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Cassava (Manihot esculentaCrantz) production and productivity in Africa is affected

by two viral diseases; cassava mosaic disease (CMD) and cassava brown streak

disease (CBSD). Induced mutagenesis of totipotent/embryogenic tissues or in vitro

plantmaterial can lead to the generation ofCMDand/orCBSD tolerantmutants. To

massivelyproducenon-chimericplants timelyandwith less labor, totipotentcells or

tissues are a pre-requisite. This study aimed to determine the effect of gamma

radiation on the proliferation and growth of friable embryogenic callus (FEC) and in

vitro nodal cuttings respectively. To obtain FEC, 2-6 mm sized leaf lobes of nine

cassava genotypes were plated on Murashige and Skoog (MS) basal media

supplemented with varying levels (37, 50, 70, 100) mM of picloram for production

of organized embryogenic structures (OES). The OES of five cassava genotypes

(Alado, CV-60444, NASE 3, NASE 13 and TME 204) were crushed and plated in

Gresshoff and Doy (GD) basal media in combinationwith the amino acid tyrosine in

varying concentrations for FEC production. FEC from five cassava genotypes and

in vitro nodal cuttings of nine genotypes were irradiated using five different gamma

doses (0,5, 10, 15, 20and25Gy) at adose rateof81Gy/hr. The lethal dose (LD)50was

determined using the number of roots produced and flow cytometry was done to

determine the ploidy status of plants. The highest production of OES was noted in

Alado across varying picloram concentrations, while TME 204 obtained the highest

amountofFEC.The irradiatedFECgraduallydiedandby28dayspost irradiation,FEC

from all five cassava genotypes were lost. Conversely, the irradiated in vitro nodal

cuttingssurvivedandsomeproduced roots,whileothersproducedcallus. TheLD50
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based on number of roots varied from genotype to genotype, but plants remained

diploid post-irradiation. Accordingly, the effect of gamma irradiation on Ugandan

cassava genotypes (UCGs) was genotype-dependent. This information is

foundational for the use of in vitro tissues as target material for cassava

mutation breeding.
KEYWORDS

cassava genotypes, gamma radiation, friable embryogenic callus, in vitro nodal cuttings,
mutation induction
Introduction

Cassava (Manihot esculenta Crantz) is an important dietary

carbohydrate source for approximately 800 million people in the

tropics. In Uganda, it serves as food security and an income

generation crop for both the rural and urban populations. The

crop is highly heterozygous, with low pollen fertility, low fruit set

and a long breeding cycle (Ceballos et al., 2004; Bull et al., 2017;

Ceballos et al., 2020). Cassava production is also highly affected by

two viral diseases: cassava brown streak disease (CBSD) and cassava

mosaic disease (CMD). CBSD is caused by two single-stranded

RNA viruses, Cassava brown streak virus (CBSV) and Ugandan

cassava brown streak virus (UCBSV) of the family Potyviridae and

genus Ipomovirus (Mbanzibwa et al., 2009; Monger et al., 2010;

Winter et al., 2010). CMD is caused by cassava mosaic

geminiviruses (CMG) of the family Geminiviridae and genus

Begomovirus (Legg and Thresh, 2000; Tembo et al., 2024), are

single-stranded DNA bipartite CMGs. The two diseases are

transmitted by the whitefly (Bemisia tabaci) (Maruthi et al., 2005;

Mware et al., 2009), and can result in 100% yield losses (Alicai et al.,

2007). The diseases are also spread through the use of infected

planting materials (Patil et al., 2015; Robson et al., 2024).

The symptoms associated with CBSD in cassava are; leaf

chlorosis, brown streaks on stems, and brown necrosis on storage

roots, resulting in a decrease in root weight and starch content,

ultimately, root yield and root quality (Hillocks and Jennings, 2003;

Sheat et al., 2019). In the case of CMD, the storage root yield or

starch content is reduced due to the chlorotic and mottled nature of

the leaves affecting photosynthesis in the crop (Elegba et al., 2013;

Mukiibi et al., 2019). Conventional breeding approaches to develop

resistance to cassava brown streak disease (CBSD) have been

limited due to lack of genetic resistance in cultivated cassava

genotypes. Genetic engineering (GE) is being used to complement

conventional breeding (CB) due to the crop’s long breeding cycles

and high heterozygosity. Strategies such as RNA interference

(RNAi) or gene silencing have been used to develop transgenic

plants conferring resistance to cassava brown streak disease and

have been tested and proven to provide resistance to the cassava

brown streak viruses (Wagaba et al., 2016). However, due to the
02
misconstrued conceptions about GE in the public domain, many

find it challenging to embrace the technology (Zawedde et al., 2018).

Mutagenesis has been used as an alternative strategy to

introduce desirable traits into several crop species including

cassava resulting in the release of over 3500 mutant varieties

(Forster and Shu, 2012; Danso and Elegba, 2017; Kharkwal,

2023).The formation of mutations in plants can occur as a result

of exposure to DNA-damaging (genotoxic) agents, or it can occur

spontaneously in cells. Chemical and physical mutagens have been

found to cause sudden heritable changes in the genetic information

of plants (Ulukapi and Gul Nasircilar, 2018). In particular, gamma

irradiation of cassava stem cuttings led to the release of two mutant

cassava varieties named “Tekbankye” in Ghana in 1997, and

“Fuxuan” in China in 2005 respectively (Forster and Shu, 2012;

Danso and Elegba, 2017) indicating that gamma radiation

penetrates bulky cassava stem cuttings (Asare and Safo-Kantanka,

1995; Danso and Elegba, 2017). Gamma-irradiated stem cuttings of

Jame-jame and Adire-4, resulted in changes in the tuber shape, size

and color (Khumaida et al., 2015). Induced mutagenesis has also led

to the modification of several agronomic traits such as lodging

resistance, early maturity, disease resistance and product quality

(e.g., protein and lysine content) in several crops (Nencheva, 2010;

Oldach, 2011; Leitao, 2012; Oladosu et al., 2016) leading to the

release of crop varieties with improved agronomic traits and

tolerance to ecological stresses (Mullins et al., 2021).

It is highly likely that irradiation of cassava stem cuttings results

in the production of chimeric mutant plants due to the use of multi-

cellular plant parts, mainly cassava stakes as start material for

mutation induction (Asare and Safo-Kantanka, 1995; Khumaida

et al., 2015). Chimerism refers to the accumulation of different

mutation events in different cells of a plant propagule (Frank and

Chitwood, 2016; Datta et al., 2018) and requires several cycles of

propagation to produce non-chimeric and stable mutant plants. In a

bid to massively produce non-chimeric plants timely and with less

labor, totipotent cells or tissues are a pre-requisite. Production of

totipotent cells or tissues in cassava has been made possible using

tissue culture techniques referred to as somatic embryogenesis (SE) and

micropropagation respectively (George et al., 2008; Apio et al., 2015;

Elegba et al., 2021). Somatic embryogenesis involves the generation of
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organized embryogenic structures (OES) and friable embryogenic callus

(FEC),whichcandedifferentiate into totipotent embryonic tissuesgiving

rise to an embryo and a fully grown plant under appropriate conditions

(Taylor et al., 2004; Apio et al., 2015; Elegba et al., 2021).

Micropropagation facilitates the rapid multiplication of nodal

cuttings in vitro, under appropriate conditions, bulking up planting

materials all year round (George et al., 2008; Apio et al., 2015).

Irradiation of OES, FEC or in vitro nodal cuttings can induce

mutations in cassava facilitating the development of massive

populations of mutant cassava varieties with desirable attributes

(López et al., 2017) including resistance to CMD and/or CBSD in

Africa. Cassava is a diploid species (2n = 36) (Soto et al., 2015). Gamma

irradiations have been documented to make changes in the genome of

the cells or tissues ranging from single-stranded breaks (SSBs), double-

stranded breaks (DSBs) insertion, deletions or transversions (Du et al.,

2022). Determination of changes in the genome and ploidy can be

conducted using flow cytometry (FC), a high-throughput technique

that provides accurate results at low costs (Garavello et al., 2019). FC

utilizes the nucleic acid-specific fluorochrome propidium iodide for the

analysis of DNA content and ploidy levels because it’s a rapid, simple,

and reproducible approach (Escobedo-Gracia-Medrano et al., 2018).

The relative DNA content of each stained nucleus is quantified using

lasers that emit the fluorescence.

In this study, in vitro nodal cuttings and FECs were exposed to

different doses of gamma radiation, to develop mutant cassava varieties

with combined resistance to CMD and CBSD in selected Ugandan

cassava genotypes (UCGs). To achieve this, we specifically determined

the effect of auxins and amino acids on the production of organized

embryogenic structures (OES) and friable embryogenic callus (FEC)

and investigated the effect of gamma radiation on FEC and in vitro

nodal cuttings of UCGs. The effect of gamma irradiation on the growth

and survival of in vitro nodal cuttings and FEC explants was

characterized using the flow cytometry technique.
Materials and methods

Production of organized
embryogenic structures

A total of nine genotypes namely; NASE 3, NASE 12, NASE 13,

NASE 19, Alado, TME 204, CV-60444, NAROCASS 1 and

NAROCASS 2 were used for this experiment. The genotypes were

selected for their resistance to cassava mosaic disease (CMD) (NASE 3,

NASE 12, NASE 13, TME 204), tolerance to cassava brown streak

disease (CBSD) (NASE 19, NAROCASS 1, NAROCASS 2) and

susceptibility to both diseases (Alado, CV-60444). The experiment

was conducted in the tissue culture laboratory of the National Crops

Resources Research Institute (NaCRRI), Uganda using a completely

randomized design (CRD). A total of 27 Petri dishes, each containing 9

explants (leaf lobes) per Petri dish, amounting to a total of 243 leaf lobes

were excised and placed on Murashige and Skoog (MS) media

(Murashige and Skoog, 1962) with varying concentrations (37, 50, 70

or 100 µM) of picloram for the production of OES (Taylor et al., 1996;

Nyaboga et al., 2015). The placed leaf lobes of each genotype were

monitored on theMSmedium for 28 days to ascertain the ability of each
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genotype to produce OES with varying picloram concentrations. Data

on frequency and surface area coverage of OES were collected. The OES

produced from each genotype was collected and placed on sterile

stainless-steel mesh. The mesh was then placed over a 90 x 15 cm

Petri dish containing Gresshoff and Doy (GD) basal media (Gresshoff

andDoy, 1974) supplemented with 20 g of sucrose, 50 µMpicloram and

3g of Gelzan to minimize moisture loss in the explants. The OES was

crushed using a sterile spatula and collected in the aforementioned

medium. The crushed OES was then plated on GD basal media

supplemented with 50µm picloram and 10 mM stock of the amino

acid, tyrosine at varying concentrations (250 or 500 µM) for induction

of friable embryogenic callus (FEC) in the UCGs. FEC induction in the

control genotype, CV-60444 was on GD medium without tyrosine

(Apio et al., 2015). A total of 10 Petri dishes, containing 5 clusters of

crushed OES per plate, amounting to a total of 50 clusters per genotype

were established at 28 ± 2°C. Data on frequency (number of explants

that produced OES), surface area coverage (the amount of area covered

by the OES produced per explant using a scale of +-20, ++-40, +++-60,

++++-80, +++++-100) and frequency of FEC produced from each

clump of OES in each genotype was taken.
The effect of gamma radiation on
proliferation and growth of FEC

The experiment was conducted at the Biotechnology and

Nuclear Agriculture Research Institute (BNARI), Ghana Atomic

Energy Commission, Ghana using a completely randomized design

(CRD). Five cassava genotypes; Alado, CV-60444, NASE 3, NASE

13 and TME 204 which produced sufficient amounts of FEC were

used in the irradiation experiments. The FECs generated at

NaCRRI, Uganda were transferred to BNARI, Ghana. The

production of FEC was genotype-dependent resulting in variation

in the quantities of FEC obtained. Thus, we used different quantities

(2.1 g to 12 g) to ascertain the effect of gamma radiation on the

proliferation and growth of FEC. 8.0 g of FEC was used for Alado,

2.1 g for TME 204, 6.0 g for NASE 3, 10 g for NASE 13 and 12 g for

CV-60444. The FEC for each genotype was replicated three times

using equal amounts in three Petri dishes for each radiation dose to

ensure repeatability and uniformity of the sample size. The FEC

from each genotype was placed on a sterile mesh to ensure that the

FEC was not in direct contact with the media. The FEC on the mesh

was moved to Petri dishes (90 x 15 cm) containing MSmedium with

20 g of sucrose, and 3 g of Gelzan and sealed with cling film to

prevent moisture loss in FEC. The Petri dishes containing the FEC

on mesh were subjected to gamma radiation at five doses (5, 10, 15,

20 or 25 Gy) and the control at a dose rate of 81 Gy/hr at the

Gamma Irradiation Facility (GIF)) using a Cobalt-60(60Co)

machine. Five (5) colonies were established per Petri dish per

treatment and the exposure time for each radiation dose varied.

For 5 Gy, the exposure time was (3 mins 42 secs), 10 Gy (7 mins 24

secs), 15 Gy (11 mins 6 secs), 20 Gy (14 mins 48 secs) and 25 Gy (18

mins 30 secs). The irradiated FEC was transferred immediately to

fresh MS medium supplemented with 13 µM or 27 µM of

naphthalene acetic acid (NAA) and a control (without NAA) to

facilitate recovery and growth of the irradiated FEC (Taylor et al.,
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1996; Apio et al., 2015). Responses of the FEC to the different

radiation doses in culture were assessed weekly for 4 weeks.
Histological observation by cross-section
and transmission electronic microscopy

The mutagenized callus and the control were collected and fixed

in formalin-acetic acid alcohol (FAA) for 12 hours at room

temperature: 25°C using an automatic tissue processor (LEICA

TP 1020, Germany) and then embedded in paraffin wax using a

moulder (MEDAX GmbH & CO., Germany). Sections of 15µm

thickness were cut using a manual rotary microtome (LEICA RM

2235, Germany) and placed on ordinary slides tofix the samples. After

dryingovernight at 63°C in theoven (Esco Isotherm), the sampleswere

deparaffinized in xylene (www.merck-chemicals) for 20 minutes. The

sections were rehydrated in 100% alcohol for 1-2 minutes, then 95%

alcohol for 1-2 minutes. The sections were then rinsed in both tap

water and distilled water and stained with hematoxylin (LOBA

CHEMIE PVT LTD) for 3 - 5 minutes. The sections were

differentiated with 1% HCl in 70% alcohol for two dips and

checked under the microscope. The slides were washed in

running tap water for 15 minutes and stained in Eosin for up to 4

minutes. The stained slides were dehydrated and differentiated by

dipping 6 times in 95% alcohol before transferring to 100% alcohol

and dipped 6 times. The slides were cleared two times in xylene and

mounted by adding 100% alcohol for 3 minutes (mounting media)

(Protocol-Histopathology laboratory, Veterinary medicine,

Makerere University). The slides were then viewed using the

transmission electron microscope (Nikon CSI –Japan) (CDL

Laboratories, Veterinary Medicine, Makerere University).
The effect of gamma radiation on growth
of in vitro nodal cuttings

The parent material used for the establishment of in vitro cultures

was screened for the presence of cassava mosaic disease (CMD) and

cassava brown streak disease (CBSD) (Apio et al., 2021). Disease-free,

two-month-old in vitro nodal cuttings of eight cassava genotypes (Alado,

NASE 3, NASE 14, NASE 13, NASE 12, NASE 19, NAROCASS 1 and

NAROCASS 2) from NaCRRI in Uganda were used in the experiment

conducted at BNARI, Ghana. A total of 10 explants were used for each

treatment per genotype. Five (5) nodal cuttings (1.0 - 1.5 cm) were placed

in a 90 x 15 cm petri dish containing MS medium, with 20 g of sucrose,

and 3 g of Gelzan, sealed with cling film to minimize moisture loss in the

explants. Two Petri dishes each containing five nodal cuttings were set up

for each radiation dose and genotype. The prepared in vitro nodal

cuttings were exposed to gamma radiation at five doses (5, 10, 15, 20, 25

Gy) at the Gamma Irradiation Facility (GIF) using a Cobalt-60 (60Co)

machine. The dose rate was determined for each of the five doses by

calculating the dose per unit time in microSieverts and the samples

exposed to the gamma source for varied exposure times as described in

the preceding section The experiments were set up in a completely

randomized design. The irradiated cultures from each genotype were

transferred to MS medium supplemented with 20 g of sucrose and 3.0 g
Frontiers in Plant Science 04
of Gelzan to allow for regeneration. The irradiated in vitro nodal cuttings

weremonitored for survival, root formation and shoot increase. Data was

taken at 4, 7-, 14-, 21- and 28-days post irradiation.
Flow cytometry determination of changes
in nuclear genome ploidy of regenerated
gamma-irradiated in vitro nodal cuttings

One-month-old in vitro nodal cuttings of the eight genotypes

(Alado, NASE 3, NASE 14, NASE 13, NASE 12, NASE 19,

NAROCASS 1 and NAROCASS 2), that survived the different

gamma irradiation doses (5,10,15, 20, 25 Gy) and the control plants

were used in this experiment. Plant material (nodal cuttings 0.2 cm in

length) from each survived plant per dose was excised and placed in a 60

cm Petri dish and sealed. Five hundred microliters (500 µl) of Nucleic

Acid Extraction buffer were added to each sample, chopped using a

razor blade for one minute and incubated for 90 seconds. The samples

were filtered using a 50 µm celltrics filter into a sample tube, and 2 ml of

the staining solution (CyStain PI Absolute P)was added and incubated

for 60 - 120 minutes protected from light at room temperature. The

CyStain PI Absolute P is a fluorescent probe that binds to DNA. To

have anoverviewofany introducedvariationdue togamma irradiation

in the nuclear genome ploidy levels of survived plants, all the survived

plants per dose per genotype were pooled tomake one sample. Six (6)

samples per radiation dose for each genotype were analyzed using the

Sysmex Partec GmbH flow cytometer to ascertain the ploidy status of

the plants. This experiment was conducted in a completely

randomized design. The prepared cell suspension sample for each

dose rate was attached to the flow cytometer, which sucked up the

sample andmixed itwith the sheathfluid resulting in the formationof a

single cell line which was analyzed by passing through a laser beam.

The light from the single-cell line was scattered forward and sideways

which was detected by the detector. The detector converted the scatter

light into avoltagepulsewhichwasdirectlyproportional to the amount

of forward scattered light and side scatter. The computer attached to

the flow cytometer converts that data into a histogram that is

proportional to the forward scatter and side scatter ascertaining the

size and internal properties of the cell and enabling the determination

of the ploidy status (Escobedo-Gracia-Medranoet al., 2018). Themean

values produced by the Sysmex Partec flow cytometer and histograms

generated were used to explain the changes observed.
Determination of the lethal dose (LD50)

The LD50 (lethal dose), a dose that causes 50% lethality to the explants

or the dose at which the irradiated in vitro plants recorded 50% growth

performance (Oldach, 2011). The LD50 was estimated based on the

number of roots produced by in vitro plantlets exposed to the different

gamma radiation doses in comparison to the control (unirradiated in vitro

nodal cuttings). More precisely, the LD50 value was graphically

determined using the linear regression equation in Microsoft Excel

(version 2010), by plotting the number of roots was plotted against the

mutagen doses and the dose corresponding to a 50% reduction in the

number of roots was read off the graph. The equation used: y = mx + c,
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where y= independent variable (usually corresponds to 50%), m = the

slope or gradient, x = dependent variable, c = y intercept (value of y when

x = 0).
Data analysis

Data collected from OES and FEC induction was analyzed using

Genstat 12th edition (VSN International, Hemel Hempstead, UK).

Similarly, data collected on survival and growth of FEC and in vitro

nodal cuttings exposed to gamma radiation was analyzed using

Genstat 12th edition. All data was subjected to ANOVA and results

were considered statistically significant at the 5% level.
Results

The effect of exogenous auxin and amino
acids on production of organised
embryogenic structures and friable
embryogenic callus in the selected
cassava genotypes

Production of organized embryogenic structures
To facilitate the production of OES, leaf lobes were excised from

each genotype and cultured on Murashige and Skoog (MS) medium
Frontiers in Plant Science 05
supplemented with four different concentrations (37, 50, 70 or 100

µM) of picloram (an auxin analogue). All nine genotypes produced

OES. However, the frequency and the surface area coverage of OES

for each explant differed (Figures 1A, B, 2). The frequency of

production of OES was significant among genotypes (P = <.001)

but not significant for the different picloram concentration (P =

0.051) and the interaction between genotypes and picloram

concentration (P = 0.109). The genotype Alado had the highest

percentage frequency across all the picloram concentrations

investigated. The highest percentage frequency of OES production

at 37 µM was observed in Alado, NAROCASS 1 and CV-60444

(100%), followed by TME 204 (85%), NASE 13 (78%), NASE 3 and

NAROCASS 1 (48%), NASE 19 (37%) and least in NASE 12 (29%)

(Figure 1A). In genotypes Alado, NAROCASS 1 and TME 204, the

highest frequency was recorded at 50 µM (100%) followed by CV-

60444 (93%), then NASE 13 (92%), NAROCASS 2 (85%), NASE 19

(74%), NASE 3 (67%) and the least in NASE 12 (41%) (Figure 1A).
Production of friable embryogenic callus
To facilitate the production of FEC, 28-day-old OES was excised

and crushed using a 1x1 mm2 wire mesh and cultured on Gresshoff

and Doy (GD) basal media supplemented with two concentrations

(250 or 500 µM) of the amino acid tyrosine at 28 ± 2°C. All five

genotypes produced sufficient amounts of FEC as shown in Table 1;

Figure 3. Production of FEC in the UCGs was dependent on the
FIGURE 1

Frequency of production and surface area coverage of OES in UCGs (A) Effect of picloram concentration on frequency of OES production (B) Effect
of picloram concentration on surface area coverage of OES produced at 28 days.
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concentration of the amino acid, tyrosine, with the exception of the

control cultivar CV-60444 (Table 1). The highest frequency of FEC

production was observed in TME 204 (100%), followed by CV-

60444 (60%), NASE 13 (31%), Alado (27%) and the least in NASE 3

(5%) (Table 1; Figures 3A–E). Production of FEC was successful in

MS media ammended with 250 µM tyrosine for TME 204, NASE 3

and NASE 13 while in Alado, a higher concentration of tyrosine

(500 µM) was required. FEC production in the control CV-60444

did not require the addition of tyrosine (Table 1).
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The effect of gamma radiation on mutation
induction in FEC and nodal cuttings
of UCGs

Effect of gamma irradiation on friable
embryogenic callus

Sufficient amounts of FEC were required for replicability of the

experiment (Figure 4A). The FEC was placed on sterile mesh to

minimize its direct contact with media (Figure 4B). The effects of

gamma irradiation on the growth of FEC from five different

genotypes (TME 204, CV-60444, Alado, NASE 3 and NASE 13)

were observed within the first four days. Regardless of the

irradiation dose, cultures were overgrown by high bacteria and

fungal-like contamination (Figures 4C–H). At 28 days of co-culture,

irradiated cultures for all the genotypes were either lost or did not

increase in size. For example, all the cultures (both controls and

treatment) for genotype Alado were lost 28 days post-irradiation

(dpi), while for CV-60444, only FEC cultures irradiated at 20 and 25

Gy were contaminated. (Figures 4E, F, H). In genotypes, NASE 3

and NASE 13, cultures irradiated at 5 Gy and the control survived

on media supplemented with either 27 µM or 13 µM of NAA at 28

dpi. For TME 204, only cultures irradiated at 25 Gy survived on

media supplemented with either 27 µM ml/L or 13 µM at 28 dpi.
FIGURE 2

Somatic embryo production in all nine selected cassava genotypes. (A) NASE 12, (B) NASE 3, (C) NASE 13, (D) NASE 19, (E) Alado, (F) TME 204,
(G) NAROCASS 1 (H) NAROCASS 2 and (I) CV-60444.
TABLE 1 Production of FEC in different UCGs on tyrosine-
amended medium.

Genotype Media type Frequency (%) of
FEC produced

TME 204 GD2 50P, 250µM tyrosine 100.0

CV-60444 GD2 50P 60.0

NASE 13 GD2 50P, 250µM tyrosine 31.0

NASE 3 GD2 50P, 250µM tyrosine 05.3

Alado GD2 50P, 500µM tyrosine 27.1
FEC frequencies were calculated by scoring the number of OES clusters that produced FEC/
the total number of clusters per genotype.
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Unfortunately, all surviving cultures succumbed to contamination

at 35 dpi in culture.

Histological analysis of FEC post-gamma irradiation revealed

differences in the structure of the cells in irradiated tissues and the

control (Figures 4I, J). The pink color is a result of eosin that stains

the cytoplasm while the dark blue stains are attributed to

hematoxylin which stains acidic structures like the nucleolus

(indicated by the black arrow), the blue arrow shows the nucleus

and the green arrow, the cytoplasm. The structure of the cells in the

control FEC tissues was well-defined and large and the nucleus was

at the periphery of the cell (Figure 4I). In contrast, in the irradiated

FEC tissues, the cells appeared smaller and the nuclear material was

not prominent (Figure 4J). There appear to be dead embryogenic

cells with abnormal pigmentation (Figure 4J).

Effect of gamma radiation on shoot survival of in
vitro nodal cuttings

The effect of gamma radiation on in vitro nodal cuttings was

observed in all for the different genotypes for the number of plants

that survived. There was a decrease in the number of irradiated

cultures over time (Figures 5A–D). General loss of plants was

observed in NASE 13, Alado and NASE 12 at 14 and 21 dpi

(Figures 5C, D). At 28 days of culture, NASE 3, NASE 14, NASE

19, NAROCASS 1 and NAROCASS 2 had at least 5 or more plants

surviving (Table 2).

For in vitro nodal cuttings, some of the cultures were

contaminated after four days, while others grew a bulge

(Figures 6E–H), or white callus at the point of excision

(Figure 6D), indicative of the effect of gamma irradiation on

cassava in vitro nodal cuttings. For some genotypes (NASE 14,

NASE 19, NAROCASS 1 and NAROCASS 2) all 10 plants survived
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after 7 dpi in culture for the different radiation doses (Figures 5A,

B). At 28 days of culture, the highest number of surviving plants in

the unirradiated control plants were observed in NASE 19 (9),

followed by NASE 3 (8) and the least in NASE 13 (1) (Table 2). At 5

Gy, the highest number of surviving plants was in NASE 19 (10)

and the least in NASE 12. At 15 Gy, the highest number of surviving

plants was observed in NASE 12 (10) and NASE 14 (10), followed

by NASE 19 (9), then NASE 3 (7), NAROCASS 1 (5), NAROCASS 2

(5), Alado (3) and least in NASE 13 (1) (Table 2).
Effect of gamma radiation on root growth
of in vitro nodal cuttings

The irradiated in vitro nodal cuttings did not increase in height,

instead produced roots as shown in Figures 6 and 7. This suggests

that gamma irradiation negatively impacted plant growth responses

such as shoot growth, acting similarly to auxin efflux inhibitors in

the shoots while root development dependent on unidirectional

auxin movement was less affected (Tanaka et al., 2006). All the

genotypes tested produced roots between 14 – 28 days of culture

(Table 3). The number of roots varied from genotype to genotype at

the different radiation doses (Table 3). At 0 Gy (control), the highest

number of roots were produced by Alado (18) followed by NASE 12

(12), then NASE 14 (9), NASE 3 (8), NAROCASS 1 (7), NASE 19

(6), NAROCASS 2 (1) while NASE 13 did not produce roots at 28

days in culture (Table 3). At 5 Gy, the highest number of roots

produced were observed in NASE 14 (9), followed by NASE 3 (8),

NASE 19 (8), Alado (5), NASE 13 (3), NAROCASS 1 (1) and no

roots were produced by NASE 12 and NAROCASS 2. At 10 Gy, the

highest number of roots were observed in Alado (11) followed by
FIGURE 3

Formation of FEC tissues in UCGs and the model cultivar, CV-60444. (A) TME 204, (B) NASE 13, (C) Alado, (D) NASE 3 and (E) CV-60444.
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NASE 3 (9), NASE 14 (7), NASE 19 (4), NASE 13 (1), NAROCASS

1 (1) and none in NASE 12 and NAROCASS 2 (Table 3). At 15 Gy,

only three genotypes produced roots. The highest number of roots

were produced by NASE 14 (12) followed by NASE 12 (9) then

NASE 19 (6). Similarly, at 20 Gy only three genotypes, NASE 19 (4),

NASE 3 (3) and Alado (1) produced roots (Table 3). NAROCASS 2

(2) was the only genotype that produced roots at 25 Gy after 28 days

of culture. Subsequently, surviving roots of NASE 14 (15 Gy) and

NASE 19 (5 Gy) were sub-cultured onto fresh MS medium to

promote shoot and root growth as shown in Figures 7D, E.
Determination of LD50 for in vitro nodal
cuttings of UCGs

The average number of roots produced by nodal cuttings of

UCGs in relation to the different radiation doses was used to

calculate the LD50 values using the linear regression equation,

which are graphically determined. Based on this data, the LD50

estimated for NASE 3, Alado, NASE 12, NASE 14, NASE 19,

NAROCASS 1 and NAROCASS 2 were 14, 5, 5, 14, 22, 4, and 8
Frontiers in Plant Science 08
respectively in that order (Figure 8). No LD50 was for NASE 13

because the control did not produce roots. The highest correlation

value was observed in genotype NASE 3 (0.67), followed by Alado

(0.65), then NAROCASS 1 (0.58), NAROCASS 2 (0.39), NASE 14

(0.36), NASE 19 (0.29) and least in NASE 12 (0.29) (Figure 8).
Gamma radiation has an effect on
regeneration of in vitro nodal cuttings
of cassava

To ascertain the impact of gamma irradiation on nodal cuttings

that survived, flow cytometry was used to determine the ploidy

status of nodal cuttings and changes that may have occurred in the

genome of the plant after treatment with gamma radiation

(Figures 9A, B). All eight genotypes produced DNA histograms

that indicated that they still had a diploid state. In comparison to

the controls, the irradiated nodal cuttings from Alado, NASE 12,

NASE 19, and NASE 14 had a shift of the peak mean values to the

left for all the irradiation doses tested (Table 4). For NASE 3 at 5 Gy

and 10 Gy, the peak mean values obtained presented a shift to the
FIGURE 4

Different forms of contaminations observed in FECs exposed to different gamma doses. (A) Unirradiated FEC tissues (B) Sample of FEC tissue
prepared for gamma radiation (C) Clean FEC of TME 204 irradiated at 25Gy at 28 days, (D, F, H). Bacterial contamination observed in the different
genotypes exposed to different radiation doses after 4 days and (E, G) Fungal contaminations observed in the different genotypes exposed to
different radiation doses after 7 days. Differences were observed in the structure of cells in (I) unirradiated (control) and (J) irradiated friable
embryogenic callus (FEC). Bar represents 5 mm (A–H) and 10mm (I, J).
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right, probably indicating cell activity. NAROCASS 1 indicated a

loss of half the genomes at 10 Gy in comparison to the control as

shown in Figure 9A. The production of double peaks was observed

in NASE 13 and NAROCASS 2 at 20 Gy and 25 Gy respectively, in

comparison to the control as shown in the Figure 9B (representing

DNA histograms for NASE 13).
Discussion

Induced mutations have been used as an alternative strategy to

introduce desirable traits into several crop species (Forster and Shu,

2012). The exposure of multicellular plant parts to mutagens results

in the generation of chimeric plants which require further cycles of
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propagation to obtain solid mutants. The use of in vitro plants or

embryogenic tissues such as FEC generated via somatic

embryogenesis as target material for mutation induction in

cassava can reduce the risk of generating chimeric plants.

In this study, four concentrations of picloram (4-Amino-3,5,6-

trichloropicolinic acid), a synthetic auxin that has been used for

somatic embryogenesis in several African cassava genotypes was

used (Danso et al., 2010; Apio et al., 2015; Mongomake et al., 2015;

Nyaboga et al., 2015; Elegba et al., 2021). In MS medium

supplemented with picloram, the production of organized

embryogenic structures (OES) was possible in UCGs albeit

variation in the amount and frequency of primary somatic

embryo production (Berleth and Sachs, 2001; Fehér, 2015). In

cassava, the supplementation of MS medium with picloram has
FIGURE 5

Number of surviving plants in eight UCGs exposed to different doses of gamma radiation at (A) 4; (B) 7; (C)14 and (D) 21 days in culture
post irradiation.
TABLE 2 Number of plants of each genotype that survived after exposure to different gamma radiation doses at 28 days of culture.

Genotypes Gamma radiation doses/number of surviving plants*

0 Gy 5 Gy 10 Gy 15 Gy 20 Gy 25 Gy

NASE 3 08 08 10 07 09 10

NASE 13 01 04 05 01 03 02

Alado 07 07 05 03 02 01

NASE 12 06 00 01 10 01 01

NASE 14 05 09 09 10 08 06

NASE 19 09 10 08 09 09 08

NAROCASS 1 06 06 06 05 05 06

NAROCASS 2 05 06 07 05 08 06
*Total number of plants that survived after exposure of in vitro nodal cuttings to different gamma radiation doses.
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been extensively used for the induction of OES in several African

cassava genotypes (Taylor et al., 2012; Nyaboga et al., 2013; Apio

et al., 2015; Mongomake et al., 2015; Danso and Elegba, 2017). In

plants, de-novo biosynthesis of auxins (Indole 3-Acetic acid, IAA) is

essential for embryogenesis, particularly at the beginning of the

somatic embryogenesis (SE) induction process (Uc-Chuc et al.,

2020). The SE process in plants is genotype-dependent and

triggered in the presence of plant growth regulators (Desai et al.,

2022; Kępczyńska and Kępczyński, 2023). Furthermore, SE is a

stress-related process that results in changes in the expression of

responsive genes through locus-specific regulation of DNA

methylation in plants (Fehér, 2015). The transition of somatic

embryos to FEC has been associated with the upregulation or

downregulation of plant hormone signaling pathways (Ma et al.,

2015). Besides FEC induction, the color as well as the time taken to

produce FEC is influenced by the genotype. In the Ugandan

genotypes research has shown that substantial amounts of FEC

were produced only after 35 days in comparison to 21- 28 days in

the control genotype, 60444 (Apio et al., 2015). Another factor

essential for SE/FEC induction is the presence of nitrogen and

phosphate in the medium that is required for proper auxin

signaling, composition of phospholipids and DNA structure in

cells (Lambers, 2022). MS medium has a nitrogen-to-phosphate

(N: P) ratio of 40:1 and has been shown to support the routine

production of OES in cassava (Taylor et al., 2001; Bull et al., 2009;

Apio et al., 2015; Elegba et al., 2021). According to Pasternak and

Steinmacher (2024) the optimal ratio of nitrogen to phosphate (N:

P) for most plant species is 5 - 6: 1 for shoot induction and 10-12: 1

for plant growth.
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Our results confirmed the genotype-dependent response of

Ugandan genotypes to OES production with the genotype Alado

producing the highest OES for all four picloram concentrations (37,

50, 70, 100 µM) used. Similarly, the optimum picloram concentration

for OES production was higher (70 µM) in NASE 12 andNASE 13) in

contrast to the other six genotypes (NASE 3, TME 204, CV-60444,

NASE 19, NAROCASS 1 and NAROCASS 2) where it was at 50 µM,

in agreement with earlier work on UCGs (Apio et al., 2015). The

response of the genotypes to the different concentrations of picloram

suggests that auxins are key in cellular reprogramming of plant

tissues, genetically, metabolically and physiologically, resulting in

embryogenic competence (Fehér, 2015, 2019). Also, the ability of

the different genotypes to produce somatic embryos suggests that the

synthetic auxin picloram is an effective tool for induction of

endogenous auxin synthesis and canalisation sufficiently mimicking

IAA, the naturally-occurring auxin that plays an essential role in all

aspects of plant life including somatic embryogenesis (Armengot

et al., 2016; Uc-Chuc et al., 2020).

The transfer of OES tissues to GD medium supplemented with

picloram and tyrosine resulted in FEC production in the UCGs. The

transition of somatic embryos to FEC is highly dependent on

dedifferentiation in which transcriptional and translational

profiles are altered to allow cells to enter a new developmental

pathway (Fehér, 2015). Cell differentiation and dedifferentiation are

regulated by genetic and epigenetic mechanisms resulting in callus

induction affecting gene expression via chromatin modification

including DNA methylation and histone modification (Ma et al.,

2015). FEC induction in cassava, particularly African varieties has

been strongly influenced by genotype with some genotypes
FIGURE 6

Response of irradiated in vitro nodal cuttings of selected Ugandan genotypes 4 days after culture on MS medium. (A) Clean nodal cuttings of Alado,
(B) blue fungal contamination, (C) fungal and bacterial growth around nodal cuttings (D) white callus tissue on the top part of the nodal cutting
(arrowed), (E) loss of purple color at the upper portion of nodal cutting, (F) Bulging observed on the nodal cuttings, (G) bulging of the upper part of
the nodal cutting and (H) discoloration and thickening of the top of nodal cutting.
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recalcitrant to the process (Chetty et al., 2013; Nyaboga et al., 2013;

Apio et al., 2015; Elegba et al., 2021). The production of FEC in the

control genotype 60444 did not require tyrosine in contrast to FEC

production in TME 204, NASE 13 and NASE 3, which was possible
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only in GD medium supplemented with tyrosine at a concentration

of 250 µM. The supplementation of GD medium with tyrosine has

been reported to improve the conversion of OES to FEC in some

African cassava genotypes (Nyaboga et al., 2013; Apio et al., 2015;
FIGURE 7

Root formation of irradiated in vitro nodal cuttings (ivNC) of Alado after exposure to three different doses and regenerated (ivNC) of NASE 19 and
NASE 14 six months post-irradiation. (A) 5 Gy, (B) 10 Gy, (C) 15 Gy, (D) Regenerated ivNC of NASE 19 with roots at 5 Gy and (E) Regenerated ivNC of
NASE 14 with no roots at 15 Gy.
TABLE 3 Total number of roots produced by each genotype after exposure to five different radiation doses after 28 days in culture.

Genotypes Gamma Radiation doses/Number of Roots produced*

0 Gy 5 Gy 10 Gy 15 Gy 20 Gy 25 Gy

NASE 3 08 08 09 00 03 00

NASE 13 00 03 01 00 00 00

Alado 18 05 11 00 01 00

NASE 12 12 00 00 09 00 00

NASE 14 09 09 07 12 00 00

NASE 19 06 08 04 06 04 02

NAROCASS 1 07 01 01 00 00 00

NAROCASS 2 01 00 00 00 00 00
*Roots produced in each genotype after exposure of in vitro nodal cuttings to gamma radiations doses.
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Nyaboga et al., 2015). For the genotype Alado, tyrosine at a higher

concentration (500 µM) was required to enhance the conversion of

OES to FEC as earlier reported (Apio et al., 2015). However, the

positive effect of tyrosine on FEC induction is genotype-dependent

and not all genotypes respond positively (Nyaboga et al., 2013).

Amino acids are precursors of several plant hormones and their

addition to the medium replaces ammonium ions, thereby

increasing the levels of nitrogen which is required for the

development of somatic embryos (George et al., 2008). In

particular, the amino acid tyrosine plays a key role in regulating

tyrosine phosphorylation and has been implicated in many
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signaling pathways and plant physiological processes (Shankar

et al., 2015).

The effects of the exposure of FEC to varying doses of gamma

irradiation were noted after four days irrespective of radiation dose.

Gamma radiation is preferred for mutation induction because of its

ease of use and shorter wavelength, thus, high power of penetration

(Moussa, 2006; Marcu et al., 2013). Our results indicate that

exposure of embryogenic cells (FEC) to gamma radiations results

in the death of cells. Cells contain around 90% water and exposure

of cells to gamma radiation induces chain reactions that produce

secondary free radicals (Marcu et al., 2013; Golz and Bradshaw,
FIGURE 8

Graphs showing the trend of the number of roots produced per genotype with different doses and their calculated LD50. (A) NASE 3, (B) NASE 13,
(C) Alado, (D) NASE 12, (E) NASE 14, (F) NASE 19, (G) NAROCASS 1 and (H) NAROCASS 2.
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FIGURE 9

Flow cytometry analysis showing relative fluorescence intensity of in vitro nodal cuttings of cassava genotypes (A) NAROCASS 1 and (B) NASE 13 exposed to
different doses of gamma radiation. Biological replicates, n = 6. Each histogram shows the nuclear DNA level for each leaf sampled.
TABLE 4 Data showing the mean peak values of the different genotypes when exposed to different radiation concentrations in relation to the control.

Genotypes Radiation doses/Calculated Mean Peak Values*

0 Gy 5 Gy 10 Gy 15 Gy 20 Gy 25 Gy

Alado 30.82 26.18 28.50 29.82 30.48 28.66

NAROCASS 1 29.65 29.11 13.61 29.81 29.18 29.20

NASE 13 31.99 25.92 31.63 29.96 11.87 11.95

NASE 14 32.09 31.64 31.42 29.99 29.12 29.61

NASE 19 32.32 31.66 31.58 29.81 00.00 31.87

NAROCASS 2 28.40 29.26 28.64 30.73 11.41 12.85

NASE 3 31.69 34.36 33.72 30.66 30.59 29.81

NASE 12 28.51 00.00 27.14 28.53 00.00 26.91
F
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*Mean Peak Values are calculated from the Sysmex Partec GmbH flow cytometry program.
The bold values indicate that half the genome of the plant was lost when compared to the control at 0 Gy.
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2019). Among the processes that occur include base excision, DNA

replication, and nucleotide excision repair resulting in DNA

damage or repair (Ma et al., 2015). Gamma irradiation-induced

oxidative stress results in the overproduction of reactive oxygen

species (ROS) such as superoxide radicals, hydroxyl radicals, and

hydrogen peroxides, which results in the modification of crucial

components in plant cells, disrupting vital biochemical and

physiological processes essential for the survival of the plant cells

and tissues (Esnault et al., 2010; Marcu et al., 2013). This likely

resulted in the death of embryogenic tissues and in vitro nodal

cuttings post-irradiation.

In the case of the in vitro nodal cuttings (ivNCs), exposure to

gamma irradiation resulted in swelling at points along the explant

without an increase in height except for the controls. In some

instances, the point of contact of the irradiated explant with the

medium was colonized by bacteria, fungus or both. These responses

could be attributed to the type of explant. In vitro nodal cuttings are

young tender tissues compared to cassava stakes that are hard and

robust and have been the main plant tissues routinely used as target

tissues for mutation induction (Asare and Safo-Kantanka, 1995;

Khumaida et al., 2015; Danso and Elegba, 2017; Baguma et al.,

2021). Gamma radiation produces single-strand breaks (SSBs) in

the DNA of cells and if not repaired leads to failure of DNA

replication and, ultimately cell death (Chatterjee andWalker, 2017).

A significant reduction in the number of leaves and nodes, weight

and length of in vitro plants of cassava after exposure to different

doses of gamma radiation has been reported (Ndofunsu et al.,

2015). The number of roots produced per genotype was influenced

by gamma irradiation doses with higher doses impeding root

formation in most genotypes compared to their corresponding

non-irradiated controls, which produced roots. In Arabidopsis,

exposure of roots to unilateral ultraviolet (UV) radiation (UV-B)

reduces auxin levels and leads to an asymmetric distribution of

auxin in root tips (Yokawa et al., 2016; Wan et al., 2018).

The lethal dose range (LD50) was determined using the number

of roots, given that there was no increment in plant height at 30

days post-irradiation. The calculated LD50 values obtained varied

from genotype to genotype which is in harmony with results

obtained from physic nut (Songsri et al., 2011). The data indicates

that low dosages (5 – 15 Gy) allowed for the production of roots

compared to high dosages (20 - 25 Gy) across genotypes. This result

is in agreement with work in several plant species in which low-dose

irradiation had a positive effect on root growth and length (Charbaji

and Nabulsi, 1999; Jan et al., 2011).

To determine the DNA content and ploidy status of in vitro

plants of UCGs after exposure to gamma irradiation, flow

cytometry technique was used. The histogram peaks obtained

were a reflection of the number of molecules that were bound to

the probe which translates to the number of molecules of DNA

present in a sample (Ochatt, 2008). In flow cytometry, knowledge

of the genome size is important for the characterization of induced

variation and establish ploidy status (Natarajan et al., 2023).

Majority of the genotypes had DNA histograms with one peak

similar to the control and corresponding to the nuclei in G1 phase

of mitosis. This indicates that gamma irradiation did not cause
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changes to the DNA content in these genotypes. However, in the

genotype NAROCASS 1 the mean values obtained from plants

exposed to different doses of gamma irradiation (5, 20, 25 Gy),

revealed a shift to the left compared to the control (0 Gy),

indicating loss of genetic information or deletions in the

genome. In the same genotype, half of the genome was lost at

10 Gy based on the low mean value, resulting in loss of genetic

information as well as the ability of the explant to survive because

cell division ceased (Ochatt, 2008; Natarajan et al., 2023). At 15

Gy, the mean values shifted to the right indicating cell activity

related to biochemical and physiological activities. The effect of

different doses of gamma irradiation on mutation induction in

cassava is genotype-dependent as recorded in this study. Thus, it is

important to characterize plant tissues via flow cytometry or

sequencing post-irradiation to identify putative mutants

or mutations.

In NASE 13, at gamma doses of 20 and 25 Gy) two mean peak

values were obtained. The peaks with values close to the control

were likely in the G0/G1 phase. However, the smaller peaks with

low mean values were indicative of cell death as a result of gamma

irradiation (Ochatt, 2008). The exposure of deficient HCT116 colon

cancer cell lines to gamma irradiations at a dose of 5 Gy produced

two peaks, the first peak was identified as having apoptotic cells,

whereas the second peak was of cells at the G1 phase in the

irradiated cell lines (Halacli et al., 2013). Doses lower than 5 Gy

have been documented to be more reliable using acute and chronic

gamma irradiation (Caplin and Willey, 2018). However, the lower

doses were not consistent and reliable with the Cobalt-60 machine

that was used for the experiment. In the case of Wild Musa species

from India, peaks were observed that were indicative of the G1 and

doubling of the chromosome showing the ploidy status of the

species (Natarajan et al., 2023).
Conclusions

Gamma irradiation at doses of 5 to 25 Gy affect the growth of

FEC and in vitro nodal cuttings in different cassava genotypes. The

biochemical and physiological changes in plant tissues due to

gamma radiation resulted in variation that was either useful or

detrimental to plant growth and development. The death of tissues

over time and the decrease in root formation of in vitro nodal

cuttings highlight the potency of gamma irradiation for the

induction of variation in cassava. The optimization of the

radiation doses for in vitro tissues would allow for the recovery of

plants for further screening in the field. Although gamma

irradiation affected plant growth (shoots and roots) and survival,

the ploidy level was maintained in surviving tissues except in

NAROCASS 1 at 10 Gy. The information reported in this work

documents for the first time the effect of gamma irradiation on the

survival and growth of in vitro tissues (nodal cuttings and FECs) in

cassava in comparison to the use of cassava stakes which have been

routinely used as target materials for mutation induction in the

crop. This work will serve as a guide for further studies aiming to

exploit in vitro tissues for mutation induction in cassava.
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