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Plant diseases significantly impact crop productivity and quality, posing a serious

threat to global agriculture. The process of identifying and categorizing these

diseases is often time-consuming and prone to errors. This research addresses this

issue by employing a convolutional neural network and support vector machine

(CNN-SVM) hybrid model to classify diseases in four economically important

crops: strawberries, peaches, cherries, and soybeans. The objective is to

categorize 10 classes of diseases, with six diseased classes and four healthy

classes, for these crops using the deep learning-based CNN-SVM model. Several

pre-trained models, including VGG16, VGG19, DenseNet, Inception, MobileNetV2,

MobileNet, Xception, and ShuffleNet, were also trained, achieving accuracy ranges

from 53.82% to 98.8%. The proposed model, however, achieved an average

accuracy of 99.09%. While the proposed model's accuracy is comparable to that

of the VGG16 pre-trained model, its significantly lower number of trainable

parameters makes it more efficient and distinctive. This research demonstrates

the potential of the CNN-SVM model in enhancing the accuracy and efficiency of

plant disease classification. The CNN-SVM model was selected over VGG16 and

other models due to its superior performance metrics. The proposed model

achieved a 99% F1-score, a 99.98% Area Under the Curve (AUC), and a 99%

precision value, demonstrating its efficacy. Additionally, class activationmaps were

generated using the Gradient Weighted Class Activation Mapping (Grad-CAM)

technique to provide a visual explanation of the detected diseases. A heatmap was

created to highlight the regions requiring classification, further validating the

model's accuracy and interpretability.
KEYWORDS

convolutional neural network (CNN), support vector machine (SVM), gradient-weighted
class activation mapping (GRAD-CAM), pre-trained models, plant diseases
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1 Introduction

In Bangladesh, agriculture is crucial due to a growing

population and higher food demand. Besides, the gross national

income of the country and the families of the farmers depend on the

agriculture field. Many countries rely on agricultural products and

allied businesses as their primary source of income. One of the most

basic and crucial necessities for any country is the safety and

security of agricultural products Akbar et al. (2022). As plants are

the health of agricultural development, so it is essential to increase

the production of crops by ensuring the health of plant leaves. To

boost plant yield, it’s essential to address the issue of low yield

caused by diseases from bacteria, viruses, and fungi. Moreover,

Plant leaf diseases not only impact our daily lives but also have a

terrible impact on farmers whose families depend on the production

of plants. Identifying and classifying these diseases manually is both

time-consuming and prone to errors. To address this, we suggest a

deep learning approach for accurate and efficient identification and

classification of plant leaf diseases. This method utilizes neural

networks to extract characteristics of diseased parts, enhancing the

accuracy of disease area classification. Detecting these plant diseases

can help prevent them, and deep learning methods are effective for

identification because they analyze data directly, focusing on

specific task outcomes. This paper outlines the steps in a plant

disease detection system and compares deep learning techniques for

detecting plant diseases. To identify diseases by applying deep

learning techniques, this paper introduces four kinds of crop

leaves - Cherry, Peach, Strawberry, and Soybean.

Cherries hold notable importance in human health due to their

rich nutritional profile and potential health benefits. Packed with

antioxidants, particularly anthocyanins, cherries contribute to

combating oxidative stress and inflammation, potentially

promoting heart health and reducing the risk of chronic diseases.

However, the cultivation of cherries is not without challenges, as

various diseases, such as bacterial canker, brown rot, and powdery

mildew, can pose significant drawbacks. The cherry leaves infected

by Podosphaera pannosa will suffer powdery mildew, which is a

serious disease threatening the cherry production industry Zhang

et al. (2019). Thus, identifying a cherry leaf infected by Podosphaera

pannosa only needs to identify whether the cherry leaf is healthy or

diseased. To identify the diseased cherry leaves in the early stage, a

combined technique of machine learning and deep learning have

been used.

Peaches, both delicious and nutritious, hold significant

importance in the realm of nutrition and well-being. Several

diseases can attack peaches, including Bacterial spots, also known

as Bacteriosis or shot holes. This disease also can be called peach

spot. However, Bacteriosis severely affects peach crop production.

Bacteriosis typically develops on the peach leaves first; therefore, the

leaves are the primary source for recognizing plant disease Ebrahimi

et al. (2017). The diseases reduce the yield of peaches and cause

harm to human health. Thus, it is important to find rapid and

accurate methods to identify peach diseases and further locate and

segment the areas of the lesion in earlier stages Yao et al. (2022).

In many parts of the world, soybeans are the main food crop for

people and an important source of oil for human consumption. But
Frontiers in Plant Science 02
in recent years, some factors such as natural disasters, soil erosion,

and fertilizer unreasonably lead to the occurrence of crop diseases.

These diseases seriously affect soybean yield and quality in some

aspects Gui et al. (2015). Traditional diagnosis of these diseases

relies on disease symptom identification based on naked-eye

observation by pathologists, which can lead to a high rate of false

recognition. With the help of machine learning and deep learning

knowledge, this infection of leaves can be identified, and take

necessary steps in an earlier stage. This will lead to the prevention

of the infection rate of other leaves. In this proposed article, three

types of soybean diseases such as soybean sudden death, soybean

yellow mosaic, and soybean bacterial blight which are significant

threats to soybean plant production, have been classified as

providing one healthy class.

Strawberries are one of the most sensitive and important crops

in the world. Strawberries have high nutritional content and

commercial value. So, it is a major fruit for daily consumption

Skrovankova et al. (2015). Strawberries are easily infected by several

plants’ phytopathogenic fungi, bacteria, and viruses Maas (2012);

Pan et al. (2014); Husaini and Neri (2016). That’s why the diseases

in strawberry leaves become the main interruption in its yield.

Strawberry diseases are manually identified by growers, which is

laborious and time-consuming. The shrinking workforce in

agricultural counties also complicates this issue, since it is harder

to accurately predict disease severity over a large scale. Therefore,

it’s urgent to develop an automatic system to identify the diseases in

strawberry leaves Xiao et al. (2020). To accomplish the automatic

identification of diseases, this article introduces a smart

identification system using an image recognition technique for

the detection of strawberry diseases using a Convolutional Neural

Network (CNN) model. The traditional pathology method involves

visually observing diseases, but it is labor-intensive, time-

consuming, and heavily dependent on plant pathologists. To

address these challenges, the Enzyme-linked Immunosorbent

Assay (ELISA) has been suggested, capable of detecting viral

protein content in plant extracts Clark and Bar-Joseph (1984).

However, it proves less effective for diagnosing fungal and

bacterial diseases. Another method, real-time polymerase chain

reaction (PCR), is employed for testing plant pathogens, offering

superior speed and accuracy compared to the aforementioned

techniques Schaad and Frederick (2002). Nevertheless, widespread

implementation is hindered by the requirement for skilled

operators and the high cost of equipment. Consequently, we

propose an image-based diagnostic method using deep learning.

This approach is characterized by high accuracy, ease of

implementation and the potential for real life implementation.

The research offers some contributions. The contributions are –
• Building a deep learning CNN-based model to extract the

most relevant features of the plant leaf images.

• Use of machine learning SVMmodel to classify the diseased

and healthy plant leaf images.

• Keeping the model’s parameters low, will produce a low-

size model to use comfortably on any device.

• Comparison of the proposed CNN Model with some pre-

trained model to show its acceptance and feasibility, as the
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proposed model is superior to the transfer learning models

in terms of parameters and accuracy.

• Comparison with the existing research works by providing

the model’s performance in terms of training accuracy,

validation accuracy, precision, recall, F1-score, Receiver

Operating Characteristics (ROC) curve, precision Vs

recall curve, and the number of trainable parameters.

• Use of explainable AI to visualize the diseased areas that

classify the plant leaves.
2 Related works

The early identification of the plant leaf disease is vital for

profitable harvest yield in the agricultural field. Numerous types of

research have been carried out to detect the leaf disease on the

agricultural land. To achieve this goal, Hang et al. (2019) developed

an integrated CNN-based model using squeeze and the Squeeze-

and-Excitation module to classify 10 classes of plant leaves for 3

crops - apple, cherry, and corn. To achieve a good classification

accuracy and lightweight model, the model was trained using global

average pooling layers instead of dense layers. With a dataset

containing less number of images, the proposed research work

achieved 91.7% accuracy in identifying the diseases in cherries.

Zhang et al. (2019) proposed a CNN model which was built based

on a pre-trained model named GoogleNet. The model was applied

in a binary classification with only 1200 images of cherry plant

leaves. The experiment got an accuracy of 99.6% by adopting 5-fold

cross-validation.

In order to detect bacteriosis in peach leaves, Akbar et al. (2022)

looked for a novel lightweight CNN model based on VGG-19 and

got the experimental result with 99% accuracy. The research was a

binary classification of healthy and diseased peach leaves with a

large dataset. The dataset consists of 1000 images, of which 70% are

used for training and 30% for testing the Models. The LWNet

Model uses 13 convolutional layers, the count of max-pooling is 7,

and the dropout rate is 0.5 with the ReLu activation function.

Alosaimi et al. (2021) proposed an innovative method for the binary

classification of peach leaves and fruits with 3,199 images. The novel

method consists of a CNN-based model and can also locate the

region of disease and help farmers find appropriate treatments to

protect peach crops. This innovative model got only 94% accuracy.

Soybean is another plant that needs to be identified whether it is

infected or not. Wallelign et al. (2018) designed a CNNmodel based

on LeNet architecture to classify four classes including a healthy

class of soybean leaf. The authors collected a huge dataset of 12,673

samples and got an impressive accuracy of 99.32%. The research

work was classified by only four classes of soybean leaves. Wu et al.

(2023) proposed a classification method based on the improved

ConvNeXt model where an attention module was used to generate

feature maps at various depths and increase the network’s focus on

discriminative features as well as reduced background noise. The

authors got an experimental accuracy of 85.42% which was

comparatively poor in terms of AI-based disease detection.

Although the research mentioned some evaluation metrics and a
tiers in Plant Science 03
method to visualize the images, the number of model parameters

was not satisfactory, as the model was not lightweight. Moreover,

the model classified only three classes of soybean leaves including

one healthy class. Yu et al. (2022) designed a model by constructing

a residual attention layer (RAL) using attention mechanisms and

shortcut connections, which further embedded into the residual

neural network 18 (ResNet18) model to establish a new model of

RANet based on attention mechanism and idea of residuals. The

model achieved 98.49% accuracy for the recognition of three types

of soybean leaf disease without providing a healthy class. Moreover,

their proposed model was not lightweight. Jadhav et al. (2019)

presented a novel system using the support vector machine (SVM)

and K-Nearest Neighbor (KNN) classifiers used for classifying

soybean diseases using color images of diseased leaf samples. The

research was applied to the four classes of soybean leaves - blight,

brown spot, frog eye leaf spot diseases, and Healthy samples with an

accuracy of 87.3% and 83.6%. Besides, the authors didn’t mention

the lightweightness of their model and there was no method of

visualization through explainable AI in terms of detecting

strawberry diseases. The automation of agriculture and image

recognition techniques are indispensable.

Xiao et al. (2020) proposed a CNN model based on ResNet50

that achieves a classification accuracy rate of 100% for leaf blight

cases affecting the crown, leaf, and fruit; 98% for gray mold cases

and 98% for powdery mildew cases. The overall accuracy rate for

the feature images of the dataset was 99.60%. The dataset was not

augmented as the number of total images was just 1306 and the

feature images were built up manually. Moreover, the authors didn’t

use some performance evaluation metrics such as confusion

metrics, ROC curves, and PR curves to compare the experimental

results. Besides, there was no talk about visualization techniques.

With the 5 types of classes, the authors managed to get a decent

accuracy. Dhivya and Shanmugavadivu (2021) proposed a work

that was more concentrated on image pre-processing for the

reduction of noise using various filtering methods. The image

preprocessing helps to enhance the feature extraction and

classification of the leaf disease. The experimental results on the

proposed separating model have been assessed regarding PSNR and

MSE incentive to clarify and demonstrate the precision of the sifting

models by using some image filters based on gradients. Abbas et al.

(2021) worked with four pre-trained CNN models to detect the

diseases of strawberry scorch with just only 2 types including one

healthy class. All the trained CNN models were integrated with a

machine vision system for real-time image acquisition. The authors

showed an impressive comparison between the transfer learning

models and tried to implement the best one for the identification of

strawberry disease where EfficientNet-B3 achieved 92% and 97%

classification accuracy for initial and severe stage leaf scorch disease

respectively. SqueezeNet recorded the lowest disease classification

accuracy values in comparison with AlexNet, VGG-16 and

EfficientNet-B3. Shoaib et al. (2023) proposed a CNN model that

can identify four prevalent diseases: powdery mildew, rust, leaf spot,

and blight from 8000 images. The model was trained with multiple

hyperparameters, such as the learning rate, number of hidden

layers, and dropout rate, and attained a test set accuracy of

95.5%. The authors presented a comparison by changing different
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hyperparameters and displayed hyperspectral images representing

four prevalent types of plant diseases. The results demonstrate that

the proposed CNN model performed better when compared with

other machine learning image classifiers such as Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, and

Random Forest.

Based on the literature reviews, the following gaps have

been identified:
Fron
• Many studies highlight challenges with limited dataset sizes,

impacting the model’s ability to generalize effectively. There

is a need for larger and more diverse datasets to enhance

model robustness and performance across various

environmental conditions.

• The pursuit of lightweight models is emphasized in some

studies; however, achieving both high accuracy and model

simplicity remains a challenge. Research gaps exist in the

development of efficient yet accurate lightweight models

suitable for resource-constrained environments, such as on-

field applications.

• Several studies achieve high accuracy in disease

classification but lack in explaining the affected regions

within plant images. Future research should focus on

integrating explainable AI techniques to visualize and

interpret model decisions, aiding farmers in targeted

disease management.

• Some studies fall short in providing a comprehensive set of

evaluation metrics, such as confusion matrices, ROC curves,

and PR curves. A standardized and thorough evaluation

approach is essential for comparing models and

understanding their performances.

• Many studies focus on binary or limited multiclass

classification, potentially overlooking a broader spectrum

of plant diseases. Research gaps exist in addressing

challenges associated with an increased number of disease

classes and ensuring accurate identification within diverse

plant species.

• While several studies propose innovative models, there is

often a lack of emphasis on the lightweight nature of these

models, critical for practical on-field applications. Future

research should prioritize the development of lightweight

models without compromising accuracy.

• Certain studies lack comprehensive comparisons between

different models or hyperparameters, limiting insights into

the effectiveness of various approaches.

• While some studies explore hyperparameters, there was no

room for more systematic investigations into the impact of

hyperparameter variations on model performance.
With the advancement of machine learning, all the traditional

techniques of observing plant diseases have been considered time-

consuming and complex. To assist farmers in increasing crop

production and identifying diseases at earlier stages, this research

proposed a CNN-based technique that combines machine learning

and deep learning models. Our research purpose is to make the

farmers familiar with the advancement of modern technology easily
tiers in Plant Science 04
and identify plant diseases without any confusion. To achieve this

goal, different performance evaluation metrics have been added to

this research that represent the acceptance of our CNN-

SVM model.
3 Materials and methods

For the identification of four plant leaf diseases, a 2D CNN-

SVM model has been proposed in this research. The model was

trained using the Kaggle platform to get the advantages of a

Graphics Processing Unit (GPU). To implement the model,

various Python libraries like numpy, and pandas and machine

learning frameworks like tensorFlow, and keras were applied.

Additionally, an explainable AI technique Grad-CAM was used to

know the explanation of the outcome performed by the

proposed model.
3.1 Overall process of establishing the
recognition model

Firstly, a large dataset containing ten classes of four types of

crop images was collected combined from Kaggle datasets named

‘PlantVillage’ and ‘Soybean Diseased Leaf Dataset’. In the final

dataset, we collected four plants (peach, cherry, soybean, and

strawberry) healthy and diseased data. After collecting the dataset,

we did feature scaling (Normalization) to make our picture size

similar and data augmentation like rotating those pictures in

different positions to train our model correctly. So, data

augmentation is used to increase the diversity and size of a

training dataset by applying various transformations to the

existing data. By generating new samples from the original data

through transformations such as rotation, flipping, cropping,

scaling, or adding noise, data augmentation helps improve the

robustness and generalization of deep learning models. After data

augmentation and scaling, the dataset was ready to be trained by

our proposed CNN-SVM model.

As demonstrated in Figure 1, for the identification of four plant

leaf diseases, a 2D CNN-SVM model has been proposed in this

research. CNNmodel has the power of extracting features efficiently

which helps in the classification system. The CNN model has been

fed an enormous dataset that was also augmented to get a

generalized and reliable model. In this research, for classification,

we used a machine learning model Support Vector Machine (SVM)

that works with numerical data. Therefore, CNN works as the

collector of featured data for the SVM model. Moreover,

Convolutional Neural Networks (CNNs) have revolutionized

image analysis and pattern recognition, offering several

advantages over tradit ional observation methods. By

implementing the CNN, we extracted features from the dataset,

Now, we need to detect and classify key classes from those features

in this step we used SVM, a machine learning method for

classification. By implementing SVM, we successfully classified

the healthy and diseased classes of the cherry, peach, soybean,

and strawberry. After correctly classifying the healthy and disease
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classes, we validate the result by obtaining some performance

evaluation metrics - training and validation accuracy curve, loss

curve, ROC and confusion matrix.
3.2 Dataset description

The importance of a well-curated and representative dataset in

deep learning research cannot be overstated. A dataset serves as the

foundation upon which deep learning models are built, trained, and

evaluated. The quality, diversity, and size of the dataset directly

influence the performance, generalization, and reliability of the

models developed.

To maintain the good performance, generalization, and

reliability of the proposed model, a dataset with four types of

plant leaves was collected from the publicly available

‘PlantVillage’ dataset and public available Kaggle ‘Soybean

Diseased Leaf Dataset’. The following Table 1 shows that a total

11,504 numbers of plant leaf images were used as the dataset to feed

the proposed novel model. The merged dataset consists of four plant

leaves – Cherry, Peach, Strawberry, and Soybean. Each type of plant

includes healthy and some diseased classes. To make the model

well-trained, a total 9,220 numbers of images have been used as

training datasets, and 2,304 images for testing purposes are

organized into 10 classes (Six diseased classes and four healthy

classes). Therefore, the split ratio of the training and testing dataset
Frontiers in Plant Science 05
is approximately 4:1. Here, Figure 2 depicts example images from all

the classes of the dataset.
3.3 Data preprocessing

Image processing plays a pivotal role in enhancing the

effectiveness of deep learning models by facilitating the extraction

of meaningful features from visual data. In the area of computer

vision, where deep learning models are commonly employed for

image classification, object detection, and segmentation tasks, raw

images often contain an abundance of information. In this research,

for the processing of images, two steps have been followed.

3.3.1 Data scaling/resizing
Data scaling or resizing is a crucial preprocessing step in the

realm of deep learning, especially for models designed to extract

features from diverse datasets. Resizing involves adjusting the

dimensions of input data to a uniform size. By bringing input

features to a standardized scale, the optimization process becomes

more efficient. In this study, the images were resized into 120 X 120

for both the proposed 2D CNN-SVM model and the transfer

learning models. Therefore, it becomes ideal to measure the

performance of the proposed model and transfer the learning

model on a uniform scale.

3.3.2 Image augmentation
Augmentation is a useful technique to make our model more

adaptable and avoid getting too focused on specific details. We

applied augmentation to generate more images and increase the

dataset’s size. The main goal of augmentation is to add some variety

to the images quantitatively, which aids the model in avoiding

overfitting during training. Overfitting happens when the model

starts memorizing random details instead of grasping the actual

patterns in the data. Augmentation achieves this by introducing

distortions to the images. As demonstrated in Figure 3, data

augmentation includes different tricks like zooming, shearing,

rotating, shifting in height and width, and flipping horizontally or

vertically. These techniques create a diverse set of images for our

model to learn from, promoting better generalization. For this

purpose, some augmentation techniques have been applied in the
TABLE 1 Dataset details.

Plant Disease Type Training Testing

Cherry
Cherry Mildew
Cherry Healthy

842
682

210
171

Peach
Peach Spot

Peach Healthy
1,838
288

459
72

Strawberry
Strawberry Scorch
Strawberry Healthy

887
365

222
91

Soybean

Soybean Bacterial Blight
Soybean Sudden Death
Soybean Yellow Mosaic

Soybean Healthy

71
88
88

4,071

17
22
22

1,018

Total 9,220 2,304
FIGURE 1

An overview of the whole methodology of the research.
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A

B D E

F G IH
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FIGURE 3

Sample of some augmented leaf images – (A) Original leaf image (B) Zoomed image (C) Sheared image (D) Rotated image (E) Fill Mode image (F)
Horizontally Flipped image (G) Vertically Flipped image (H) Height Shifted image (I) Width Shifted image.
A B D E

F G IH J

C

FIGURE 2

Visual Description of the dataset – (A) Cherry Healthy Leaf (B) Cherry Mildew (C) Peach Healthy Leaf (D) Peach Spot (E) Soybean Bacterial Blight (F)
Soybean Healthy (G) Soybean Sudden Death (H) Soybean Yellow Mosaic (I) Strawberry Healthy (J) Strawberry Scorch.
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training images so that the model can observe the dataset from

various aspects and validate the dataset from the memorized

features. After applying eight techniques of data augmentation,

our training dataset gathered a huge collection of datasets. So, a total

of 73, 760 images were achieved from the augmentation.
3.4 Proposed hybrid method of CNN
and SVM

The proposed hybrid (CNN-SVM) model is designed to

combine both CNN & SVM advantages for the good classification

of plant diseases. In this research, a simple structured 2D CNN

model has been proposed to absorb the most important features in

the plant leaf images. As CNN is a powerful tool for extracting

features and taking two-dimensional inputs, we chose the CNN

model to reach our goal. Moreover, enhancing the classification

performance of the model relies on extracting distinctive features

specific to different leaf diseases. These distinctive attributes play a

crucial role in effectively categorizing leaf diseases. The architecture

of the suggested 2D CNN model is depicted in Figure 4. The model

has been formed using four convolutional and max-pooling layers.

A max-pooling layer was added following each convolutional layer.

Each layer is followed by a batch normalization layer.

The batch normalization layer speeds up the training process of

the model. The utilization of batch normalization was implemented

to enhance and expedite the model’s performance by readjusting

and rescaling the inputs of the layers Santurkar et al. (2018).

Besides, the max-pooling layer assumes a pivotal role in the

feature extraction process within convolutional neural networks

(CNNs). Its primary function involves reducing the spatial

dimensions of input feature maps and effectively downsizing

them while preserving essential information. This downsampling

operation facilitates the identification of prominent features by

emphasizing the most significant values within local regions and

removing useless data. This process is called subsampling.

In essence, MaxPooling contributes to the extraction of

dominant features by highlighting the highest values, resulting in

a more refined and condensed representation. Another important

step used in the model is to flatten the layer. when the pooling layer

is applied and the all-important feature is mapped, the flatten layer

converts 2D arrays to 1D arrays before applying a fully connected

layer (CNN-SVM) and is followed by batch normalization. In this

context, the utilization of dropout aimed to mitigate overfitting by

intermittently excluding the training of all nodes within each layer

throughout the training process. This strategic approach led to a

notable acceleration in training speed, contributing to more efficient

model training Peyal et al. (2023). After accelerating the training

speed, it is crucial to note that the fully connected layer represents

the final layer of a neural network. In all neural networks, every

node in this layer is properly connected, and the last layer of the

model works as a machine learning classifier named Support Vector

Machine (SVM). This layer classifies our research goal using the

numerical features collected from the CNN model. This layer

ensures that the information learned and processed through the
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preceding layers is synthesized to produce the final prediction or

classification output.

The following Figure 4 depicts the proposed CNN-SVM model

where the CNN model acts as the most relevant feature extractor

and the SVM model as the disease classifier. The summary of the

proposed model has been drawn in Table 2. The table also shows the

lightweightness of the model where the number of total parameters

is just only 393k which is very impressive and outperforms that of

the transfer learning models mentioned in this research.

Table 3 describes all the hyperparameters of the models including

2D CNN-SVM and transfer learning models – VGG16, VGG19,
FIGURE 4

An overview of the whole methodology of the research.
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DenseNet, Inception V3, MobileNet, MobileNet V2, ShuffleNet and

Xception used in this research.

To show the acceptance of the 2D CNN-SVMmodel, the hyper-

parameters were kept the same for the training purpose of all

transfer learning models. Overall, the experiment helped to detect

the plant leaf diseases impressively.
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4 Experiment and results

4.1 Experimental environment

The experimental environment for image classification using

Convolutional Neural Network (CNN) and Support Vector

Machine (SVM) involved the utilization of the Kaggle platform,

leveraging its available Nvidia P100 GPU with specifications

including 16 GB of GPU memory, a clock speed of 1.32 GHz,

and a performance capability of 9.3 TFLOPS. To enhance model

training efficiency, the input sample size for plant disease images

was adjusted to 120 × 120 pixels to match the real-world operating

conditions. The training process employed a batch size of 32 for

training samples over 350 epochs. The Rectified Linear Unit (ReLU)

activation function was applied, and batch normalization was

incorporated to normalize batch data. The RMSprop optimizer

with a learning rate of 0.001 was chosen for model optimization.

Both the proposed CNN-SVM model and transfer learning models

shared the same training and validation set sample sizes, training

batch configuration, and activation function in the experiment.
4.2 Performance metrics

A classification report serves as a comprehensive overview of

how well a model performs by highlighting crucial metrics like

precision, recall, and F1-score for individual classes. Precision

assesses the accuracy of positive predictions, while recall measures

the model’s capability to identify all relevant instances. The F1 score

combines precision and recall, presenting a consolidated metric.

Additional metrics such as accuracy, indicating overall correctness,

and the confusion matrix, which breaks down true positives, true

negatives, false positives, and false negatives, contribute to a

thorough evaluation. Besides the Precission-Recall curve (PR),

Region of Convergence (ROC) and loss curve were also used

indicating the overall impressive function of the research. These

metrics together provide a detailed insight into a model’s strengths

and weaknesses, enabling practitioners to make well-informed

decisions regarding model improvement and selection based on
TABLE 3 Evaluation metrics comparison with transfer learning models.

Models Accuracy Precision Recall F1-Score Parameters Model Size (MB)

DenseNet 53.82% 76% 78% 70% 7053642 26.91

Inception V3 97.70% 98% 97% 97% 47521706 181.28

MobileNet V2 77.65% 97% 97% 97% 3579978 13.66

MobileNet 69.70% 94% 83% 83% 3250058 12.40

ShuffleNet 98.83% 100% 100% 100% 967874 3.70

VGG 16 98.35% 96% 94% 95% 24683850 94.16

VGG 19 97.61% 97% 96% 96% 20106314 76.70

Xception 84.85% 88% 80% 82% 20881970 79.66

Proposed model 99.09% 99% 99% 99% 393674 1.50
TABLE 2 Summary of proposed simple 2D CNN model.

Layer (type) Output Shape Parameters

L1 (Conv2D) (None, 120, 120, 16) 448

max_pooling2d (MaxPooling2D) (None, 60, 60, 16) 0

batch_normalization
(Batch Normalization)

(None, 60, 60, 16) 64

L2 (Conv2D) (None, 60, 60, 32) 4640

max_pooling2d_1 (MaxPooling2D) (None, 30, 30, 32) 0

batch_normalization_1
(Batch Normalization)

(None, 30, 30, 32) 128

L3 (Conv2D) (None, 30, 30, 64) 18496

max_pooling2d_2 (MaxPooling2D) (None, 15, 15, 64) 0

batch_normalization_2
(Batch Normalization)

(None, 15, 15, 64) 256

L4 (Conv2D) (None, 15, 15, 128) 73856

max_pooling2d_3 (MaxPooling2D) (None, 8, 8, 128) 0

Flatten (Flatten) (None, 8192) 0

batch_normalization_4
(Batch Normalization)

(None, 8192) 32768

dropout (Dropout) (None, 8192) 0

dense (Dense) (None, 32) 262176

dense_1 (Dense) (None, 10) 330

Total parameters: 393674

Trainable parameter: 376810

Non-trainable parameter: 16864
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the specific demands of the image classification task. Thus, the

performance of the CNN models was evaluated with these different

evaluation metrics. Precision, recall, F1Score, and test accuracy

metrics were used to evaluate the performance of the

convolutional neural network models that were used in training.

Validation and test outcomes for all CNN models were adapted in

matrices of binary confusion, which are true positive (TP), false

positive (FP), true negative (TN), and false negative (FN)

Skrovankova et al. (2015). The first performance evaluation

criterion, Accuracy rate, is used to evaluate the performance of

network models. The accuracy rate refers to the proportion of the

number of corrected positive predictions to that of the whole

positive predictions Hang et al. (2019). It signifies the ratio of

accurately identified images to the total number of images and is

expressed by:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision measures how accurate your model is when it predicts

positive instances. It’s calculated by taking the number of true

positive predictions and dividing it by the total number of positive

predictions (both true positives and false positives). It can be

quantified as,

Precision =
TP

TP + FP

The Recall measures the efficiency of the neural network in

identifying and categorizing the target, determined through the

following calculation:

Recall =
TP

TP + FN

The F1-score serves as the harmonic mean of precision and

recall, providing a balanced metric that considers both false

positives and false negatives. It is calculated by taking the

reciprocal of the average of precision and recall through the

following equation:

F1 − Score =
2·Precision·Recall
Precision+Recall
4.3 Multiclass classification results

4.3.1 Accuracy graphs
Accuracy is defined as the sum of correct classifications divided

by the total number of classifications. The sum of all diagonal

elements is divided by the sum of all items in the confusion metrics.

Accuracy gives the overall correctness of the predicted model. The

accuracy of the model is drawn across the number of epochs which

is called the accuracy graph. The accuracy graph contains both the

training and validation accuracy (99.15% and 99.09%) in terms of

epoch numbers. According to our research, the first adoption of the

proposed CNN-SVM model has been clear from the accuracy

graphs of our proposed CNN-SVM model which is shown

in Figure 5.
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From Table 3, it is observed that the validation accuracy of

VGG16, VGG19, Inception V3, shuffleNet, MobileNet, MobileNet

V2, DenseNet and Xception are 98.35%, 97.61%, 97.70%, 98.83%,

69.70%, 77,65%, 53.82% and 84.85% respectively. On the other

hand, we checked our model in various epochs and environments

(Table 4) and got the accuracy of 99.09%. In Figure 6, the accuracy

comparison bar graph has also been shown to observe the outcome

of various transfer learning models and the proposed model.

Therefore, it is evident that the evaluation metrics accuracy,

precision, recall, and F1-score of the proposed model are

significantly higher than the transfer learning models which is a

very good indicator of the reliability of the proposed model’s

performance in classifying 10 categories of plant leaf diseases

from a huge dataset using CNN-SVM combined model.
4.3.2 Confusion matrix
The confusion matrix is a table that gives information about

how the test dataset performs on the trained model Sharma et al.

(2022). Various performance measures like accuracy, precision,

recall, or sensitivity and specificity of the model can be calculated

using the confusion matrix Tripathy et al. (2015). The diagonal

values of the confusion matrix represent true positives (TP). To

obtain false negatives, we have to add the values in the

corresponding row items ignoring the true positive values. The

total number of testing samples belonging to a given class can be

calculated by the sum of all items of rows corresponding to that

class (TP + FN). Similarly, the number of false positives (FP) for a

class is obtained by adding the values of the corresponding column

ignoring true positives TP for that class. The total number of true

negative TN for a certain class will be the sum of all columns and

row values ignoring that class’s column and row. However, this

study considered a 10-class problem, which consisted of four

healthy classes and six different unhealthy classes of Cherry,

Peach, Soybean and strawberry leaves. It is noticeable that out of

2304 images, only 21 images were misclassified by the proposed

CNN-SVM model. Therefore, from Figure 7, it is clear that the

proposed model can classify 10 numbers of classes accurately rather

than the existing works.

4.3.3 ROC and PR curves
The ROC curve is a graphical representation of the trade-off

between true positive rate and false positive rate at various

thresholds. It is created by plotting the true positive rate against

the false positive rate across different classification thresholds. The

area under the ROC curve (AUC-ROC) quantifies the overall

performance of the model. A higher AUC-ROC indicates better

discrimination ability. From Figure 8, it is noticeable that the AUC

score for the proposed model is almost nearly one and also it has

surpassed the other transfer learning model’s AUC. It is also known

that a model with a higher AUC-ROC generally performs better.

Besides, ROC curves provide insights into the model’s ability to

discriminate between classes. On the contrary, The PR curve

represents the trade-off between precision and recall at different

classification thresholds. Precision is the ratio of true positives to the

sum of true positives and false positives. Recall is the ratio of true
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positives to the sum of true positives and false negatives. From the

figure, both the ROC and PR curves show an impressive outcome of

the proposed model. In summary, both ROC and PR curves provide

valuable insights into different aspects of model performance.

4.3.4 Experimental research from
different parameters

In order to achieve a reliable and robust classification model, the

research was carried out using different optimizers such as Adam,

SGD and RMSprop. The research was done at 350 epochs but we

got our expected result within 50 epochs to train the model. In this

environment, RMSprop Optimizer has given the best outcome. So,

our proposed model gave 99.09% by using RMSprop as an

optimizer whereas the SGD and Adam optimizer were not

capable of giving this result. The following Table 5 shows the

experimental results in the case of accuracy and AUC score for

various optimizers.

From the table, it is proved that RMSprop performs better than

other optimizers. Overall, the adaptability of RMSprop’s learning

rate, its stability during training, efficient memory usage, and rapid

convergence made it a favored option across various scenarios,

especially when handling complicated deep learning models and

extensive datasets.

4.3.5 Matthews correlation coefficient
The MCC is crucial as it considers sensitivity, specificity,

precision, and negative predictive value simultaneously, providing

a holistic assessment of binary classification models. Matthews

Correlation Coefficient (MCC) can also be used in multi-class

classification problems but is typically used for binary

classification tasks. Unlike the ROC AUC, the MCC generates a
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high score only when the classifier performs well across all four

basic rates of the confusion matrix, ensuring a reliable evaluation.

A high MCC value always corresponds to high values for

sensitivity, specificity, precision, and negative predictive value,

making it a superior performance indicator compared to other

metrics like F1 score and accuracy Chicco and Jurman (2023). The

MCC ranges from -1 to +1, with -1 indicating perfect

misclassification and +1 indicating perfect classification, while the

DOR ranges from 0 to + Chicco et al. (2021).

In our proposed model, We have managed to acquire an

impressive outcome of Matthews Correlation Coefficient (MCC)

that is 0.987, which signifies a near-perfect classification

performance. In summary, the attainment of an MCC value of

0.98 underscores the efficacy and reliability of our model’s

classification capabilities. It provides strong evidence that our

model has learned meaningful patterns from the data and can

generalize well to unseen instances, thereby instilling confidence in

its practical utility and real-world deployment.
4.3.6 Mn/Mg deficient leaf vs. soybean
sudden death

The symptoms of Mn/Mg deficient leaves and Soybean sudden

death leaves are almost similar. These two can look alike, making it

hard to distinguish them by eye since they have almost the same

features in the images. In this case, we tried to classify them through

our proposed model and got an outcome.

To separate the two species through the model, we collected

pictures of Mn/Mg-deficient soybean leaves from Google and added

those to our dataset after augmenting them.

After adding a new class of Mn/Mg-deficient soybean leaves to

our original dataset, the proposed model was applied to the merged

dataset. Figure 9 shows that the model achieved an impressive

training accuracy of 99.11% and validation accuracy of 98.74% over

the merged dataset. From the Figure 10 of the confusion matrix, it is

seen that our model successfully classified all the images of Mn/Mg

deficiency. To make the model recognize the difference among the

soybean diseased classes, we increased the number of images in the

dataset from ‘DRYAD’ dataset which contains high quality images

of the same classes. Eventually, our model became successful in

classifying them. In summary, our model has achieved a success rate
FIGURE 5

Accuracy graph of the proposed CNN-SVM model.
TABLE 4 Accuracy comparison in various epochs.

Epochs Callback Function Accuracy

42 Yes 99.09%

100 No 96.79%

200 No 97.98%
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in distinguishing differences, even when they’re hard to see with the

naked eye.

4.3.7 Reusability of the proposed CNN-
SVM model

The proposed CNN-SVM model was applied to a new, more

extensive dataset comprising larger images of Soybean Rust,

Soybean Frogeye Spot, and Soybean Healthy classes, collected

from ‘SoyNet’, ‘Soybean Leaf Disease Prediction’, and ‘Roboflow’

datasets. After merging new classes to our proposed dataset, the

model was trained on it and achieved an impressive validation

accuracy of 99.04%, closely matching our original dataset’s

performance. Additionally, as shown in Figure 11, the

classification for each class was satisfactory like before,

maintaining the model’s robust performance.
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In Table 6, we have evaluated the performance variations of our

proposed CNN-SVM model across different criteria. Initially, we

observed that certain classes in our proposed dataset contained

images that were relatively small in size. To address this, we replaced

those classes with new ones featuring comparatively larger images from

‘DRYAD’ dataset which contains great quality images. Additionally, we

noted potential confusion between the Mn/Mg deficient class and the

Soybean Sudden Death class. To clarify this, we replaced the Soybean

YellowMosaic class with theMn/Mg deficient class in our dataset as we

wanted to keep the similar types of soybean classes together and

reassessed the model’s performance. Finally, we showed the

performance of our proposed dataset. Therefore, Table 6 represents

an analysis of using the proposed model across different criteria. This

analysis indicates the model’s robustness and effectiveness across

various datasets in the desired classification tasks.
FIGURE 6

Bar graph of different transfer learning models for validation accuracy.
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FIGURE 7

Confusion matrix of (A) DenseNet (B) Inception-V3 (C) MobileNet-V2 (D) MobileNet (E) ShuffleNet (F) VGG16 (G) VGG19 (H) Xception (I) Proposed
CNN-SVM model.
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5 Comparative analysis

In conclusion, the proposed CNN-SVM model stands as a

pioneering solution in the realm of plant disease classification,

showcasing a unique fusion of CNN and SVM for optimal feature
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extraction and classification. The model’s exceptional performance,

as evidenced by its accuracy, evaluation metrics, lightweight design,

and the incorporation of explainable AI techniques, underscores its

superiority. Notably, when compared to well-established transfer

learning models such as VGG16, VGG19, MobileNet, MobileNet-

V2, DenseNet, Inception-V3, Xception and ShuffleNet, our model

emerges as the clear frontrunner. Table 3 shows that our model

performs better than other transfer learning models in terms of

accuracy, precision, recall, F1-score, number of parameters and

model size. Even when compared to strong competitors like

VGG16, VGG19, Inception V3, and ShuffleNet, our model

outperforms them across all evaluation measures. Impressively, it

achieves superior precision, recall and F1-score metrics, further
A
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FIGURE 8

ROC curve and PR curve of (A) DenseNet (B) Inception-V3 (C) MobileNet-V2 (D) MobileNet (E) ShuffleNet (F) VGG16 (G) VGG19 (H) Xception (I)
Proposed CNN-SVM model.
TABLE 5 Comparison of various optimizers.

Optimizer Accuracy AUC Score

Adam 99% 99.96%

SGD 95% 99.87%

RMSprop 99.09% 99.98%
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validating its standard and reliability. Additionally, our model is

highly efficient. It’s half the size of the ShuffleNet pre-trained model

but still achieves almost similar accuracy. Compared to other

transfer learning models, it has the fewest parameters, with some

popular models having up to eight times more parameters and

larger sizes. This means our model runs fast, making it perfect for

various mobile devices. These results suggest that our model is not

only effective for diagnosing plant diseases but also has great

potential for use by farmers on a large scale. Therefore, its

economic feasibility and exceptional performance collectively

contribute to its greatness, making it a valuable asset for

agricultural practitioners seeking advanced yet accessible solutions.

The proposed CNN-SVM model’s significance is also evaluated

against several related research works, where it holds a notable

position. Zhang et al. (2019) aimed to develop automatic image-
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based diagnostic methods for identifying cherry diseases using only

two types of cherry leaves – diseased and healthy. The research

achieved a high accuracy rate, outperforming other works, and

demonstrated its superiority through ROC curves, comparing with

various machine learning models. However, they encountered

challenges in creating a lightweight model and explaining their

model’s visualization technique, such as Grad-CAM. Additionally,

they lacked some evaluation metrics like classification reports,

confusion matrix, and PR curve. Hang et al. (2019) proposed a

model which was compared with numerous transfer learning

models regarding accuracy, model size, and training time. Despite

having the same number of classes as ours, the paper aimed to

structure automatic cherry disease identification with two types of

diseased cherry classes and one healthy class. Although the authors

visualized the model’s performance, the accuracy rate fell short of
FIGURE 9

Accuracy graph including Mn/Mg deficiency class.
FIGURE 10

Confusion matrix including Mn/Mg deficiency class.
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expectations and they struggled to develop a lightweight model

efficient for farmers.

Alosaimi et al. (2021) showcased impressive results through

accuracy graphs, confusion matrices, classification reports and ROC

curves, applied to 12 types of peach diseases in a CNN model. They

have worked with several peach diseases, but they could also apply

their model for the other crops. Besides, their accuracy rate was not

as satisfactory as ours and their model lacked visualization

technique. Akbar et al. (2022) proposed a novel lightweight and

parameters-concerned model for classifying two types of peach

leaves, with noticeable experimental outcomes providing various

comparisons of performance evaluation metrics and transfer

learning models. But, while the accuracy was high, it couldn’t

maintain the same accuracy as our proposed model obtained with

ten classes. Besides, they could increase the number of peach classes

or the types of crops and explain the model by using explainable AI.

To sum up, they could increase the dataset by providing more

number of classes and trying to achieve the same accuracy as before.

Xiao et al. (2020) proposed research that was conducted with

two datasets, utilizing original and feature images to detect
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strawberry diseases like leaf blight, gray mold, and powdery

mildew. Their customized CNN model, based on ResNet50

achieved 99.6% accuracy, but they could have explored more

evaluation metrics instead of modifying a transfer learning model.

Moreover, they also needed to focus on the number of parameters

as ResNet50 has a higher number of parameters. In summary, they

have achieved a higher accuracy but with a heavyweight transfer

learning model as it has a higher number of parameters. Dhivya and

Shanmugavadivu (2021) showed an impressive comparison among

various CNN models where EfficientNet-B3 achieved a remarkable

outcome than others. However, they haven’t proposed their own

built model to compare with various transfer learning models.

Moreover, the research paper does not mention the use of

visualization techniques like explainable AI and the authors could

do the same research for more crops instead of only strawberries.

Besides, the authors didn’t show some performance evaluation

matrices like the ROC curve, PR curve and Confusion matrix.

Another drawback of this research is that the research did not

mention the lightweightness of the models.

Wu et al. (2023), the researchers proposed an improved

ConvNeXt model with an attention module for generating feature

maps at different depths, achieving an accuracy of 85.42% on three

types of soybean leaves. Though the number of classes was limited,

the accuracy was unsatisfactory, suggesting room for improvement.

Jadhav et al. (2019), the authors used SVM and KNN algorithms to

classify four types of soybean leaf diseases, achieving 87.3% and

83.6% accuracy, respectively. However, their accuracy value seems

to be a limitation due to the use of a small dataset and only one type

of crop. Wallelign et al. (2018) managed to achieve 99.32% accuracy

with four classes of soybean leaves using a CNNmodel based on the

LeNet architecture, with visualization of the model’s outcome.
TABLE 6 Analysis of applying CNN-SVM over various datasets.

No of Classes Total
Images

Accuracy MCC

10 (Two new classes - Soybean Rust
and Frogeye Spot)

11,532 99.04% 0.98

10 (Replaced Yellow Mosaic with
Mn/Mg deficient class)

11,957 98.74% 0.98

10 (Proposed dataset) 11,524 99.09% 0.98
FIGURE 11

Confusion matrix including soybean frogeye spot and soybean rust classes.
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Although the dataset size was satisfactory, the limited number of

disease types was a drawback. Overall, the limitations in existing

research, particularly the absence of a combined CNN-SVM model

with the Grad-CAM visualization technique have been noticed.

In summary, the discussion highlights our proposed CNN-SVM

model having both the advancements and the remaining challenges

in automating disease identification in crops. From Table 7, our

proposed model has mitigated all the research gaps of the existing

works mentioned above and showed its acceptance for real-world-

based plant disease detection.
6 Explainable-AI application

Significant efforts are underway to enhance the interpretability

and comprehensibility of deep learning, particularly in applications

related to the imaging of plant diseases. Ensuring a clear

understanding of deep learning models is crucial in such contexts.

The Gradient Weighted Class Activation Mapping (Grad-CAM)

method, introduced by Selvaraju et al. (2017) plays a pivotal role in

elucidating deep learning models as an explainable AI application.

Grad-CAM produces a visually interpretable representation of any

intricately connected neural network, thereby aiding in model

comprehension during task detection or prediction. In the

majority of cases, Grad-CAM was primarily applied to the final

convolutional layer. Grad-CAM produces a heatmap, highlighting

essential areas within an image by leveraging gradients derived from

the target class in the last convolutional layer. The regions used for

classification become apparent when superimposing this heatmap
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onto the original image. In this research, Grad-CAM was utilized to

asses if leaf sections in the input image significantly influence the

diagnostic process to visually depict the diagnosis. The calculation

entails evaluating the target class gradient on each feature map and

averaging them to determine the relative significance of each map.

The computation involves determining a weighted sum of

activations from each feature map, where the importance of each

is associated with the input image, resulting in the visualization.

Grad-CAM proves to be an effective technique that does not hinder

performance, as it doesn’t necessitate any additional custom

components Fujita et al. (2018). As depicted in Figure 12, the

proposed model utilized Grad-CAM for detection techniques on a

basic image received as input.
7 Conclusions

Crop diseases are a major threat to food security, but their

rapid identification remains difficult in many parts of the world

due to the lack of the necessary infrastructure. The rise in global

smartphone usage, along with advancements in computer vision

powered by deep learning, has opened doors to smartphone-

enabled disease diagnosis. To accomplish this goal, in the

proposed work, a 2D CNN-based model has been constructed to

detect the 6 disease classes and 4 healthy classes in Peach, Cherry,

Soybean, and Strawberry. The suggested 2D CNN-based

architecture has four convolutional and four max-pooling layers,

two fully connected layers, two dropout layers, and batch

normalization in each layer makeup. The suggested model uses
TABLE 7 Comparison of existing related works.

Reference Method Accuracy Precision Recall F1-Score Classes Plant

Zhang et al. (2019) GoogleNet 99.6% – – – 2 Cherry

Hang et al. (2019) VGG16 91.7% – – – 10
Apple,
Cherry,
Corn

Alosaimi
et al. (2021)

CNN 94% 94% 94% 94% 12 Peach

Akbar et al. (2022) LWNet 99% 100% 99% 99% 2 Peach

Xiao et al. (2020) ResNet50 99.6% – – – 3 Strawberry

Dhivya and
Shanmugavadivu

(2021)

EfficientNet-
B3 97% 98% 97% 97% 2 Strawberry

Wu et al. (2023) Improved
ConvNeXt

85.42% 88.35% 88.44% 88.37% 3 Soybean

Jadhav et al. (2019)
SVM and
KNN

classifiers
83.6%, 87.3% – – – 4 Soybean

Wallelign
et al. (2018)

LeNet 99.32% 99% 99% 99% 4 Soybean

Proposed model CNN-SVM 99.09% 99% 99% 99% 10

Peach,
cherry,
soybean,
strawberry
fro
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less storage capacity and has fewer parameters than transfer

learning models because of this kind of shallow structure, which

has surpassed heavyweight transfer learning architectures

(VGG16, VGG19, and Inception V3) and lightweight transfer

learning architectures (MobileNet, MobileNetV2, DenseNet and

ShuffleNet) which have an average accuracy range from 54% to

97%. Along with the transfer learning models, the model’s

performance has also been evaluated using the confusion

matrix, ROC curve, AUC score, and Matthews Correlation

Coefficient. The model also showed an impressive performance

over various datasets. The outcome shows that the model has

achieved a high level of performance that will assist plant doctors

and farmers in accurately identifying a variety of diseases affecting

cherry, peach, strawberry, and soybean plants. This can help plant

doctors take appropriate action to prevent the disease and save

money for the farmers. Additionally, this can benefit the economy

of the nation. Because the suggested model has significantly fewer

parameters than transfer learning models, it requires between

three and four times less storage space than transfer learning

models. This concept can be easily applied to smartphones and
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other devices due to its lightweight structure. Grad-CAM class

activation maps and a heatmap were created to visualize the

detection the trained model was able to achieve to symbolize the

area in charge of classification. However, there can be several

obstacles and limitations when implementing a model in real-

world situations. Besides, our model should have classified Mn/

Mg deficient images and Soybean sudden death images without

any misclassification although both of the classes have very similar

type of features between them. In the future, we have a plan to

increase the classification rate more and remove the collision

between those two classes. Furthermore, we are planning to

explore different hybrid models to handle upcoming

challenges better.
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FIGURE 12

Application of Explainable-AI for (A) Cherry Healthy Leaf (B) Cherry Mildew (C) Peach Healthy Leaf (D) Peach Spot (E) Soybean Bacterial Blight (F)
Soybean Healthy (G) Soybean Sudden Death (H) Soybean Yellow Mosaic (I) Strawberry Healthy (J) Strawberry Scorch leaves.
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