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1 Introduction

Artificial light plant factories ensure year-round stable vegetable production, and

vertical multi-cultivation racks can boost vegetable yields (Toyoki et al., 2020). Seedling

diagnosis technology is crucial for early identification and removal of weak seedlings,

aiming to cut costs in plant factories. This technology relies on seedling biological data to

predict growth and effectively manage underperforming seedlings.

Chlorophyll a fluorescence (ChlF) is a long-wavelength signal emitted by plants

following light absorption during photosynthesis, directly associated with photosynthetic

efficiency (Huipeng, 2023). ChlF is transient and diminishes over time after excitation.

Cameras can capture different parameterized images of ChlF depending on excitation

wavelength, intensity, and mode (Yao et al., 2018). Parameters like photosynthetic

quantum yield (FPSII), photochemical quenching (qP), and Photosystem II electron

transport rate (ETR(II)) are vital for assessing plant productivity. Higher qP, FPSII, and

ETR(II) in lettuce indicate greater light utilization efficiency and higher plant yield.

Therefore, ChlF imaging is widely used for monitoring photosynthetic performance in

plants (Thoren et al., 2010). ChlF imaging technology can assess heterogeneous distribution

of photosynthetic activity Lichtenthaler et al. (2013), Xia et al. (2018). This includes early

detection of herbicide application, nutrient deficiency, drought stress, photorespiratory

mutants, improved photosynthesis, freezing tolerance, insect herbivory, leaf fungal

infection, and ozone damage (Lawson and Vialet-Chabrand, 2018). Therefore, it is

necessary to collect ChlF images to realize the study of plant growth stress and plant

yield estimation.

At present, there are few plant chlorophyll fluorescence datasets, with most focusing on

stress identification in Arabidopsis crops. To enable the chlorophyll fluorescence system to

track photosynthesis in a single leaf, Ruiz et al. (2024) proposed a chlorophyll fluorescence

dataset for Arabidopsis plants at different developmental stages and used an improved

Mask R-CNN network to segment Arabidopsis leaves, accurately tracking changes in leaf

photosynthesis. The Computer Vision Problems in Plant Phenotyping (CVPPP) dataset
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consists of 783 RGB images of wild Arabidopsis and tobacco plants,

used for testing algorithms such as plant segmentation, leaf

segmentation, and leaf counting (Minervini et al., 2016).

Additionally, Rousseau et al. (2013) collected 49 fluorescence

images of Arabidopsis inoculated with sterile water, naming it the

‘Real-Fluo-Healthy’ dataset. However, this dataset only contains

images of healthy Arabidopsis and cannot provide a basis for

disease diagnosis. Therefore, Rousseau et al. further used

Arabidopsis plants inoculated with the DC3000 bacterial strain as

the research object, performing chlorophyll fluorescence imaging

on each culture dish every two days to obtain TIFF images of Fo,

Fm, and Fv/Fm for judging the status of diseased Arabidopsis. In

addition, Pavicic et al. (2021) proposed an annotated dataset of

diseased Arabidopsis fluorescence images and a threshold

segmentation algorithm to segment the normal and diseased leaf

areas in the images for disease diagnosis. Currently, there is a lack of

similar chlorophyll fluorescence datasets for hydroponic lettuce

research, which mainly uses RGB image data to evaluate lettuce

growth status. Islam et al. (2024) used an improved Mask R-CNN

method to detect and segment lettuce seedlings from the

background of the seedling growth tray and estimate seedling

growth. Abidi et al. (2024) collected an RGB image dataset of

nutrient deficiencies in hydroponic lettuce and proposed a deep

learning image processing method to classify these deficiencies.

However, RGB images can only capture superficial color and

texture information, making it difficult to obtain internal

physiological parameters of lettuce leaves and accurately judge

lettuce growth status. Therefore, this paper collects a ChlF dataset

of hydroponic plants and tests region of interest extraction

algorithms for fluorescence images, providing data for accurately

estimating lettuce seedling status using ChlF technology.

Hydroponically grown lettuce often uses sponges for anchorage,

making it more challenging to extract the fluorescent area compared

to plants grown in substrates, due to the common presence of

microbes or green algae within the cultivation sponges (Weizhong,

2023). During the capture of ChlF systems, the fluorescence from

microbes or green algae present in the cultivation sponges is also

captured, resulting in minimal differences between them in grayscale

images taken under blue light, affecting the extraction of areas of

interest in the ChlF images of hydroponic lettuce seedlings. In

microbial fluorescence images, such as that of Chlamydomonas

reinhardtii, exposure to excitation light produces a lower level of

Non-Photochemical Quenching (NPQ). In the chloroplasts of algae

like Chlorella or Chlamydomonas, effective carbohydrate metabolism

decomposition leads to a much reduced redox balance compared to

plant chloroplasts (Alric, 2010). Differences exist in the fluorescence

parameters under ChlF induction kinetics between lettuce and green

algae (Papageorgiou et al., 2007). However, the threshold

segmentation algorithm cannot determine the category of the area.

In practice, the grayscale of the sponge block of green algae in the

initial fluorescence image is very similar to that of the seedling

canopy, leading to mis-segmentation of areas with similar

grayscales. Given the excellent feature extraction and generalization

performance of deep learning algorithms in image recognition, a deep

learning semantic segmentation algorithm is considered for extracting

the seedling canopy area from a single fluorescence image. Testing has
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shown that fusing multiple fluorescence images can improve the

extraction accuracy of the seedling canopy area, effectively reduce

background noise interference, and more accurately extract the

fluorescence values. Image fusion, by integrating information from

multiple sources with complementary datasets to enhance a single

image (Qu et al., 2024), makes the generated images more detailed

and reliable through the combination of key information from

multiple source images (Karim et al., 2023). At this stage, it has

been proposed to introduce accuracy of advanced visual tasks such as

detection, recognition, and segmentation into the design of the loss

function during the fusion phase (Liu et al., 2023; Ma et al., 2023),

guiding the fusion process from a decision-making level to achieve

better segmentation results (James and Dasarathy, 2014).

This article introduces the Hydroponic Lettuce Seedling ChlF

Dataset. The dataset comprises various transient images of ChlF

from different cultivation states, with annotations marking the

positions of the entire lettuce canopy projection. The aim is to

accelerate the development of algorithms for extracting ChlF areas

in hydroponically grown lettuce seedlings. The data for this article is

publicly released at https://github.com/Yiyu-Jiang/CFIHL. For user

convenience, the original.igr data files (which can be exported as

chlorophyll images, tables, documents) are provided, along with the

corresponding annotation JSON files.

The primary contributions of this dataset are summarized

as follows:
(1) The CF-imager has provided a ChlF image set of the whole

hydroponic lettuce seedlings, with the dataset being

approximately 1.3 G in size. The dataset includes more

than 300 sets of images, each set containing ten transient

ChlF images. The dataset offers a variety of physiological

images of plants and annotations for individual seedlings.

(2) Compared to the existing lettuce seedling datasets, this

paper has conducted tests with multiple image algorithms,

comparing threshold segmentation and deep learning

algorithms, as well as the segmentation effects of images

before and after fusion. The fused image can extract the

ChlF value of lettuce more accurately, and can further

accurately obtain parameters such as photochemical

quantum yield, thereby reflecting the photosynthetic

utilization efficiency and lettuce yield.
2 Materials and methods

2.1 Data acquisition

Lettuce was cultivated in the artificial light plant factory of

China Agricultural University in 2022 and 2023. During the

cultivation of hydroponic lettuce, we used an LED lamp (WR-

16W) with an R ratio of 1.2, a light intensity of 200 µmolm−2s−1, and

a photoperiod of 16 hd−1. The temperature during the light period

was 22 ± 1°C, with a relative humidity of 70 ± 5% and a CO2

concentration of 800 ± 50µmolmol−1. During the dark period, the

temperature was 18 ± 1°C, the relative humidity was 65 ± 10%, and
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the CO2 concentration was not controlled. The seedling raising

period for hydroponic lettuce was 20 days. The nutrient solution

used was the Yamazaki lettuce formula Yan (2019), with an EC of

1.0-1.2 mScm−1 and a pH adjusted to 6.0-6.5 mol/L.

In this paper, the seedlings grown for about 21 days were placed

in the CF-Imager(Technologica, UK) instrument, then

photographed, as shown in Figure 1A. The CF-Imager system

uses a high-performance AVT Stingray SXGA+ low-noise line

scan CCD camera with a resolution of 1392 × 1040. When

collecting ChlF images, the camera needs to respond quickly,

which sacrifices some resolution. Therefore, the image resolution

was set to 696 × 519. The imaging frequency is 50 FPS, and the

readout noise is less than 12e. This ChlF imaging system used 470

nm blue light as the excitation light. Based on the principles of slow

fluorescence kinetics, the detection light was set to 5 µmolm−2s−1,

the actinic light to 200 µmolm−2s−1, and the saturating pulse light to

6000 µmolm−2s−1 with a duration of 800 ms, establishing the

excitation process (Daquan, 2002).

The measurement principle is illustrated in Figure 1B. After 30

minutes in the dark, a fully dark-adapted leaf was exposed to

measuring light. Within 1-2 minutes, as the fluorescence level

stabilized, the minimum initial fluorescence Fo image was

obtained. Then, a saturating pulse light was applied and turned

off after one pulse to obtain the maximum fluorescence image Fm.

Therefore, the fluorescence parameter image Fv/Fm (Fv=Fm-Fo)

can be calculated, representing the potential photochemical

efficiency of PSII.

Secondly, the actinic light of 200 µmolm−2s−1 was turned on to

induce leaf photosynthesis. After a few minutes, the leaf’s

photosynthetic rate reached a steady state, and the steady-state

fluorescence(Fs) image was obtained. At this point, a pulse of

saturating light was applied and then turned off to obtain the

maximum fluorescence image under light Fm’. The actual

quantum efficiency of PSII(FPSII) and the non-photochemical

quenching coefficient (NPQ), defined as (Fm -Fm’)/Fm’, were

then calculated.

Using the method described above to stimulate fluorescence in

vegetables, various ChlF transient images were obtained, as shown

in Figure 1C, all with a resolution of 696 × 519. The ChlF images are

essentially grayscale images with a single channel. For intuitive

description, this paper maps the grayscale values of some ChlF
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images to the RGB color space (Oxborough, 2004), rendering them

as pseudocolor images.

The main ChlF parameters and descriptions are shown

in Table 1:
2.2 Data structure and annotation

The CF-Imager can capture 10 types of images: the initial

grayscale image (Igi), Fo, Fm, Fv/Fm, Fm’, Fs, NPQ, Fv’/Fm’,FPSII

and qP. Detailed information about the dataset is shown in

Figure 2A. To help users differentiate the fluorescence images of

seedlings in various states, the raw fluorescence data are stored in

separate folders in chronological order, totaling approximately 270

sets of image data. Additionally, to enrich the dataset and

investigate the changes in ChlF parameters under different growth

conditions of lettuce. This dataset collected images under three

distinct environments: nutrient deficiency (only ultrapure water, no

nutrients), extremely low light intensity (only 10 - 20 µmolm−2s−1

ambient light), and abnormal EC and pH (EC is about 900 mS/cm,

pH is about 7.5 mol/L).

Image segmentation aims to accurately extract the ChlF

parameters of the seedling canopy. Image annotation is a

prerequisite for training deep learning-based image segmentation

models. It provides the training model with prior knowledge of the

seedling canopy area within the image. This prior knowledge helps

establish the main parameters of the model, enabling the

recognition of similar images. This study uses LabelImg (https://

github.com/tzutalin/labelimg) to annotate the seedling canopy area

in the fluorescence images of the dataset. The seedling canopy area

is labeled as ‘lettuce’, generating a label mask image and a JSON file

for further neural network model training, as shown in Figure 2B.
2.3 Image fusion algorithm and semantic
segmentation algorithm test

2.3.1 Algorithm introduction
This paper tests extraction algorithms for various lettuce

canopy projection areas using the constructed ChlF transient

image dataset. It eliminates fluorescence interference caused by
FIGURE 1

Details of data acquisition. (A) ChlF imaging equipment. (B) Schematic diagram of ChlF measurement principle. (C) ChlF result images.
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microorganisms or green algae in the background sponge and

explores effective methods to accurately obtain ChlF parameters

of the seedling canopy. This provides a basis for further evaluation

of lettuce growth status.

First, a comparison between threshold segmentation and deep

learning image segmentation algorithms was conducted on a single
Frontiers in Plant Science 04
ChlF image. Early research on image segmentation mainly focused

on threshold segmentation methods, where one or several threshold

values divide the grayscale histogram into several classes. It was

believed that the grayscale value of the seedling canopy was

consistent and distinct from the background area. The existing

fluorescence systems mainly use threshold segmentation (Lawson

and Vialet-Chabrand, 2018). However, threshold segmentation

algorithms cannot accurately categorize different areas. In

practice, the grayscale of green algae on the sponge is very similar

to that of the seedling canopy in the initial fluorescence grayscale

image, leading to mis-segmentation. Therefore, this paper

introduces a more adaptable deep learning segmentation

algorithm. Deep learning has been widely used in image

recognition due to its excellent feature extraction and

generalization capabilities, achieving good segmentation results

(Li et al., 2021). Among them, the DeepLab series is one of the

most popular image segmentation models (Minaee et al., 2022).

Therefore, this paper selects the DeepLabv3+ network (Chen et al.,

2018), which has the best segmentation performance in the

DeepLab series, as the deep learning semantic segmentation

test algorithm.

Then, the traditional fusion algorithm and the SeAFusion

algorithm based on advanced visual tasks were tested on multiple

images, and the deep learning segmentation algorithm was used to

segment and compare the images before and after fusion. In

addition to single image segmentation, this paper also tested

multiple image fusion methods. Image fusion technology can be

divided into several types, namely remote sensing image fusion,

multi-exposure image fusion, and visible light and infrared image

fusion. Among these, visible light and infrared image fusion is one

of the most commonly used types. The main purpose of visible light

and infrared image fusion is to extract the detail information from

visible light and the contrast information from infrared image,
FIGURE 2

Dataset format and image annotation. (A) Folder structure for dataset. The term <date> refers to the time of the acquisition of a dataset, while the
term <index> identifies each piece of data. (B) Example of image annotation.
TABLE 1 Commonly abbreviated and described ChlF parameters.

Parameter Formula Description

PSII \

Photosystem II: it is a photosynthetic unit in
the thylakoid membrane that contains two
light-harvesting complexes and a light
reaction center.

Fo \ Minimum initial fluorescence

Fm \ Maximum fluorescence

Fm’ \ Maximum fluorescence under light

Fs \ Steady state fluorescence

NPQ Fm/Fm’-1
Non-photochemical quenching: estimates the
rate constant for heat loss from PSII.

Fv/Fm (Fm-
Fo)/Fm

Maximum quantum efficiency of
PSII photochemistry.

Fv’/Fm’
(Fm’-
Fo’)/Fm’

Maximum efficiency of PSII photochemistry in
the light, if all centers were open.

FPSII

(Fm’-
F’)/Fm’

PSII operating efficiency: the quantum
efficiency of PSII electron transport in
the light.

qP
(Fm’-Fs)/
Fm’-Fo’

Photochemical quenching: relates PSII
maximum efficiency to operating efficiency.
Non-linearly related to proportion of PSII
centers that are open. See qL.
This list is only used to identify the most common parameters, as detailed in the review
(Murchie and Lawson, 2013).
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which is similar to the goal of fluorescence image fusion. Therefore,

this paper selected four recently released image fusion algorithms

CNN, IFEVIP, LatLRR, MST-SR (Zhang et al., 2020).

However, these fusion algorithms primarily focus on the visual

quality and statistical indicators of the fused image, while ignoring

the needs of advanced visual tasks (i.e. classification, localization,

detection and segmentation). Therefore, this paper tested the image

fusion algorithm named SeAFusion (Tang et al., 2022) combined

with segmentation tasks. The main concept of the SeAFusion

algorithm is to generate a fused image by passing the source

image through a fusion network. Then inputting the fused image

into a segmentation network to obtain the segmentation result,

where the segmentation network used in the SeAFusion algorithm

is DeepLabv3+.

2.3.2 Image segmentation evaluation indicators
This study uses Precision, Recall and intersection over union

(IoU) as evaluation indicators for training target detection models.

The range of these three evaluation metrics is [0, 1], the detailed

descriptions are provided in Table 2. In Table 2, ‘TP’ represents true

positives, indicating the number of samples correctly classified as
Frontiers in Plant Science 05
positive. ‘FP’ represents false positives, indicating the number of

samples incorrectly classified as positive. ‘FN’ represents false

negatives, indicating the number of samples incorrectly classified

as negative.

2.3.3 Implementation details
All models in this study were trained on a single GPU. The

hardware configuration for training and testing the network models

includes an i9-12900K CPU, NVIDIA GeForce RTX 3070 GPU, and

32GB DDR4 RAM. The dataset was randomly divided into training,

test, and validation sets in an 8:1:1 ratio. The input size of each

fluorescence image is 696 × 519 pixels. The DeepLabv3+ algorithm

(Yu et al., 2024) sets the number of iterations (Epochs) to 300 times,

with an initial learning rate of 0.001 and a batch size of 4. SGD is used

as the optimizer, with a weight decay of 0.0001 and a momentum of

0.9. The training weights are verified and saved every 5 iterations.
3 Result

In this paper, the automatic threshold segmentation method

(Zhao et al., 2023) and the deep learning DeepLabv3+ network are

used for the initial grayscale image (Igi), photochemical quantum

yield (FPSII) and maximum fluorescence (Fm) images. The

segmentation results are shown in Figure 3A. Visualizing the

segmentation results allows us to intuitively assess the accuracy of

each algorithm in segmenting the edges of lettuce seedlings. The

green areas in the figure indicate non-canopy areas mistakenly

identified as canopy areas, while the magenta areas indicate canopy

areas not recognized by the segmentation algorithm.

The image segmentation results indicator results are shown in

Table 3. Among them, the threshold segmentation algorithm has

the best segmentation effect for the Fm parameterized image with

an IoU of 84.89%, but there is still a 15% error with the actual

canopy. The deep learning DeepLabv3+ network has higher

segmentation accuracy in most images than the threshold
TABLE 2 Image segmentation algorithm evaluation indicators.

Parameter Formula Describe

Precision

TP
TP + FP

� 100%
Precision indicates the percentage of
correctly identified pixels among the
total number of identified pixels.

Recall

TP
TP + FN

� 100%
Recall indicates the percentage of
correctly identified pixels that meet the
requirements to the total number of
pixels in the test set.

IoU

TP − FP
TP + FN

� 100%
IoU (Intersection over Union) is the
ratio of the number of elements in the
intersection of two sets to the number of
elements in their union.
FIGURE 3

(A) Comparison of segmentation results of different fluorescence images using different segmentation algorithms. (B) Results of fusion algorithms
using 5 other infrared and visible light fusion algorithms. (C) Deep learning image segmentation results before and after fusion.
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segmentation method, and the best segmentation effect is for the

Igi image, with an IoU of 87.27%, an increase of about 2%.

Automatic threshold segmentation can roughly distinguish the

seedling canopy from the background. However, the presence of

green algae can cause the background threshold to be similar to

that of the seedling, leading to incorrect segmentation. In

contrast, deep learning methods automatically extract features

and are wellsuited for segmenting complex scenes with similar

pixels. Consequently, deep learning has shown improved

segmentation effectiveness compared to simple grayscale

threshold segmentation.

This study uses the DeepLabv3+ algorithm to segment the

seedling canopy area of fluorescence images. The Precision,

Recall, and IoU are slightly improved compared to threshold

segmentation, but the IoU is still below 90%. Therefore, it is

necessary to consider other segmentation methods to improve the

accuracy of seedling canopy segmentation. Considering the

complementarity between fluorescence images, this study first

fuses the ChlF transient image set. Then inputs the fused image

into the segmentation network for canopy segmentation.

The fusion results of Igi and FPSII for the same seedling using

four popular fusion algorithms (Zhang et al., 2020) and the

SeAFusion algorithm are shown in Figure 3B. The segmentation
Frontiers in Plant Science 06
visualization results of the DeepLabv3+ network before and after the

fusion of three seedlings are shown in Figure 3C. This paper uses

indicators such as entropy (EN), standard deviation (SD), spatial

frequency (SF) and sum of difference correlations (SCD) to

characterize the effect of image fusion (Zhang et al., 2019). The

higher EN and SD indicate that the method can better preserve the

source image. These images contain a large amount of information

and have high pixel contrast (Liu et al., 2023).The comparison results

of each fusion algorithm are shown in Table 4. Among them, the

fusion image texture information obtained by the CNN, IFEVIP,

LatLRR, and MST_SR algorithms has a greater loss. The fused image

obtained by the SeAFusion algorithm not only ensures the contrast

between the seedling canopy and the sponge block, but also fully

retains the seedling texture. Combined with the visualization results

in Figure 3B, the SeAFusion algorithm in Table 4 has higher AG, SD,

and EN parameter values and clearer edges compared to other fusion

algorithms from a visual perspective.

Finally, to verify that the fused image segmentation effect is

better, this paper uses the Deeplabv3+ algorithm to compare the

segmentation results of the fused images of the two fusion methods

(Igi is fused with FPSII and Fm images respectively), and the results

are shown in Table 5. Compared with the segmentation results in

Table 3, the fusion Precision, Recall and IoU ratio parameters are

increased by 0.25%, 0.35% and 0.56% respectively, which is helpful

for the accurate extraction offluorescent areas of interest such as the

lettuce canopy. Among them, the fluorescent image segmentation

results of three seedlings are shown in Figure 3C. There are many

wrongly segmented areas (green and magenta areas) in the seedling

canopy segmentation using the Deeplabv3+ algorithm without

image fusion, while the wrongly segmented areas (green and

magenta areas) are significantly reduced after fusing Igi and FPSII.

This is because the SeAFusion algorithm transmits the semantic

information required for high-level visual tasks (segmentation)

back to the fusion network, thereby enabling the fusion network

to effectively retain the semantic information in the source image.
TABLE 3 Comparison of image segmentation results.

Algorithm Precision/
%

Recall/% IoU/%

Threshold
segmentation

Igi
FPSII

88.74
86.00

99.36
88.95

83.02
77.69

Fm 86.82 97.45 84.89

Deeplabv3
+ algorithm

Igi
FPSII

89.57
83.80

97.13
93.36

87.27
80.93

Fm 85.81 96.94 83.55
TABLE 4 Fusion algorithm comparison.

Indicators
Algorithm

AG SF SD SCD Qabf EN

CNN 1.63 16.37 6.16 NaN1 0.98 1.35

IFEVIP 1.76 21.22 6.17 1.70 0.67 1.23

LatLRR 1.93 25.52 6.17 1.72 0.40 0.93

MST-SR 1.63 16.37 6.16 NaN1 0.98 1.35

SeAFusion 3.11 0.054 9.23 1.62 0.49 3.76
1NaN (Not a Number) is a value in computer science representing an undefined or unrepresentable value.
TABLE 5 Comparison of image segmentation results.

Indicators
Image collection

Precision/% Recall/% IoU/%

Igi and FPSII images are fusioned 95.35 96.17 91.86

Igi and Fm images are fusioned 95.60 96.52 92.42
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4 Conclusion

This paper presents a ChlF dataset of hydroponic lettuce

seedlings, featuring diverse transient images under various cultural

conditions. Additionally, the study compares the effectiveness of the

threshold segmentation algorithm with the deep learning-based

Deeplabv3+ algorithm for extracting the seedling canopy. Owing to

its superior feature extraction capability, the Deeplabv3+ algorithm

outperforms the threshold segmentation method in various

fluorescence parameterized images. However, its IoU score remains

below 90%. Consequently, various image fusion algorithms were

tested, and the fused images were semantically segmented using the

Deeplabv3+ algorithm. The results indicate that the fused images

provide better segmentation of the lettuce canopy. The dataset

introduced in this paper supports the evaluation of lettuce growth

status based on ChlF data and offers methods for accurately

extracting fluorescence image parameters of lettuce.
5 Discussion

Inspired by the Arabidopsis dataset, this paper proposes a new

hydroponic lettuce seedling ChlF dataset to address the lack of

similar datasets. Additionally, the paper deeply analyzes the issue of

extracting plant canopy areas from ChlF images in the dataset. The

ChlF system captures both lettuce and green algae fluorescence

simultaneously, with the initial fluorescence image showing similar

values for the seedling canopy and the background. Therefore, this

paper uses the deep learning Deeplabv3+ algorithm to leverage its

powerful feature extraction capabilities to improve the

segmentation of the seedling canopy.

However, due to limited information in a single image, the paper

also considers the fluorescence value differences between the seedling

canopy and the background, adopting canopy segmentation after

image fusion. Further testing of multiple image fusion algorithms

revealed that the fused images provided better segmentation of the

lettuce canopy. Thus, using complementary information from

different fluorescence images improves the segmentation of the

seedling canopy’s edge contours.

There are some limitations in this study. For example, only

some image fusion methods were tested during image fusion, and

all fusion combinations were not enumerated due to the limited

length of the article. Only two fluorescence parameter images were

considered as input, and multiple image inputs were not considered.

The fusion algorithm tested in this study is designed for merging

infrared and visible light. It is recommended to design a fusion

method suitable for the fusion of multiple fluorescence images in

the future to help improve the acquisition of ChlF values. In

addition, for the current dataset, future research should further

expand the sample range and explore applications in different

objects and scenarios such as plant mesophyll and vein

segmentation, and segmentation of different types of cells in

fluorescence images, in order to prove that the fusion of different

fluorescence images has a wide range of applications and is worthy

of in-depth research.
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