIN-A exhibits a 2.4%

improvement in P and a 0.9% improvement in mAP. Furthermore,

incorporating the lightweight backbone network EfficientNet-B0

further enhances the model’s detection accuracy and increases its

lightweight profile. Compared with YOLOv7, the model with the

EfficientNet-B0 backbone shows a 2.9% increase in P and a 0.8%

increase in mAP value whilst maintaining only 32.5% and 32.1% of

the model size and number of parameters of YOLOv7, respectively.

The introduction of the ELAN-HC module with the CBAM

attention mechanism leads to a slight increase in model size and a

decrease in frame rate. However, the P and mAP of the model show

significant improvements, reaching 85.7% and 83.1%, respectively,

representing a 3.1% and 1.8% increase compared with those of

YOLOv7. Given these improvements, the YOLOC model with

ACIoU experiences a marginal decrease in detection accuracy by

0.5% but improves in mAP and frame rate by 0.4% and 6

FPS, respectively.

The YOLOC-tiny model, derived through pruning and

retraining on top of YOLOC, excels not only in accuracy but also

in achieving an extremely compact model size. In particular, the P

and mAP of the model are 85.3% and 83.0%, respectively,

representing 2.7% and 1.7% increases compared with those of

YOLOv7. The model size of YOLOC-tiny is 8.4 MB, with only

11.8% and 11.5% of the model size and number of parameters of

YOLOv7, respectively.
3.4 Comparison experiments of
different detectors

YOLOC-tiny was compared with the leading SOTA target

detection models. The experimental results are presented in Table 4.

Table 4 reveals that YOLOC-tiny achieves an accuracy of 85.3%

in detecting multiripeness citrus fruits. This finding indicates that
TABLE 2 Experimental results of incorporating various
attention mechanisms.

Model P/% mAP/% Size/MB
Params/
M

FPS

YOLOv7 82.6 81.3 71.3 36.5 91

YOLOv7
+CA

84.3 81.9 72.5 37.1 86

YOLOv7
+ECA

83.5 82.2 71.3 36.5 90

YOLOv7
+SE

80.8 82.1 72.8 37.3 91

YOLOv7
+SimAM

83.6 82.0 71.3 36.5 89

YOLOv7
+CBAM

83.8 82.5 72.9 37.3 86
All attention mechanisms were implemented in the same position within ELAN-H. CA refers
to coordinate attention, ECA refers to efficient channel attention, and SimAM refers to a
simple and effective attention module.
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YOLOC-tiny outperforms most SOTA models and even surpasses

YOLOC. Additionally, YOLOC-tiny attains an 83.0% mAP, ranking

only second to YOLOC. YOLOC-tiny occupies a mere 8.4 MB of

storage space, making it significantly more lightweight than

YOLOv7x and YOLOv8x. The model’s parameter count is only

4.2 M, rendering it suitable for deployment in edge devices and

resource-limited environments. Furthermore, YOLOC-tiny

achieves a frame rate of 80 FPS, surpassing YOLOv8l and

YOLOv8x. Thus, it is well-suited for real-time performance-

critical scenarios.
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We utilized the previously mentioned model lightweight, frame

rate, and comprehensive performance indexes to analyze the

detection performance of YOLOC series models comprehensively

and thoroughly in complex environments for multiripeness and

multispecies citrus fruits. The comprehensive performance

diagrams of the aforementioned models were plotted, as shown in

Figure 10. Figure 10 shows that YOLOC and YOLOC-tiny exhibit

excellent detection performance for citrus fruits. YOLOC and

YOLOC-tiny demonstrate commendable average detection

accuracies, with YOLOC-tiny being more compact than other
FIGURE 9

Thermograms and detection results of models integrated with various attention mechanisms. The red arrows indicate the locations where the
detection results of different detectors are significantly different.
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models. This compactness contributes to reduced storage

requirements on edge devices. YOLOC-tiny outperforms all other

SOTA models, including YOLOC, in terms of the total score.

Therefore, YOLOC-tiny has significant advantages in various

aspects, including detection accuracy, lightweight design, frame

rate, and overall performance. It exhibits the strongest overall

performance, making it highly suitable for target detection in

citrus orchard scenarios.
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3.5 Comparison experiments in
different environments

We extensively validated the YOLOC and YOLOC-tiny models

across multiple validation subsets, encompassing various scenarios,

to address varying lighting conditions and environmental

complexities. These subsets comprise the test subsets TEST-ANL

and TEST-AWL for diverse lighting conditions, along with the test

subsets TEST-ACE and TEST-ASE representing varying

environmental complexities. Table 5 presents the average

detection accuracies of different SOTA detectors on the respective

test sets.

Table 5 reveals that YOLOC-tiny exhibits notable mAP

performance across all test sets, with impressive results on TEST-

ANL and TEST-ACE. It achieves a substantial advantage on TEST-

ANL, boasting a mAP of 84.0%, slightly below YOLOC’s 84.7%.

This finding suggests that YOLOC-tiny excels in detection under
TABLE 3 Results of ablation experiments.

Model
P
(%)

mAP
(%)

Size
(MB)

Params
(M)

FPS

YOLOv7 82.6 81.3 71.3 36.5 91

YOLOv7+FTRAIN-A 85.0 82.2 71.3 36.5 90

YOLOv7+FTRAIN-A+EfficientNet-B0 85.5 82.1 23.2 11.7 88

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM 85.7 83.1 23.8 12.0 81

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM+ACIoU
+ACIoU (YOLOC)

85.2 83.5 23.8 12.0 87

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM+ACIoU
+LAMP+ACIoU+LAMP (YOLOC-tiny)

85.3 83.0 8.4 4.2 80
TABLE 4 Experimental results of different SOTA models.

Model P/%
mAP/
%

Size/
MB

Params/
M

FPS
Total
Score

YOLOv5n 82.3 80.0 3.6 1.8 97 4.60

YOLOv5s 85.6 79.7 13.6 7.0 91 4.61

YOLOv5m 83.4 80.0 40.1 20.9 92 4.31

YOLOv5l 83.4 78.9 88.4 46.1 84 3.24

YOLOv5x 86.0 79.8 165.0 86.2 70 2.67

YOLOv6n 85.4 81.1 10.0 4.6 24 3.99

YOLOv6s 85.0 81.2 38.7 18.5 20 3.65

YOLOv6m 85.1 82.8 72.5 34.8 23 2.93

YOLOv6l 83.1 83.0 114.0 59.5 22 2.37

YOLOv7-
tiny

80.6 82.1 11.6 6.0 101 4.59

YOLOv7 82.6 81.3 71.3 36.5 91 3.54

YOLOv7x 84.6 81.8 135.0 70.8 86 2.77

YOLOv8n 81.8 81.2 5.9 3.0 114 4.61

YOLOv8s 85.4 81.5 21.4 11.1 117 4.59

YOLOv8m 84.3 81.8 49.5 25.8 103 4.09

YOLOv8l 85.0 81.8 83.5 43.6 79 3.35

YOLOv8x 86.0 81.1 130.0 68.1 62 2.77

YOLOC 85.2 83.5 23.8 12.0 87 4.59

YOLOC-
tiny

85.3 83.0 8.4 4.2 80 4.65
FIGURE 10

Detection performance charts for various SOTA models. The size of
each geometric shape corresponds to the model size, with large
shapes indicating large model sizes. The darkness of the geometric
shape color represents the model parameter score, with dark colors
indicating high parameter counts. The detection precision on the
test set is provided for each model following its respective name.
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regular lighting conditions. On TEST-AWL, the mAP of YOLOC-

tiny is slightly lower than that of some algorithms. However, it still

maintains a high level of performance. YOLOC-tiny achieves mAP

scores of 85.4% and 82.6% on TEST-ASE and TEST-ACE,

respectively, indicating its robustness in complex environments.

These experimental results underscore the strong adaptability and

practicality of YOLOC-tiny across various application scenarios.
3.6 Performance assessment in
practical applications

Comparative experiments for real-world applications involving

the YOLOC, YOLOC-tiny, YOLOv7, and YOLOv7-tiny models

were conducted on ICPR, with deployment tests performed on PC3.

The necessary software for model deployment includes onnx 1.14.0,

onnxruntime-gpu 1.51.1, onnx-simplifier 0.4.33, and tensorrt

8.5.3.1. We initially exported the PyTorch models as general-

purpose network models in the ONNX format. Then, we

exported the ONNX model as a TensorRT model for ICPR

deployment. Specific parameters, such as a confidence threshold

of 0.4, an IOU threshold of 0.5, a model input image size of 640 ×

640, and 32-bit floating-point precision, were set. Detection and
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labeling of images in the TEST-A dataset were performed on PC3

(Figure 11). Key metrics, including inference time, frame rate,

detection accuracy, and the number of correctly detected citrus,

were recorded. The accuracy rate was derived by sampling 29

images from the 290-image TEST-R test set for detection and

manually verifying them multiple times. The detailed results are

presented in Table 6.

Table 6 reveals that the inference times for YOLOC and

YOLOC-tiny are 27.2 and 17.1 ms, respectively. Although slightly

higher than the 12.7 ms of YOLOv7-tiny, the values mentioned are

significantly lower than the 78.1 ms of YOLOv7 (Figure 12A).

YOLOC and YOLOC-tiny achieve frame rates exceeding the 30 FPS

threshold required for the real-time detection needs of the robot,

with YOLOC-tiny reaching an impressive 59 FPS. Although

YOLOv7 demonstrates high detection accuracy, its FPS falls far

below real-time requirements (Figure 12B). YOLOC-tiny detects

3852 citruses, outperforming the other three models (Figure 12C).

This finding indicates its ability to capture targets comprehensively.

Moreover, YOLOC-tiny exhibits superior real-time performance in

citrus fruit detection. The detection accuracies of YOLOC and

YOLOC-tiny are 92.9% and 92.8%, respectively, slightly lower

than the detection accuracy of YOLOv7 (93.8%) but higher than

that of YOLOv7-tiny (91.5%). This finding suggests that both

models boast high detection accuracy and offer fast inference

speeds and a good balance (Figure 12D). These experimental

results further confirm the exceptional performance of the

YOLOC series in real robotics applications.
4 Discussion

Detecting and localizing fruits are crucial for the agronomic

management of fruit crops, including yield prediction and

automated harvesting (Fu et al., 2020a; Lu et al., 2023). Fruit

harvesting operations typically account for 25% of the total

production cost and 50% of the total labor force (Castro-Garcia

et al., 2019). Developing lightweight, high-precision detection

models suitable for deployment on robots with limited

computational power can ensure operational efficiency in

complex orchard environments (Liu et al., 2023; Xu et al., 2023).

This also can provide stable visual information for early yield

prediction and fruit thinning operations.

Although excellent algorithms for detecting ripe fruits such as

citrus fruits (Xu et al., 2023), apples (Wang and He, 2021), and

kiwifruit (Fu et al., 2021), and for detecting apples at different

growth stages (Ma et al., 2024), have been proposed, rapid detection

of multi-variety and multi-ripeness citrus fruits in complex

orchards remains challenging. Additionally, balancing detection

performance, speed, and model parameters on edge devices with

limited computational power has yet to be achieved satisfactorily.

Based on engineering experience and experimental results, we

compared and analyzed various SOTA object detectors. We selected

YOLOv7 as the base network and implemented a series of

optimizations and improvements, including using a lightweight

backbone network and embedding the attention mechanism

CBAM. We also designed metrics to comprehensively evaluate
TABLE 5 Detection accuracy of SOTA detectors in different
validation subsets.

Model
mAP/%
(TEST-
ANL)

mAP/%
(TEST-
AWL)

mAP/%
(TEST-
ACE)

mAP/%
(TEST-
ASE)

YOLOv5n 81.1 90.6 79.3 86.0

YOLOv5s 80.9 91.7 79.2 83.9

YOLOv5m 81.0 89.4 79.4 83.5

YOLOv5l 80.1 90.1 77.4 83.4

YOLOv5x 80.4 90.9 79.1 83.5

YOLOv6n 82.1 87.3 82.1 82.1

YOLOv6s 82.2 90.8 82.2 82.2

YOLOv6m 83.8 85.8 83.8 83.8

YOLOv6l 83.9 89.0 83.9 83.9

YOLOv7-
tiny

83.0 88.5 81.9 85.1

YOLOv7 82.0 92.4 81.1 84.5

YOLOv7x 82.8 90.7 81.6 84.2

YOLOv8n 81.9 91.6 80.4 84.8

YOLOv8s 81.7 91.0 80.9 83.9

YOLOv8m 82.6 91.0 81.4 85.0

YOLOv8l 82.8 90.8 81.3 85.3

YOLOv8x 81.5 91.5 80.2 84.6

YOLOC 84.7 91.3 83.9 84.7

YOLOC-
tiny

84.0 90.7 82.6 85.4
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the model’s detection performance on edge devices with limited

computational power (see Equations 11–14). Consequently, we

proposed the lightweight detection model YOLOC-tiny.

While YOLOC-tiny demonstrated excellent detection performance

in tasks involving multi-variety and multiripeness non-green-ripe

citrus fruits, several limitations remain. First, as shown in Figure 9 of

the revised manuscript, the model’s detection capability for citrus fruits

that are either distant or severely occluded is insufficient. Although

these fruits can be detected as the robot moves, detecting small, distant

citrus fruits and severely occluded citrus fruits requires further

attention. Second, in distinguishing between different citrus varieties

and maturities, YOLOC-tiny’s detection accuracy is lower compared to

algorithms that detect single-variety, single-maturity fruits (Fu et al.,

2019; Apolo-Apolo et al., 2020a). As shown in Table 5, the mAP of

YOLOC-tiny is slightly lower than that of YOLOv5n in simple

environments, although YOLOC-tiny outperforms YOLOv5n in

complex orchards and varying lighting conditions.
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Moreover, in this study, we only verified the impact of adding

pure citrus image datasets on enhancing the detection performance

of citrus fruits in unstructured environments, without conducting

quantitative and qualitative research. Considering the basic

conditions of the robot’s operating environment, we used only

seven data augmentation methods. Furthermore, transformers have

proven effective in large language models and have recently been

applied to object detection tasks, suggesting promising avenues for

improving model performance (Zhu et al., 2022; Yang et al., 2023).

We also note the recent advancements with YOLOv9

and YOLOv10.

We will further expand the dataset, enrich the images with

various scenes and lighting conditions, or increase the image

resolution. We will explore the effectiveness of generative

adversarial networks and MixUp in robot applications in future

research. Therefore, future work will focus on enriching the

dataset and incorporating more efficient network architectures

and modules to further enhance the model ’s detection

performance and lightweight characteristics. In our future

research, we plan to optimize the model structure further to

improve the detection performance of citrus fruits in low-

light environments.

To address these issues, we will expand the dataset, enhance

image diversity with various scenes and lighting conditions, and

increase the image resolution (Wang et al., 2022b). Additionally, we

will explore the effectiveness of generative adversarial networks and

MixUp in dataset augmentation. Future work will focus on

incorporating more efficient network architectures and modules

to enhance the model’s detection performance and lightweight

characteristics. We also plan to optimize the model structure to

improve the detection of citrus fruits in low-light environments.
FIGURE 11

Detection results of various models in dark, complex environments.
TABLE 6 Results of robot application experiments.

Model YOLOv7
YOLOv7-

tiny
YOLOC

YOLOC-
tiny

Inference
time/ms

78.1 12.7 27.2 17.1

FPS 13 79 37 59

Accuracy/% 93.8 91.5 92.9 92.8

Number
of citrus

3723 3801 3758 3852
The accuracy values in the table were calculated by comparing the model’s output results with
the manual detection results.
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5 Conclusions

We introduce a generalized lightweight detection model,

YOLOC-tiny, tailored for large non-green-ripe citrus of different

varieties with multiripeness in complex environments by optimizing

the network structure and reducing the model size to enhance

computational efficiency. Our methodology begins with the

curation of image datasets featuring citrus fruits in various

environments and ripeness stages, encompassing navel orange,

Ehime Jelly orange, and Harumi tangerine. YOLOC-tiny utilizes

the EfficientNet-B0 feature extraction backbone, streamlining

model parameters whilst augmenting feature extraction capabilities.

Furthermore, it integrates a spatial and channel hybrid attention

mechanism, CBAM, to enhance access to contextual information,

intensify focus on diverse citrus fruits, and achieve superior detection

performance. Additional parameter reduction is achieved by

implementing the LAMP strategy.

The key findings from our study include the following:

(1) Ablation experiments confirm the effectiveness of our

enhancement measures in improving network performance for

non-green-ripe citrus fruit detection. (2) Compared with
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TRAIN-A, YOLOv7 based on the F-TRAIN-A dataset exhibits a

2.4% and 0.8% improvement in P and mAP, respectively. This

finding validates the benefit of replacing citrus images in real scenes

with a small number of pure citrus images in complex environments

to enhance model detection performance. (3) Compared with other

SOTA models, such as YOLOv8, YOLOC-tiny surpasses real-time

detection requirements with an impressive frame rate. It also

demonstrates superior detection performance. YOLOC-tiny

achieves an 85.3% P and an 83.0% mAP at a frame rate of 80

FPS, with a parametric count of merely 4.2 M. (4) In a real-world

deployment with a citrus-picking robot, ICPR, YOLOC-tiny attains

92.8% accuracy at a frame rate of 59. Thus, YOLOC-tiny provides

real-time, accurate information on multiripeness and diverse citrus

fruits for orchard robots.
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FIGURE 12

Detection results of different models deployed on ICPR. (A) Inference time of each model. (B) FPS of each model. (C) Number of citrus fruits
detected. (D) Accuracy of each model.
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