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Introduction: This study addresses the urgent need for non-destructive identification

of commercially valuable Dalbergia species, which are threatened by illegal logging.

Effective identification methods are crucial for ecological conservation, biodiversity

preservation, and the regulation of the timber trade.

Methods: We integrate Visible/Near-Infrared (Vis/NIR) Hyperspectral Imaging (HSI)

with advancedmachine learning techniques to enhance the precision and efficiency

of wood species identification. Our methodology employs various modeling

approaches, including Principal Component Analysis (PCA), Partial Least Squares

Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and Convolutional

Neural Networks (CNN). These models analyze spectral data across Vis (383–982

nm), NIR (982–2386 nm), and full spectral ranges (383 nm to 2386 nm). We also

assess the impact of preprocessing techniques such as Standard Normal Variate

(SNV), Savitzky-Golay (SG) smoothing, normalization, and Multiplicative Scatter

Correction (MSC) on model performance.

Results: With optimal preprocessing, both SVM and CNN models achieve 100%

accuracy across NIR and full spectral ranges. The selection of an appropriate

wavelength range is critical; utilizing the full spectrum captures a broader array of

thewood's chemical and physical properties, significantly enhancingmodel accuracy

and predictive power.

Discussion: These findings underscore the effectiveness of Vis/NIR HSI in wood

species identification. They also highlight the importance of precise wavelength

selection and preprocessing techniques to maximize both accuracy and cost-

efficiency. This research contributes substantially to ecological conservation and

the regulation of the timber trade by providing a reliable, non-destructive

method for identifying threatened wood species.
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1 Introduction

Rosewood ranks among the most trafficked commodities, both

in terms of value and volume, comparable to notorious items such

as rhinoceros horn, elephant ivory, and tiger fur (Soudier et al.,

2022). Its distinctive texture and color have made it a favored

material for artwork and furniture (Barrett et al., 2013; McClure

et al., 2015). The Dalbergia genus, encompassing various rosewood

species, thrives in subtropical and tropical areas and is a prominent

part of the timber trade. Certain species ofDalbergia are particularly

prized for their valuable heartwood and medicinal qualities (Son

et al., 2017). However, rampant over-exploitation has put the

Dalbergia genus at risk of extinction, prompting its inclusion in

the CITES (Convention on International Trade in Endangered

Species of Wild Fauna and Flora) list.

Despite their economic and ecological importance, the

identification of Dalbergia species remains challenging due to

their similar visual and anatomical features. Traditional wood

identification methods such as microscopy can classify at the

genus level but often lack the precision and efficiency required for

accurate species differentiation (Ravindran et al., 2020). These

methods are generally destructive, necessitating extensive sample

preparation and lengthy analysis times, which is not sustainable

(Gasson et al., 2010).

In contrast, Visible/Near-Infrared (Vis/NIR) Hyperspectral

Imaging (HSI) technology offers a non-destructive, efficient, and

environmentally friendly alternative (Table 1). This technology is

complemented by advanced machine learning techniques that

include Principal Component Analysis (PCA), Partial Least

Squares Discriminant Analysis (PLS-DA), Support Vector

Machines (SVM), and Convolutional Neural Networks (CNN).

These methods are regarded as sophisticated due to their robust

capability to model the complex, nonlinear relationships that are

typical of high-dimensional spectral data. Specifically, PCA reduces

dimensionality while preserving significant variance, enabling

clearer patterns in the data. PLS-DA enhances this by focusing on

maximizing the separation between classes of data, crucial for

accurate classification. SVM offers a powerful framework for

classification and regression by constructing hyperplanes in a

multidimensional space that best separates different classes.

Finally, CNNs, with their deep learning structures, are
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particularly adept at capturing spatial hierarchies in data, which is

invaluable for identifying subtle differences in hyperspectral images.

Collectively, these techniques automate and refine the pattern

recognition process, which is essential for distinguishing between

closely related species and adapting to new data with minimal

human intervention, thereby increasing the reliability and efficiency

of species identification (Gold et al., 2020).

HSI technology has become indispensable in fields such as

botany (Dale et al., 2013), wildlife conservation (Grabska

et al., 2022), marine biology (Piarulli et al., 2022), and wood

science (Ma et al., 2019). By capturing extensive chemical and

spatial information across Vis to NIR spectra, HSI enables

researchers to detect subtle differences in species and materials

through their unique biochemical signatures. This technology is

particularly effective in wood science, where it provides detailed

insights into the microscopic structure and chemical alterations of

wood, allowing for the identification of key constituents like lignin

and cellulose which are crucial for assessing wood’s mechanical

properties and durability (Wang et al., 2022; Xue et al., 2022, 2023).

Despite facing challenges related to data storage and processing

demands, the future of HSI in these diverse applications looks

promising, thanks to ongoing advancements in sensor technology

and algorithm development aimed at enhancing data handling and

robustness (Amaral et al., 2021).

This study distinctly advances beyond the scope of previous

research by integrating sophisticated machine learning techniques

with HSI technology to target the precise identification of ten

endangered Dalbergia species. Unlike previous studies that

focused primarily on either HSI technology or basic machine

learning applications, this research leverages both to achieve

unprecedented accuracy and efficiency in species differentiation.

This methodological innovation addresses significant gaps left by

prior methodologies, particularly in the practical application of

these technologies. Designed explicitly to support timber trade

regulation and conservation efforts, this study translates scientific

insights into actionable impacts, enhancing enforcement of trade

laws and promoting sustainable forestry practices.

By focusing on a diverse range of Dalbergia species, our study

not only extends the application of HSI in wood science but also

innovatively applies machine learning to enhance species

identification precision. We hypothesize that the integration of
TABLE 1 Comparison of traditional and spectroscopic wood identification techniques.

Attribute Vis/NIR HSI
Traditional Wood

Identification Techniques
Near-

Infrared Spectroscopy

Non-destructive Yes No (often requires sample destruction) Yes

Efficiency High (rapid analysis) Low (time-consuming processes) High (quick data acquisition)

Environmental Impact Low (non-invasive) High (due to chemical usage) Low (non-invasive)

Capability
Excellent at detecting subtle
chemical variations

Limited by visual and
physical properties

Good at detecting major
compositional differences

Technology Requirement
Advanced (requires
sophisticated equipment)

Basic (microscopes, chemical reagents)
Moderate (specialized NIR
equipment required)

Data Complexity High (complex data interpretation) Low (simpler data) Moderate (requires specific expertise)
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these sophisticated analytical techniques will significantly improve

identification accuracy, thereby enhancing the enforcement of trade

laws and promoting sustainable forestry practices.
2 Materials and methods

2.1 Samples

Table 2 presents the scientific classification and quantity of

wood samples used in this study, all of which were provided by the

Nanjing Police College. Specifically, our collection includes ten

distinct species of Dalbergia, ensuring that each species is

represented by at least 18 individuals. From each individual, we

obtained 5 to 9 samples, culminating in a comprehensive

assortment of 800 wood samples. To ensure robust model

evaluation, these samples were divided into two groups: 600

samples (75%) for the calibration set to train the models, and 200

samples (25%) for the validation set to test their performance. This

division helps prevent model overfitting and guarantees effective

performance on new data. The air-dried specimens, maintaining a

moisture content between 11% and 11.5%, were subjected to surface

smoothing through sanding to reduce surface irregularities. These

samples were then prepared into pieces measuring 20 cubic mm3 for

analysis. According to our previous research, transverse section of
Frontiers in Plant Science 03
sapwood is more suitable for wood identification (Xue et al., 2022).

In this study, spectral data was scanned in transverse section of

the samples.
2.2 Equipment and spectra acquisition

To collect the Vis/NIR spectra of the wood samples, the

experiment was conducted in a darkroom equipped with an

ImSpectorV10E Vis/NIR spectrophotometer. The samples were

illuminated by a 350 W halogen lamp from Illumination

Technologies, USA, positioned at a 45-degree angle, with the

sample surface located 350 mm from the light source. The

spectroradiometer was set approximately 170 mm from

the sample’s surface for spectral analysis. The spectrometer’s

detection wavelength spanned from 383 to 2386 nm. It featured a

sampling resolution of 1.4 nm for the Vis spectrum and 6.2 nm for

the NIR spectrum. A vital preparatory step involved preheating the

halogen lamps for 15 minutes to ensure they were operating

optimally for precise results. Calibration of the instrument was

meticulously carried out using a black image (achieved by covering

the camera lens) and a white image (using a Teflon plate with 99.9%

reflectance) before the spectrum collection commenced. During the

scanning and averaging process, the wood samples were positioned

on a black cloth to ensure consistent conditions. The configuration
TABLE 2 The plant materials used in the study.

Scientific classification Calibration Set Validation Set

Dalbergia tucurensis 60 20

Dalbergia cultrata 60 20

Dalbergia latifolia 60 20

Dalbergia stevensonii 60 20

Dalbergia bariensis 60 20

Dalbergia cearensis 60 20

Dalbergia cochinchinensis 60 20

Dalbergia oliveri 60 20

Dalbergia retusa 60 20

Dalbergia congestiflora 60 20
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of the Vis/NIR-HSI system employed in this research is illustrated

in Figure 1.

Spectral data for the wood samples were collected across three

distinct spectral ranges: Vis, NIR, and a combined Vis-NIR

spectrum. The selection of these spectral ranges was strategically

made to maximize the identification accuracy of Dalbergia species,

considering their specific chemical and physical properties which

are best captured at different wavelengths. The Vis spectrum (383–

982 nm) primarily focuses on pigment identification, capturing the

Vis light where most wood pigments absorb wavelengths, which is

crucial for distinguishing subtle color variations indicative of

different species (Chen et al., 2016). The NIR spectrum (982–

2386 nm) is utilized for its sensitivity to molecular vibrations

related to moisture content, lignin, and cellulose, essential for

assessing the mechanical properties and durability of wood

(Amaral et al., 2021). The combined spectrum (383–2386 nm)

offers a comprehensive overview, enhancing our predictive accuracy

by including both Vis and NIR advantages, allowing for the

detection of a broader range of chemical markers and physical

properties. This methodological approach ensures no potentially

discriminative spectral features are missed, thereby enhancing the

robustness and precision of our species identification process.

To ensure reliable measurements, we collected 80 spectra for

each wood sample. Averaging these spectra reduces random noise

and enhances the data’s consistency, critical for accurate species

identification. This method increases the precision of our results by

decreasing data variability, which is particularly important in

distinguishing subtle differences between species. The choice of 80

spectra balances thorough data collection with efficient processing,

providing a solid foundation for our analysis.
2.3 Model development

In this research, we developed various predictive models,

including the integration of PCA with a classifier, PLS-DA, SVM,

and CNN, to tackle the challenges associated with identifying wood

species. PCA reduces the dimensionality of our data, retaining only
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essential features, thereby lowering computational demands and

mitigating overfitting. The refined data are then subjected to logistic

regression, noted for its efficacy in binary and multiclass problems

and its capability to generate clear probability scores. PLS-DA is

adept at managing high-dimensional data and effectively deals with

multicollinearity, making it particularly suited for datasets that are

rich in variables yet sparse in samples. It employs Partial Least

Squares Regression to efficiently categorize data, widely applied in

chemometrics and bioinformatics (Berrueta et al., 2007). SVM is a

powerful classifier that constructs the optimal hyperplane in high-

dimensional spaces to maximize the margin between classes. With

kernel tricks, it efficiently manages nonlinearities, small sample

sizes, and complex, high-dimensional data, suitable for both binary

and multiclass classification (Tian et al., 2014). CNN, a profound

deep learning archetype, is tailor-made for image data analysis. By

emulating the human visual system’s operational principles through

convolutional layers, it autonomously learns hierarchical features,

enabling efficient visual pattern recognition in images. The prowess

of CNN in feature learning significantly enhances capabilities in

image recognition, speech recognition, and natural language

processing, among others. The respective strengths and

limitations of the PLS-DA, SVM, and CNN models are

comprehensively outlined in Table 3. In our approach, we

structured a CNN model explicitly for processing hyperspectral

data, initially preprocessing the data to meet the input requirements

of the CNN model and converting sample labels into categorical

format. We divided the dataset into two segments: about two-thirds

designated as the training set to train the model, with the remaining

third forming the test set to assess the model’s performance.

The architecture of the CNN model was designed to include an

input layer, a convolutional layer, a batch normalization layer, a

ReLU activation layer, a maximum pooling layer, a fully connected

layer, a softmax layer, and a classification output layer. This model

aims to capture features extracted from hyperspectral data and

effectively perform classification tasks. To train this network, we

configured a series of training options, using the adam optimizer,

setting parameters such as learning rate, maximum number of

iterations, batch size, and specified shuffling of data after each round
FIGURE 1

Vis/NIR-HSI system.
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of training and a validation dataset to monitor training progress.

Using the trainNetwork function, we trained the CNN model based

on the aforementioned configurations and training data. The

network architecture and training parameters of CNN model are

depicted in Figure 2.

Spectral data matrices for PCA, PLS-DA, SVM, and CNN

analyses were generated according to specific protocols. Each

model’s data underwent initial preprocessing to minimize noise

and normalize features. This step included extracting average

spectra from each sample group and computing covariance

matrices to evaluate relationships between various spectral

features and wood species. These matrices subsequently informed

the training of our models, with fine-tuning of each model’s

parameters to enhance performance across diverse spectral ranges.
Frontiers in Plant Science 05
Prior to analysis, various preprocessing techniques were applied

to the spectral data to boost model accuracy. These techniques

encompassed Standard Normal Variate (SNV), Savitzky-Golay

(SG) smoothing, normalization, and Multiplicative Scatter

Correction (MSC). We rigorously evaluated the impact of each

method to ascertain its effectiveness in enhancing the clarity and

comparability of the spectral data.

In addition to accuracy, we have expanded our evaluationmetrics

to include precision, recall, F1-score, and the kappa coefficient. These

metrics provide a more comprehensive assessment of the model’s

performance across different scenarios, particularly in handling class

imbalances and nuanced differentiation between species. Precision

measures the accuracy of positive predictions, recall assesses how well

the model captures actual positives, and the F1-score is the harmonic

mean of precision and recall, offering a balance between the two in

cases of uneven class distribution. The kappa coefficient, a statistical

measure of inter-rater agreement for qualitative items, is adjusted for

the chance agreement of categories, providing insight into the

reliability of the model beyond mere accuracy.
3 Results

3.1 Spectroscopic characterization

Vis/NIR-HSI spectroscopy stands out as an exceptionally apt

method for evaluating heterogeneous organic materials, including

wood and wood-derived products. This advanced technique offers

insights into not only the physical condition but also the chemical

makeup of wood samples under examination. By scrutinizing the

spectral peak positions and their configurations, it’s possible to

identify the presence of specific functional groups characterized by

dipole moments, enriching our understanding of the sample’s

molecular structure (Sandak et al., 2020).

Figure 3 reveals that the ten Dalbergia species exhibit distinct

absorption patterns, with the wood samples showing pronounced

absorption peaks at wavelengths of 760, 950, 1200, 1590, 1840, 2020,

and 2300 nm. The variation within the Vis spectrum can be linked

to specific pigments, which show unique absorption characteristics

(Palacios-Morillo et al., 2016). Notably, the peak near 950 nm is

likely related to the third stretching overtone of C-H bonds, whereas
TABLE 3 The comparison of PCA, PLS-DA, SVM, and CNN models.

Algorithm Advantages Disadvantages

PCA
Reduces dimensionality, enhances computational efficiency, reveals
hidden patterns, simplifies data visualization.

May discard useful information, sensitive to scaling, requires a
separate model to make predictions.

PLS-DA
Handles multicollinearity well, suitable for small datasets, easier to
interpret results.

Not suitable for non-linear problems, performance decreases with
larger datasets.

SVM
Effective in high-dimensional spaces, can model non-linear
relationships with appropriate kernels, robust against overfitting.

Computationally intensive, sensitive to noise and outliers, requires
careful parameter tuning.

CNN
Good for large datasets, excels in feature extraction, beneficial for
image data and deep learning applications.

Requires large amounts of data, high computational cost, prone to
overfitting, often considered a black box.
FIGURE 2

The network architecture and training parameters of CNN model.
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the peak at 1590 nm aligns with the C-H stretching vibration in the

first and second overtones (Andrés et al., 2007). The absorption at

approximately 1840 nm points towards O-H stretching vibrations

or the O-H-O deformation combination, often associated with

moisture content (Núñez-Sánchez et al., 2016). The peak at 2020

nm is indicative of N-H stretching vibrations, generally related to

the presence of lipids, carbohydrates, or protein-based organic

matter (Badaró et al., 2019). Moreover, the peak around 2300 nm

is presumed to be linked to fats (Krähmer et al., 2015; Lequeue et al.,

2016). The identification of these specific peaks underscores the

promising application of Vis/NIR-HSI spectroscopy in

distinguishing between the ten Dalbergia species, showcasing its

potential as a valuable tool for wood identification.
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3.2 Principal component analysis

The dataset underwent analysis using the PCAmodel to explore

potential clustering. PCA was conducted on wood samples across

three different spectral ranges, with the initial three principal

components (PCs) capturing a significant portion of the variance

in these spectra. In Figure 4A, for instance, PC1 accounted for

80.1% of the total variance, and PC2 contributed to 12.1% of the

variance. Using the NIR spectral range, the first three PCs explained

91.7% of the variance in the wood samples, with PC1 at 51.5%, PC2

at 28.9%, and PC3 at 11.3% as shown in Figure 4B. Additionally,

Figure 4C demonstrates that 83.1% of the total variance was

captured (PC1 = 52.4%, PC2 = 19.2%, PC3 = 11.5%), illustrating
B

C

A

FIGURE 4

Principal Component Analysis 3D scatterplots of spectral data from distinct wood sample. (A) Spectral data range from 383 nm to 982 nm,
(B) Spectral data range from 982 nm to 2386 nm, (C) Spectral data range from 383 nm to 2386 nm.
BA

FIGURE 3

(A) Average Vis spectra of wood samples. (B) Average NIR spectra of wood samples.
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the effectiveness of PCA in highlighting the underlying structure

and variance within the spectral data of these tree species.

Figure 4 clearly illustrates that the ten Dalbergia species formed

distinct clusters, although there was observable overlap among the

wood samples of Dalbergia bariensis and Dalbergia stevensonii, as

well as minor overlap between Dalbergia tucurensis and Dalbergia

cochinchinensis. This indicates a certain level of spectral similarity

between Dalbergia bariensis and Dalbergia stevensonii .

Furthermore, the PCA results underscore the influence of spectral

data range on the model’s outcomes. Among the three selected

wavelength ranges, the Vis spectrum exhibited the most overlap

between clusters, whereas the full wavelength range demonstrated

superior clustering performance. This highlights the importance of

selecting an appropriate wavelength range for wood sample

identification, as an unsuitable choice may hinder the

differentiation process.

The loading lines for the first two PC across various wavelength

ranges are depicted in Figure 5. The figure’s curves highlight how

different spectral features influence PC1 and PC2. Within the Vis

wavelength range, significant contributions to PC1 are noted at 430

nm and 630 nm. These wavelengths are indicative of pigment colors

and characteristics typical of mahogany-type woods, respectively.

Furthermore, the PC1 loading curve exhibits a noticeable dip near

925 nm, which is associated with the absorption properties of water

and other compounds in wood. For PC2, a prominent contribution

is observed at 810 nm, aligning with water’s first over-absorption

peak. Additionally, a dip in the PC2 curve around 490 nm captures

the essence of wood’s color and surface characteristics, providing

insightful details on the spectral influence of various components

within the wood.

Utilizing the NIR spectrum, the wavelengths of 1150 nm, 1700

nm, and 1880 nm emerge as significant contributors to the PC1,

correlating closely with the presence of moisture, lignin, and

cellulose in wood, respectively. These elements play a crucial role

in determining the wood’s structural integrity and chemical

characteristics. Moreover, the PC1 curve exhibits a pronounced

valley near 2300 nm, while the PC2 curve features a distinct peak at

the same wavelength, indicating the detection of complex organic

compounds within the wood, such as fatty acids and proteins. This

absorption at 2300 nm is attributed to the collective and stretching

vibrations of lignin, cellulose, and hemicellulose, highlighting the
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NIR spectroscopy’s ability to uncover detailed insights into the

wood’s molecular composition and the interactions between its

organic components.

When PCA analysis incorporates the full wavelength spectrum,

the behavior of the PC1 and PC2 curves diverges from the patterns

observed in analyses restricted to either Vis or NIR individually. As

illustrated in Figure 5C, the wavelength of 2320 nm stands out for

its substantial influence on both the PC1 and PC2 curves, signaling

its significance in the dataset. Additionally, the wavelengths of 810

nm and 1000 nm make notable contributions to PC1, primarily

reflecting the water content within the wood. Furthermore, the

wavelength of 490 nm deserves special mention; this region is

largely associated with the wood’s pigments.

In this study, we have extended the application of PCA by

integrating it with a classifier, aimed at enhancing the

interpretability of spectral data across various Dalbergia species.

Figure 6 illustrates a mixing matrix that evaluates the classification

accuracy without preprocessing across three spectral ranges,

underscoring how this integration helps in better understanding

the spectral distinctions.

To provide a more comprehensive assessment of the model’s

performance, we expanded our evaluation framework to include

precision, recall, F1-score, and kappa coefficient. These metrics are

crucial for addressing the spectral overlap observed among species

such as Dalbergia bariensis and Dalbergia stevensonii. The results,

depicted in Table 4 and Supplementary Table S1, reveal that while

the PCA model achieved high accuracy across the full wavelength

range—91.5% in calibration and 92.5% in cross-validation—the

kappa coefficient indicated lower than expected agreement. This

variance in metrics like precision, recall, and F1-scores underlines

the challenges in spectral classification.

The analysis further revealed that preprocessing methods such

as SNV and SG smoothing did not significantly enhance the model’s

performance within narrower spectral ranges and occasionally even

led to a decrease in accuracy. This suggests potential overfitting or

the loss of critical spectral information that PCA could otherwise

utilize effectively. However, the comprehensive spectral range of 383

nm to 2386 nm, analyzed without preprocessing, allowed the PCA

model integrated with a classifier to achieve higher accuracies—

91.5% in both the calibration and validation sets, highlighting

the effectiveness of PCA in capturing and utilizing the full
B CA

FIGURE 5

The first two PC loading lines. (A) Spectral data range from 383 nm to 982 nm, (B) Spectral data range from 982 nm to 2386 nm, (C) Spectral data
range from 383 nm to 2386 nm.
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spectrum of available features, especially when not constrained

by preprocessing.

Notably, the classifier’s performance was modest across

narrower spectral ranges (Vis and NIR), but showed marked

improvement in the full spectral range from 383 nm to 2386 nm.

This robust performance in the full wavelength range, as detailed in

Table 4, underscores PCA’s potential in extracting meaningful

information from complex spectral data, making it a viable option

for scenarios requiring detailed and extensive spectral analysis. These

findings suggest that while PCA can be a powerful tool for spectral

classification, its efficacy is heavily dependent on the selected spectral

range and the preprocessing techniques employed.
3.3 Results using PLS-DA

In this research, the classification of spectral data was performed

using PLS-DA technique. This chemometric method, which is

considered supervised technique, necessitate comprehensive

understanding of the classification of each wood sample. The goal

of this algorithm is to accurately assign an unknown sample to a

specific class based on its spectral pattern (Berrueta et al., 2007).

Figure 7 and Table 5 summarize the accuracy achieved by the

PLS-DA model and assess the impact of various preprocessing
Frontiers in Plant Science 08
algorithms. PLS-DA, a widely recognized classification model,

excels in computational efficiency and is designed to identify the

optimal functional correlation within a dataset by minimizing the

sum of squared errors (Lestander et al., 2008). Despite its broad

application in multivariate data analysis, the PLS-DA model

displayed limited success in accurately identifying ten Dalbergia

species, with the most promising results emerging from analyses

that utilized the full spectral range for both calibration and

validation sets.

In our study, to diminish the adverse effects of noise, an array of

preprocessing techniques was applied to the spectral data. The

analysis revealed that preprocessing notably enhances the model’s

performance over the raw spectral data. According to Table 5,

integrating PLS-DA with SG smoothing yielded the highest

prediction accuracy. In contrast, the SNV and MSC treatments

produced somewhat inferior outcomes. Additionally, the efficacy of

these methods varied across the three examined spectral ranges.

The premier performance was achieved by a PLS-DA model that

utilized the entire spectral range combined with SG smoothing,

achieving calibration and validation accuracies of 96.5% and

96%, respectively.

An analysis of the mixing matrix uncovered significant

discrepancies in the model’s ability to differentiate among species

across the spectral ranges. Specifically, the NIR range’s accuracy in
TABLE 4 The accuracy of PCA model with different preprocessing method.

383 ~982 nm 982 ~2386 nm 383 ~2386 nm

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Preprocessing Raw 83.5 83 84 79.5 80 80 91.5 92.5 91.5

SNV 75.5 75 76 75 74 75.5 88 88.5 88

SG
smoothing

81 80.5 80.5 79.5 79 80.5 91 91 91.5

Normalize 84.5 85 85 82.5 82 81 89.5 89.5 89

MSC 83.5 83.5 84 71 71 71.5 87 87 86.5
fr
B CA

FIGURE 6

Mixing matrix of calibration set between true class and predicted class with PCA model (without preprocessing). (A) Spectral data range from 383 nm
to 982 nm, (B) Spectral data range from 982nm to 2386 nm, (C) Spectral data range from 383 nm to 2386 nm.
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identifying Dalbergia bariensis and Dalbergia stevensonii was

notably low, coupled with recurrent misclassifications between

Dalbergia tucurensis and Dalbergia cochinchinensis. These issues

were mitigated when applying the full spectral range, which also

improved the kappa coefficient, underscoring its importance in

reflecting the model’s overall reliability and not just accuracy. This

underscores the importance of selecting an apt spectral range to

ensure accurate species identification and balanced evaluation

metrics (Supplementary Table S1).
3.4 Results using SVM

SVM, a supervised machine learning technique, is effective in

addressing regression and classification challenges. It is a non-linear

classification approach that builds a collection of hyperplanes in an

infinite or high-dimensional space. The hyperplane that exhibits the

maximum separation with the nearest training data point from any

class ensures accurate classification (Tian et al., 2014). Unlike the

PLS-DA model, SVM is not affected by the distribution of distinct

sample classes.

Relative to the performance of the PLS-DA model, the SVM

showcased enhanced effectiveness, as evidenced in Figure 8 and

Table 6. Notably, leveraging data across the full spectral range in

conjunction with the SVM model led to improved accuracy. In

parallel with the PLS-DA model, the SVM model reached peak
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accuracy with the application of SG smoothing. Employing SG

smoothing allowed for the achievement of impeccable 100%

accuracy within both the Vis and NIR spectral ranges.

Furthermore, when integrating both Vis and NIR spectral ranges,

the developed SVM model is capable of reaching 100% accuracy,

both in the absence of data preprocessing and when employing SG

smoothing, normalization, and MSC as preprocessing techniques.

The only scenario where accuracy diminishes is when the SNV

algorithm is applied for data preprocessing.
3.5 Results using CNN

In our study, we assessed the CNN model’s performance by

applying the trained model to the calibration set and validation set,

cross-validation set and calculating accuracy. Additionally, we used

the confusion matrix to further analyze the model’s classification

capabilities. This series of steps not only ensured the effectiveness of

our model but also provided a clear framework for deep learning

analysis of hyperspectral data.

Figure 9 and Table 7 encapsulate the accuracy outcomes of our

CNN model’s deployment and assess the impacts of various

preprocessing algorithms. Figure 10 illustrates the accuracy and

loss curves for the CNN model across the spectrum, ranging from

383 nm to 2386 nm, when no data preprocessing is applied. It’s

evident that the accuracy achieved by the CNN model across
TABLE 5 The accuracy of PLS-DA model with different preprocessing method.

383 ~982 nm 982 ~2386 nm 383 ~2386 nm

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Preprocessing Raw 93.2 93 94 89.2 87.5 88 93.2 93.5 94

SNV 88 87.5 88.5 88.8 86 87 88.8 87 88.5

SG
smoothing

95.8 95 96 92 89 90.5 96.5 96 96

Normalize 95.8 95 96 90.3 87.5 89.5 95.8 95 96

MSC 85.5 84.5 87 88 86 87 87.5 85.5 88
fro
B CA

FIGURE 7

Mixing matrix of calibration set between true class and predicted class with PLS-DA model (without preprocessing). (A) Spectral data range from 383
nm to 982 nm, (B) Spectral data range from 982nm to 2386 nm, (C) Spectral data range from 383 nm to 2386 nm.
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different wavelength ranges substantially surpasses that of the PLS-

DA model. In comparison with the SVM model, an impressive

100% accuracy is attainable for each wavelength range model upon

selecting a suitable data preprocessing technique. However, it’s

crucial to acknowledge that, contrary to traditional models,

employing the SG smoothing algorithm in conjunction with the

CNN model tends to deteriorate the model’s predictive

performance. Techniques such as SNV, Normalization, and MSC

demonstrate their utility across diverse spectral ranges. To

conclude, the selection of an apt data preprocessing method when

constructing a CNN model presents a more nuanced challenge,

underscoring the importance of tailored preprocessing strategies for

optimizing model performance.

To conclude, our CNN model not only excels in terms of

accuracy but also maintains high levels of precision, recall, F1-

scores, and kappa coefficients (Supplementary Table S1), illustrating

its robustness and the effectiveness of our deep learning approach in

handling hyperspectral data classification.
4 Discussion

In recent years, the Vis/NIR technique has garnered attention

for identifying precious woods [41], with extensive exploration into

spectroscopic methods for rosewood identification (Yang et al.,

2012; Snel et al., 2018; Raobelina et al., 2023). Yet, the selection of
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the most appropriate wavelength range has been largely overlooked.

Using an unsuitable wavelength range not only diminishes

identification accuracy but also escalates equipment costs. Our

study aims to address this issue by constructing a classification

model leveraging spectral data within the Vis, NIR, and the

entire ranges.
4.1 Scientific basis for wavelength selection

The strategic selection of specific wavelength ranges was

meticulously informed by a thorough analysis of the unique

spectral characteristics of Dalbergia woods. As depicted in

Figure 3, notable differences in the Vis and NIR spectra are

evident, with prominent absorption peaks at 760, 950, 1200, 1590,

1840, 2020, and 2300 nm. These peaks are indicative of molecular

bond vibrations involving O–H, C–H, C–O, and N–H, which

illuminate the complex chemical interactions within the wood

samples. This detailed spectral data underscores the capability of

Vis/NIR-HSI technology for precise identification of wood samples.

By selecting the entire wavelength range of 383 nm to 2386 nm,

we captured the most extensive spectral information, thereby

significantly enhancing the robustness of our predictive models.

This choice highlights the importance of adopting a comprehensive

spectral perspective that spans both Vis and NIR light, fully

leveraging the chemical and physical properties of the samples.
TABLE 6 The accuracy of SVM model with different preprocessing method.

383 ~982 nm 982 ~2386 nm 383 ~2386 nm

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Preprocessing Raw 99 98 99 99.5 99 99.5 100 99.5 100

SNV 96.5 96 97 96.8 96 96 96.5 95 97

SG
smoothing

100 99.5 100 100 100 100 100 100 100

Normalize 99.8 99 100 100 99.5 100 100 98 100

MSC 99 97.5 99 99.5 99 99.5 100 98.5 100
f

B CA

FIGURE 8

Mixing matrix of calibration set between true class and predicted class with SVM model (without preprocessing). (A) Spectral data range from 383
nm to 982 nm, (B) Spectral data range from 982nm to 2386 nm, (C) Spectral data range from 383 nm to 2386 nm.
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This integration of spectral insights optimally refines our

wavelength selection strategy, tailoring it to meet the specific

demands of HSI applications and ensuring that critical features

crucial for differentiating wood species are meticulously captured.

This methodical selection process not only is scientifically

justified but also enhances the practicality and accuracy of wood

species identification using HSI technology, thereby improving both

the effectiveness and precision of our analytical approach.
4.2 Optimal model selection

In our experiments, the integration of PCA with classifiers

demonstrated considerable variability in performance across

different spectral ranges. Utilizing PCA across the full spectral

range yielded excellent classification accuracy, benefiting from the

broad coverage that captures a diverse range of chemical

interactions crucial for differentiating wood species. This suggests

that the use of the full spectral range significantly enhances the

effectiveness of PCA.

PLS-DA models excelled in managing high-dimensional data

and addressing multicollinearity, proving particularly effective for

datasets that are variable-rich but sample-sparse. Concurrently,

SVM models demonstrated their efficacy in constructing optimal

hyperplanes in high-dimensional spaces, significantly improving
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class separation, which is ideal for managing smaller samples or

more complex data scenarios. Within the context of hyperspectral

data for wood species analysis, CNN models provided distinct

advantages over PLS-DA and SVM models. CNNs inherently

learn complex spatial and spectral features from hyperspectral

data without the need for manual feature extraction, an

invaluable attribute given the complexity of the data. Their deep

architecture facilitates effective management of high-dimensional

data, enhancing classification and identification accuracy by

capturing subtle variations in wood data. Moreover, CNNs exhibit

robust generalization capabilities, maintaining high performance

across a variety of new and diverse wood samples. Despite their

requirement for substantial computational resources and large

datasets, the exceptional ability of CNNs to handle hyperspectral

images—especially in learning intricate features and managing

high-dimensional data—establishes them as a highly promising

tool for qualitative research in wood species. The CNN model

developed in this study delivered reliable results across three

wavelength ranges, outperforming the PLS-DA model in terms of

accuracy, and equaling the reliability of the SVM model. However,

this investigation was limited to spectral data of wood samples, with

spatial data aspects remaining unexplored. Thus, CNN models

based on hyperspectral data have a broader potential for research.

Additionally, we found that CNN models tailored to different

wavelength ranges require uniquely optimized data preprocessing
B CA

FIGURE 9

Mixing matrix of calibration set between true class and predicted class with CNN model (without preprocessing). (A) Spectral data range from 383
nm to 982 nm, (B) Spectral data range from 982nm to 2386 nm, (C) Spectral data range from 383 nm to 2386 nm.
TABLE 7 The accuracy of CNN model with different preprocessing method.

383 ~982 nm 982 ~2386 nm 383 ~2386 nm

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Calibration
Set (%)

Cross-
Validation
Set (%)

Validation
Set (%)

Preprocessing Raw 98.8 98 99 100 98 98.5 100 99 100

SNV 100 100 100 100 98 98 100 99.5 100

SG
smoothing

99.5 97 98.5 99 98.5 99.5 99 99 99.5

Normalize 100 97.5 99.5 99.7 98.5 99 100 99 99.5

MSC 100 100 100 100 99 99.5 99.3 96 97.5
fro
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approaches, underscoring the necessity for precise preprocessing

method selection according to the spectral data types and

test samples.
4.3 Effectiveness of
preprocessing techniques

SNV, SG smoothing, normalization, and MSC are four

preprocessing techniques widely used in spectroscopic data analysis

to improve data quality before further analysis (Chen et al., 2011).

SNV effectively corrects scatter effects and removes multiplicative

interferences from spectra by normalizing each sample—subtracting

the mean and dividing by the standard deviation, which significantly

reduces variability among samples. SG smoothing, a robust filtering

technique, applies a polynomial regression over a moving window

across the data, adeptly reducing noise while preserving critical

features such as peak height and width. Conversely, normalization

scales the data to a specific range or unit norm, ensuring that

variations in the dataset reflect true differences in the

measurements, thereby facilitating comparison across different

samples or datasets. MSC enhances spectral comparability by

adjusting for variations in light scattering and absorption based on

a reference or mean spectrum, thus improving analytical accuracy.

In comparison, SNV and MSC are primarily focused on

correcting scatter effects and reducing sample variability, thereby

enhancing spectral quality by compensating for physical

discrepancies. SG smoothing, tailored for noise reduction, and

normalization, aimed at calibrating the data scale, collectively

work to ensure consistency and augment data clarity and
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interpretability. This study adopts a comprehensive preprocessing

approach that integrates SNV, SG smoothing, normalization, and

MSC to optimize the spectral data for analysis.

Our analysis assessed how these preprocessing techniques

impact the performance of four models: PCA, PLS-DA, SVM, and

CNN. Each model exhibits unique responses to preprocessing due

to its specific data processing needs. PCA showed optimal

performance without preprocessing, achieving accuracies of 91.5%

in both the calibration and validation sets, and 92.5% in the cross-

validation set across the full spectral range. Techniques such as SNV

and SG smoothing tended to decrease PCA’s accuracy, potentially

by altering essential spectral features. PLS-DA benefits from

preprocessing that corrects multicollinearity and enhances data

uniformity, integral to its regression-based framework. SVM gains

advantages from methods like SG smoothing, which clarify class

boundaries by reducing noise, crucial for its hyperplane-based

classification strategy. CNN’s response varied depending on the

preprocessing method; techniques that preserve the original spectral

integrity while reducing noise, such as MSC, generally bolster CNN

performance by enhancing the model’s capacity to discern

discriminative features from complex hyperspectral images.

In summary, while certain models like PCA favor minimal

preprocessing to retain detailed spectral information, others like

PLS-DA and CNN may require more intensive preprocessing to

effectively prepare data for analysis. This highlights the necessity of

aligning preprocessing techniques with the specific requirements of

each model to maximize performance in HSI applications. Future

research should focus on developing preprocessing strategies that

leverage the strengths of each model to improve accuracy

and effectiveness.
FIGURE 10

The accuracy and loss curves of CNN model range from 383 nm to 2386 nm without preprocessing.
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4.4 Comparison with traditional methods

Our study demonstrates that HSI combined with machine

learning significantly surpasses traditional wood identification

methods such as microscopy or chemical assays, primarily in

terms of non-destructiveness, efficiency, and accuracy. Traditional

techniques, often labor-intensive and destructive, can compromise

sample integrity and are limited in their ability to differentiate

closely related species due to their reliance on visible morphological

or chemical characteristics.

In contrast, HSI provides a comprehensive analysis by capturing

a continuous spectrum for each pixel in the image, offering detailed

insight into both the chemical and physical properties of wood

samples across a broad spectral range. This method allows for the

identification of subtle differences in wood species that traditional

methods might miss. For instance, HSI can detect unique spectral

signatures associated with specific chemical bonds and structures

within the wood, which are indicative of different species.

Moreover, when comparing Vis/NIR HSI to conventional Vis

and NIR spectroscopy techniques, HSI offers enhanced capabilities.

While Vis and NIR spectroscopy provide valuable data regarding

the wood’s composition, they typically do so at discrete wavelengths

and often require prior knowledge of which wavelengths are most

relevant for differentiation. Vis/NIR HSI, on the other hand,

captures data across a contiguous spectral range, from visible to

near-infrared, allowing for a more flexible and detailed analysis

without the need for predefined spectral bands.

The integration of machine learning with HSI further amplifies

these advantages. Machine learning algorithms can process the

complex, high-dimensional data generated by HSI, efficiently

classifying wood species based on learned spectral patterns. This

combination not only increases the accuracy of species

identification but also enhances the speed and automation of the

process, making it highly suitable for large-scale and real-

time applications.

These advanced capabilities of HSI and machine learning

contribute significantly to conservation efforts and sustainable

forestry practices by providing a rapid, accurate, and non-

destructive means of identifying wood species, essential for

combating illegal logging and promoting biodiversity preservation.

As such, HSI represents a substantial improvement over both

traditional methods and conventional Vis/NIR spectroscopy,

promising a new standard for the field of wood identification.
4.5 Future directions in wood
identification technology

Future research in wood identification leveraging HSI and

machine learning should prioritize the integration of advanced

algorithms such as Generative Adversarial Networks (GANs) and

deep reinforcement learning to enhance both accuracy and

efficiency. By integrating HSI with data from microscopic

structures, chemical compositions, and geographic tagging, system

robustness can be significantly improved through multimodal

analysis. Expanding the hyperspectral database to encompass a
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broader range of species and utilizing adaptive learning and transfer

learning techniques will facilitate adjustments to species-specific

characteristics and environmental variations, thereby advancing the

limits of accuracy and processing speeds.

In practical applications, specific models such as PCA, PLS-DA,

SVM, and CNN each follow unique optimization pathways. PCA is

essential for reducing dimensionality while preserving critical

spectral data. PLS-DA can be further refined to more effectively

manage datasets that are rich in variables. SVM can be optimized

through kernel functions to enhance robust classification

capabilities, and CNN can be tailored through network

architectures to improve deep feature learning. These

advancements are crucial for applications in ecological

conservation, biodiversity preservation, and timber regulation,

providing precise identification capabilities that aid in combating

illegal logging and supporting sustainable forestry practices.
5 Conclusions

Our study marks significant advancements in the non-

destructive identification of Dalbergia species through the use of

Vis/NIR HSI combined with sophisticated modeling techniques

such as PCA, PLS-DA, SVM, and CNN. The implementation of

these methods greatly enhances both the accuracy and efficiency of

wood species identification, offering essential support for

conservation efforts and the enforcement of trade regulations.

Notably, with optimal preprocessing, both SVM and CNN models

achieve 100% accuracy across NIR and full spectral ranges.

Furthermore, our results highlight the superiority of Vis/NIR

HSI coupled with machine learning over traditional wood

identification methods such as microscopy or chemical assays. By

utilizing continuous spectral data and advanced computational

models, HSI provides a more comprehensive and non-destructive

analysis, which is highly efficient and accurate. This capability is

especially critical for distinguishing closely related species and

supporting sustainable forestry practices. Additionally, compared

to conventional Vis and NIR spectroscopy, Vis/NIR HSI offers

more detailed insights due to its ability to capture a continuous

spectral range, thus enabling a more flexible and comprehensive

analysis without the limitations of predefined spectral bands.

Looking ahead, incorporating more sophisticated machine

learning algorithms, such as GANs and deep reinforcement

learning, shows great promise for further improving identification

accuracy. Future research should also aim to expand the

hyperspectral database to encompass a wider range of wood

species and integrate data from various sources, such as

microscopic structure images and chemical composition analysis,

to enhance the system’s robustness and generalization capabilities.

These technological advancements not only offer immense

potential for applications in ecological conservation and

biodiversity preservation but also play a crucial role in regulating

the timber industry. By providing a precise, rapid, and non-

destructive method of identification, these technologies ensure

that only legally sourced timber is traded, thereby playing a vital

role in combating illegal logging and preserving global biodiversity.
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