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Introduction: Expansins (EXPs) are essential components of the plant cell wall

that function as relaxation factors to directly promote turgor-driven expansion of

the cell wall, thereby controlling plant growth and development and diverse

environmental stress responses. EXPs genes have been identified and

characterized in numerous plant species, but not in sweetpotato.

Results and methods: In the present study, a total of 59 EXP genes unevenly

distributed across 14 of 15 chromosomes were identified in the sweetpotato

genome, and segmental and tandem duplications were found to make a

dominant contribution to the diversity of functions of the IbEXP family.

Phylogenetic analysis showed that IbEXP members could be clustered into four

subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of

protein motif, domain, and gene structures was consistent with this subfamily

classification. Collinearity analysis between IbEXP genes and related homologous

sequences in nine plants provided further phylogenetic insights into the EXP gene

family. Cis-element analysis further revealed the potential roles of IbEXP genes in

sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis

of eight selected IbEXPs genes provided evidence of their specificity in different

tissues and showed that their transcripts were variously induced or suppressed

under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid,

and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and

high temperature).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1412540/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1412540&domain=pdf&date_stamp=2024-06-20
mailto:zhangjianling0520@126.com
mailto:zhihuanz@163.com
https://doi.org/10.3389/fpls.2024.1412540
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1412540
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2024.1412540

Frontiers in Plant Science
Discussion: These results provide a foundation for further comprehensive

investigation of the functions of IbEXP genes and indicate that several

members of this family have potential applications as regulators to control

plant development and enhance stress resistance in plants.
KEYWORDS
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1 Introduction

The cell wall is a crucial component of plant cells. Owing to its

dynamic structure and extensibility, it can determine and maintain

cell size and shape and serves as a protective barrier (Cosgrove, 2005;

2015a; Höfte and Voxeur, 2017). The plant cell wall is a highly

complex structure constituted by various polysaccharides that vary in

abundance, function, and structure (Santiago et al., 2018), and it has

crucial roles in providing supplies of stiffness and mechanical support

to the plant body, resistance to abiotic and biotic stresses, conduction

of nutrients and water, and determination of plant architecture and

morphogenesis (Zhang et al., 2021b). The study of cell wall extension

mechanisms has become a research priority owing to the significance

of cell wall enlargement during plant morphogenesis (Lin et al.,

2011). Increases in cell volume and quantity that depend on cell wall

enlargement and loosening are crucial for plant growth (Cosgrove,

2015b). During cell wall loosening, an important precondition of cell

wall remodeling, the physical structure of the cell wall is altered or

new components are added, inducing alterations in shape and

anisotropic growth of the cell (Cosgrove, 2015b). Modified proteins

that attach to the cell wall have vital roles in cell wall enlargement and

loosening, and the most widely recognized of these proteins are the

expansins (EXPs) (Yang et al., 2021).

EXPs proteins are commonly found in plants and are crucial for

cell expansion. They participate in cell wall enlargement and

loosening (Cosgrove, 2000). As the primary factor in enlargement

and loosening, EXP genes can control cell relaxation without any

chemical energy through non-enzymatic activity (Cosgrove, 2015b).

In addition, they can act directly on the plant cell wall to loosen it via

binding to cellulose, thereby disrupting hydrogen bonds in wall

matrix polysaccharides and cellulose microfibrils in a pH-dependent

manner, and they also take part in the decomposition, remodeling,

extension, and assembly of the cell wall (Mcqueen-Mason and

Cosgrove, 1995; Cosgrove, 2000; 2015b; Marowa et al., 2016). Plant

EXPs are usually composed of a signal peptide at the N-terminus

(about 20–30 amino acid residues) and two domains. Domain I is a

six-stranded double-psi beta-barrel (DPBB) located at the N-

terminus. It shows homology with the catalytic domain of GH45

proteins (glycoside hydrolase family 45) and harbors a conserved His-

Phe-Asp (HFD) motif, but does not have the b-1, 4-glucanase activity
(Yennawar et al., 2006). This region is rich in Cys residues with a
02
characteristic catalytic domain that may be related to disulfide bond

formation (Jin et al., 2020). Domain II, which harbors a b-sandwich
fold and shares about 50% similarity with the group-II pollen allergen

protein (pollen_allerg_1, G2A family), is considered to be a

polysaccharide-binding domain as it contains conserved aromatic

amino acids and polar tryptophan residues on its surface. It comprises

90–120 amino acid residues and has been classified as a family-63

carbohydrate binding module (CBM63) (Georgelis et al., 2012;

Cosgrove, 2015b).

According to standardized nomenclature and phylogenetic

analysis, plant EXP proteins can be divided into four subfamilies:

EXPA (a-expansin), EXPB (b-expansin), EXLA (expansin-like A),

and EXLB (expansin-like B) (Kende et al., 2004; Sampedro and

Cosgrove, 2005). Numerous members of these four subfamilies have

been identified in plants. Among them, EXPA and EXPB have been

widely studied and found to participate in cell expansion and plant

developmental processes via their wall-loosening activities (Kende

et al., 2004; Sampedro and Cosgrove, 2005). By contrast, members

of the EXLA and EXLB subfamilies mainly have functions in stress

response, hypocotyl length, and root architecture (Boron et al.,

2014; Kong et al., 2019; Zhang et al., 2021a). Based on previous

investigations, EXP proteins are regarded as the main determinant

of cell shape in many cell developmental processes and have

particular importance in the regulation of cell-wall extensibility

(Li et al., 2003; Choi et al., 2006, 2008), including elongation and

expansion (Ashwin Narayan et al., 2021). Since their first

identification in cucumber hypocotyl (Mcqueen-Mason et al.,

1992), EXP proteins have been found in numerous plant species.

The ability of EXPs to regulate cell wall modification and

elongation means they have crucial functions in multiple biological

processes, including response to biotic and abiotic stress, root and fiber

development, root nodule formation, fruit development and ripening,

and other developmental processes (Choi et al., 2006, 2008; Cosgrove,

2015b; Marowa et al., 2016). For instance, overexpression of the

Osmanthus fragrans OfEXLA1 gene has been shown to increase

resistance to salt and drought stress in Arabidopsis (Dong et al.,

2023). Ectopic overexpression of wild Arachis AdEXLB8 in tobacco

increased tolerances to biotic (Meloidogyne incognita and Sclerotinia

sclerotiorum) and abiotic (drought) stresses (Brasileiro et al., 2021).

Wheat TaEXPA2 can significantly elevate the resistance of transgenic

plants to Cd toxicity and multiple abiotic stresses (drought, oxidative,
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and salt) (Chen et al., 2017; Ren et al., 2018; Chen et al., 2018b; Yang

et al., 2020). Ectopic expression of poplar PttEXPA8 in tobacco

enhances heat resistance in transgenic plants (Liu et al., 2016).

Three EXP genes, tomato SlExp1, apple MdEXLB1, and mango

MiExpA1, have been identified as crucial determinants of fruit

softening and ripening (Sane et al., 2005; Kaur et al., 2010; Minoia

et al., 2016; Chen et al., 2022). Two b-expansin genes, GmINS1 and

GmEXPB2, have significant roles in nodule formation and

development (Li et al., 2015; Yang et al., 2021). Rice OsEXPB2 and

OsEXPA8 and soybean GmEXLB1 and GmEXPB2 function as

important regulators in root system architecture (Guo et al., 2011;

Wang et al., 2014; Li et al., 2015; Zou et al., 2015; Kong et al., 2019).

Stylosanthes SgEXPB1, rice OsEXPA10, and Arabidopsis AtEXPA7 are

required for root development (Lin et al., 2011; Che et al., 2016; Wang

et al., 2023). Upregulation of GhEXPA8 or GbEXPATR can increase

the fiber length in cotton, while reduced EXPA expression results

in shorter fibers (Li et al., 2016). In addition, plant EXP genes also play

vital roles in height and leaf growth (Pien et al., 2001; Ma et al., 2013),

pollen tube and stem elongation (Choi et al., 2003; Gray-Mitsumune

et al., 2008; Liu et al., 2021b), seed development, germination, and

yield (Chen and Bradford, 2000; Chen et al., 2001; Calderini et al.,

2021), flower development (Zenoni et al., 2004), and so on.

Sweetpotato (Ipomoea batatas) is the only Convolvulaceae crop that

generates starch storage roots (Liu, 2017; Arisha et al., 2020). It is

considered the seventh most important food crop and is widely

cultivated worldwide owing to its numerous advantages, which include

low input requirements, strong stress resistance, wide adaptability, and

high yield and starch content (Ahn et al., 2010). Sweetpotato has broad

applications in alcohol and starch production, animal feed, starch

processing, and human food. It also ensures food security in many

developing countries on account of its ability to adapt to various

environmental conditions (Liu, 2017). In a previous study, 37 EXP

genes were identified in Ipomoea trifida, which is the most likely diploid

wild relative of sweetpotato (Li et al., 2022). However, the I. trifida

genome does not adequately represent the whole sweetpotato genome.

Recently, the completion of hexaploid sweetpotato genome sequencing

has provided sufficient and valuable information for the identification

and characterization of gene families (Yang et al., 2017). However, there

has been a lack of genome-wide identification of the sweetpotato EXP

gene family. Therefore, in this study, we comprehensively identified and

characterized the EXP genes in sweetpotato.

A major focus in crop molecular breeding at present involves

improving environmental stress resistance to promote plant growth.

Investigations have been performed systematically in a variety of

plant species owing to the relevance of the crucial functions of EXP

genes to the demands of breeding. A large number of EXP genes have

been identified in a diverse range of plants. For instance, in monocots,

92, 58, 241, 88, 46, and 38 genes have been identified in sugarcane

(Santiago et al., 2018), rice (Sampedro and Cosgrove, 2005), common

wheat (Han et al., 2019), maize (Zhang et al., 2014), barley (Liu et al.,

2021a), and Brachypodium distachyon (Chen et al., 2020b),

respectively; and in dicotyledons, 36, 75, 46, 93, 52 genes were

found in Arabidopsis (Sampedro and Cosgrove, 2005), soybean

(Zhu et al., 2014), gingkgo (Guo et al., 2023), cotton (Lv et al.,

2020), and tobacco (Ding et al., 2016), respectively. The genome

sequencing of hexaploid sweetpotato (Taizhong6) has been
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completed (Yang et al., 2017). However, no systematic

identification and characterization of EXP genes in sweetpotato (I.

batatas L.) is yet available. The identification of molecular features of

significant members of the EXP gene family will contribute to further

understanding of the regulatory mechanisms of plant development

and adaptation to environmental stresses. In this study, 59 IbEXP

genes, which were divided into four subfamilies (36 IbEXPA, ten

IbEXPB, two IbEXLA, and 11 IbEXLB genes), were identified from

the sweetpotato genome. To standardize the nomenclature of EXP

proteins in sweetpotato and evaluate their possible functions and

relationships in development and stress responses, we performed a

comprehensive and systematic characterization of these 59 identified

sweetpotato EXP genes. Phylogenetic relationships, chromosomal

location, conserved motif and domain, gene structure, molecular

characteristics, cis-elements, gene duplications, and expression

patterns of IbEXPs in different tissues and under various hormone

treatments and abiotic stresses were investigated. The data presented

here represent a foundation for further screening and functional

investigation of valuable IbEXP genes with crucial roles in tuberous

root development and stress tolerances in sweetpotato.
2 Materials and methods

2.1 Identification of IbEXP genes
in sweetpotato

Genome data and GFF annotation files for sweetpotato were

obtained from the online Ipomoea Genome Hub database (http://

sweetpotao.com) (Yang et al., 2017). Protein sequences of EXPs from

rice and Arabidopsis were downloaded from the Rice Genome

Annotation Project database (http://rice.plantbiology.msu.edu/) and

the Arabidopsis Information Resource (TAIR) (https://

www.arabidopsis.org/), as described in a previous study (Sampedro

and Cosgrove, 2005). Then, the Arabidopsis and rice EXP protein

sequences were used as query sequences to carry out BlastP against all

of the I. batatas protein sequences to identify all possible EXP

members in sweetpotato using the TBtools software with an E-value

≤ 1e-5, NumofHits 500, and NumofAligns 250 (Chen et al., 2020a).

Subsequently, the PROSITE database (https://prosite.expasy.org/),

Pfam database (http://pfam.xfam.org/), and NCBI batch CD-search

(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) were

used to confirm all the candidate IbEXP proteins obtained in this

way and to exclude protein sequences that lacked the EXP domain.
2.2 Sequence alignment, phylogenetic
analysis, and nomenclature of
IbEXP proteins

The previously reported 36 ArabidopsisAtEXP protein sequences

and 58 rice OsEXP protein sequences (Sampedro and Cosgrove,

2005), together with our 59 sweetpotato IbEXP protein sequences,

were used to perform phylogenetic tree analysis. First, 153 EXP

protein sequences were subjected to multiple sequence alignment

using ClustalW with default parameters. Then, MEGA software
frontiersin.org
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(version 11.0) was used to construct an unrooted phylogenetic tree

using the neighbor-joining bootstrap method. The detailed

parameters were as follows: Poisson model, pairwise deletion, and

1,000 replicates. The Arabidopsis and rice EXP protein sequences are

provided in Supplementary File 1. For the naming method of IbEXP

genes, these 59 IbEXP genes were divided into four subfamilies (i.e.,

EXPA, EXPB, EXLA, and EXLB) according to the homology of

IbEXP protein sequences with Arabidopsis AtEXP and rice OsEXP

protein sequences. Then, the IbEXPmembers in each subfamily were

named based on their position on the chromosome.
2.3 Analysis of motif patterns, conserved
domains, protein properties, and
interactions of IbEXPs

The online MEME Suite (version 5.5.4, https://meme-suite.org/

meme/tools/meme) and the Batch CD-Search database (https://

www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) were employed to

explore the motifs and conserved domains (standard results) of each

IbEXP protein, respectively. The ExPASy database (http://expasy.org/)

was used to evaluate the properties of each IbEXP protein, including the

Mw (molecular weight) and pI (theoretical isoelectric point). Subcellular

locations and phosphorylation sites of each IbEXP protein were also

predicted using the online databases Plant-mPLoc (http://

www.csbio.sjtu.edu.cn/bioinf/plant-multi/) and NetPhos 3.1 (https://

services.healthtech.dtu.dk/service.php?NetPhos-3.1), respectively.

Subsequently, the STRING 12.0 website (https://cn.string-db.org/) was

used to construct the potential protein-interacting network.
2.4 Chromosomal location and collinearity
analysis of IbEXP genes

The locations of IbEXP genes on the chromosomes of sweetpotato

were investigated using GFF annotation information obtained from

the Ipomoea genome website (https://sweetpotao.com/). For analysis

of the synteny between IbEXP genes and EXP genes in other plants,

the genome and GFF annotation files for I. batatas and another nine

representative plant species (Ipomoea triloba, rice, Arabidopsis, maize,

wheat, Brassica rapa, pepper, Brassica oleracea, and tomato) were

downloaded from TAIR, the Ipomoea Genome Hub, Sol Genomics

Network, EnsemblPlants (http://plants.ensembl.org/index.html), and

Phytozome (https://phytozome-next.jgi.doe.gov/). The collinearity

relationships and gene duplications were investigated using the

Multiple Collinearity Scan toolkit (MCScanX) with default

parameters (Wang et al., 2012). Then, circos and TBtools software

with 30 as the minimum block size were employed to visualize these

results (Krzywinski et al., 2009; Chen et al., 2020a).
2.5 Transcriptome-wide analysis of genes
related to tuberous root development

The sweetpotato (I. batatas L.) Taizhong 6 plants were cultivated

in the greenhouse of Jiangsu Normal University. The fibrous roots
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(FR), developing tuberous roots (DR), and mature tuberous roots

(MR) of the plants were collected, and RNA was extracted. Each

sample involved roots from at least six different sweetpotato plants at

the same developmental stage. Then, the four types of samples were

used to perform the RNA sequencing (RNA-seq) analysis and

transcriptome analysis on the Illumina Novaseq™ 6000 platform

(LC Bio Technology Co., Ltd., Hangzhou, China). The clean reads

were aligned with the sweetpotato genome database (https://

sweetpotao.com/). StringTie was used to calculate FPKM values for

mRNAs (FPKM = [total_exon_fragments/mapped_reads(millions) ×

exon_length(kB)]); these were then used to estimate gene expression

levels. Genes with |log2 (fold change)| ≥1 and p-value <0.05, as

determined by DESeq2, were considered to be differentially expressed

genes (DEGs) between different groups. Finally, DAVID software

(https://david.ncifcrf.gov/) was used for gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of the DEGs. Gene annotation and DEG analysis were

carried out as described in our previous study (Li et al., 2024). The

sequencing data have been deposited at the NCBI Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/Traces/sra) with accession

numbers GSM7838330, GSM7838331, and GSM7838332.
2.6 Plant materials, abiotic stress, and
hormone treatments

The Taizhong 6 sweetpotato (I. batatas) plants were cultivated in a

greenhouse at Jiangsu Normal University. Then, the developing

tuberous roots (DR) at 30 days after planting (dap; DR1), 60 dap

(DR2), and 100 dap (DR3), mature tuberous roots (MR) at 120 dap,

mature leaves (L) at 60 dap, and stems (S) at 60 dap were collected,

and the expression patterns of selected IbEXP genes were analyzed.

For treatment with different hormones and abiotic stresses, I. batatas

seedlings (XuShu 22) harboring 3–4 mature leaves were cultured in a

greenhouse. After a week of cultivation in water (1/4 Hoagland

solution), consistent seedlings were selected for treatment. For the

hormone treatments, the seedlings were cultivated and sprayed with

abscisic acid (ABA, 100 mM), 1-aminocyclopropane-1-carboxylic acid

(ACC, 100 mM), jasmonic acid (JA, 100 mM), and salicylic acid (SA, 2

mM), respectively. For abiotic stresses, seedlings were cultivated at 4°C

(LT) and 42°C (HT) to simulate cold and heat stresses, respectively.

All leaf samples taken from plants in the control and treatment groups

were harvested at 0, 1, 12, 24, and 48 h after treatments. At least three

independent biological replicates were collected for each treatment.
2.7 RNA extraction and quantitative real-
time PCR analysis

Total RNA was extracted from each collected sample using the

RNA Extraction Kits (OMEGA, USA) following the method

provided by the manufacturer. First-strand cDNA was

synthesized via reverse transcription using 800 ng of total RNA

following the methods used in our study (Zhang et al., 2018). Then,

the synthesized cDNAs were diluted with RNase/DNase-free water,

and qRT-PCR was performed using the CFX96™ Real-Time
frontiersin.org
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System (Bio-Rad, USA) as previously described (Zhang et al., 2018).

Sweetpotato IbARF (accession number: JX177359) was used as the

reference gene (Chen et al., 2018a). All primers in qRT-PCR were

listed in Supplementary Table S6. Three independent technical and

biological repetitions were performed for each sample.
2.8 Statistical analyses

Data were presented as mean ± SE standard deviation. A cut-off

two-fold value for differential gene expression was considered to

indicate biological significance (Liu et al., 2022). OriginPro software
Frontiers in Plant Science 05
(v8.0, SAS Institute) was used to visualize the results of qRT-

PCR experiments.
3 Results

3.1 IbEXP gene identification and
characterization in sweetpotato

In this study, a total of 59 EXP genes were identified from the

sweetpotato genome and named following the classification scheme

used for AtEXP and OsEXP genes in Arabidopsis and rice,
TABLE 1 Characteristics of IbEXP proteins in Ipomoea batatas.

Gene name Gene ID Amino acids MW (Da) PI
Subcellular
location

phosphorylation cite

Ser
site
(S)

Tyr
cite
(Y)

Thr
cite
(T)

Total

IbEXPA1 g1306.t1 238 25431.71 9.53 Cell wall. 20 3 8 31

IbEXPA2 g3925.t1 251 26960.41 8.07 Cell wall. 14 4 8 26

IbEXPA3 g3926.t1 251 26740.92 8.36 Cell wall. 21 4 6 31

IbEXPA4 g4923.t1 260 28213.08 9.27 Cell wall. 26 3 7 36

IbEXPA5 g9889.t1 310 33660.23 9.25 Cell wall. 26 5 20 51

IbEXPA6 g10004.t1 258 27595.27 9.3 Cell wall. 19 3 4 26

IbEXPA7 g15786.t1 327 35627.31 9.29 Cell wall. 45 5 12 62

IbEXPA8 g15816.t1 272 29860.26 9.36 Cell wall. 25 4 12 41

IbEXPA9 g15820.t1 264 28775.77 9.37 Cell wall. 29 4 9 42

IbEXPA10 g16869.t1 263 28645.8 8.56 Cell wall. 17 4 13 34

IbEXPA11 g17886.t1 258 27852.84 9.5 Cell wall. 13 4 10 27

IbEXPA12 g18537.t1 591 63172.9 7.19 Cell wall. 77 12 20 109

IbEXPA13 g18539.t1 341 35684.91 7.05 Cell wall. 57 6 10 73

IbEXPA14 g20283.t1 260 28086.01 9.4 Cell wall. 20 2 12 34

IbEXPA15 g24580.t1 252 27413.57 6.42 Cell wall. 12 4 11 27

IbEXPA16 g25447.t1 260 27406.89 9.16 Cell wall. 45 3 8 56

IbEXPA17 g25606.t1 209 22967.29 9.73 Cell wall. 13 3 8 24

IbEXPA18 g29706.t1 355 39001.06 9.64 Cell wall. 47 2 9 58

IbEXPA19 g29707.t1 670 74052.16 8.27 Nucleus. 72 5 23 100

IbEXPA20 g30029.t1 202 22488.71 9.44 Cell wall. 12 2 12 26

IbEXPA21 g33328.t1 273 28718.04 6.2 Cell wall. 30 5 7 42

IbEXPA22 g38554.t1 493 53544.79 8.24
Cell wall,
Chloroplast

53 9 7 69

IbEXPA23 g39420.t1 309 33789.29 9.29 Cell wall. 29 4 20 53

IbEXPA24 g39467.t1 270 29209.17 9.1 Cell wall. 26 5 11 42

IbEXPA25 g42794.t1 248 26037.26 9.34 Cell wall. 16 2 7 25

IbEXPA26 g47278.t1 246 25903.09 8.64 Cell wall. 18 4 3 25

(Continued)
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TABLE 1 Continued

Gene name Gene ID Amino acids MW (Da) PI
Subcellular
location

phosphorylation cite

Ser
site
(S)

Tyr
cite
(Y)

Thr
cite
(T)

Total

IbEXPA27 g53361.t1 253 27102.64 8.87 Cell wall. 22 3 6 31

IbEXPA28 g53365.t1 563 61262.75 9.32 Cell wall. 56 5 25 86

IbEXPA29 g58047.t1 241 26303.82 6 Cell wall. 23 3 13 39

IbEXPA30 g58048.t1 240 26373.45 9.21 Cell wall. 22 5 14 41

IbEXPA31 g58049.t1 183 20173.91 6.81 Cell wall. 10 2 12 24

IbEXPA32 g58052.t1 388 43264.45 9.2 Cell wall. 38 2 15 55

IbEXPA33 g58053.t1 521 58831.3 6.61
Cell wall,
Chloroplast

26 9 27 62

IbEXPA34 g58951.t1 257 27894.88 9.82 Cell wall. 17 2 7 26

IbEXPA35 g60585.t1 237 25641.21 9.35 Cell wall. 20 2 9 31

IbEXPA36 g61698.t1 264 28887.9 9.39 Cell wall. 28 4 10 42

IbEXPB1 g9145.t1 207 21810.79 9.49 Cell wall. 22 1 10 33

IbEXPB2 g24143.t1 243 25960.18 5.75 Cell wall. 31 4 4 39

IbEXPB3 g24144.t1 400 44133.02 7.09 Cell wall. 56 7 21 84

IbEXPB4 g27129.t1 308 33145.35 7.52 Cell wall. 47 5 20 72

IbEXPB5 g27144.t1 265 28079.59 6.19 Cell wall. 37 2 5 44

IbEXPB6 g27334.t1 342 36757.24 5.16 Cell wall. 50 5 7 62

IbEXPB7 g27336.t1 256 27320.01 8.37 Cell wall. 31 5 3 39

IbEXPB8 g48839.t1 266 27877.16 4.89 Cell wall. 35 3 8 46

IbEXPB9 g48841.t1 336 36036.73 6.69 Cell wall. 32 5 6 43

IbEXPB10 g54432.t1 262 28422.34 8.74 Cell wall. 19 1 14 34

IbEXLA1 g904.t1 266 28622.45 5.29 Cell wall. 22 4 9 35

IbEXLA2 g59839.t1 268 29409.37 6.96 Cell wall. 17 4 12 33

IbEXLB1 g14386.t1 252 28275.14 5.45 Cell wall. 12 14 10 36

IbEXLB2 g14427.t1 443 49325.01 8.93 Cell wall. 37 15 21 73

IbEXLB3 g14812.t1 351 38060.5 7.91 Cell wall. 40 10 21 71

IbEXLB4 g15079.t1 284 30949.46 8.57 Cell wall. 29 4 8 41

IbEXLB5 g15300.t1 247 26876.61 8.32 Cell wall. 20 7 6 33

IbEXLB6 g33144.t1 251 28135.78 5.41 Cell wall. 17 15 10 42

IbEXLB7 g33212.t1 278 31034.24 5.52 Cell wall. 17 13 10 40

IbEXLB8 g55672.t1 272 28559.26 6.58 Cell wall. 24 5 17 46

IbEXLB9 g55673.t1 247 27029.36 9.33 Cell wall. 30 8 18 56

IbEXLB10 g55674.t1 246 26984.94 8.46 Cell wall. 16 14 13 43

IbEXLB11 g55709.t1 308 32778.84 4.63 Cell wall. 24 7 12 43
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respectively, based on their position on the chromosome. The

nucleotide and protein sequences for each of these IbEXPs can be

found in Supplementary File 1. Protein length (number of amino

acids [aa]), pI, Mw, and phosphorylation sites were determined for

each protein. Detailed data are shown in Table 1. The protein length

and Mw of IbEXPs varied widely, with the length ranging from 183

aa (IbEXPA31) to 670 aa (IbEXPA19) and the Mw ranging from

20.1739 kD (IbEXPB31) to 74.052 kD (IbEXPA19). The pI ranged

from 4.63 (IbEXLB11) to 9.82 (IbEXPA34). Subcellular location

prediction showed that most IbEXPs were located on the cell wall,

and very few were located in the nucleus (IbEXPA19) or in both the

chloroplast and the cell wall (IbEXPA22 and IbEXPA33).

Phosphorylation site prediction of IbEXPs indicated significant

variation from 24 sites (IbEXPA17 and IbEXPA31) to 109

(IbEXPA12), and the vast majority of IbEXPs harbored more Ser

sites than Tyr or Thr sites. Moreover, over 83.05% of IbEXPs had at

least 30 phosphorylation sites.
3.2 Phylogenetic relationships of IbEXPs
in sweetpotato

To explore the evolutionary relationships of IbEXPs in

sweetpotato, phylogenetic analysis was carried out using the

protein sequences of the 59 IbEXPs, 36 Arabidopsis AtEXPs, and

58 rice OsEXPs (Supplementary File 1; Supplementary Table S1).
Frontiers in Plant Science 07
Then, an unrooted phylogenetic tree was constructed using the

neighbor-joining bootstrap method with MEGA software (version

11.0). Phylogenetic tree analysis showed that these 59 IbEXPs could

be divided into four subfamilies (EXPA, EXPB, EXLA, and EXLB)

according to the topology of the tree, clade support values, and

reported studies on EXP classification in Arabidopsis and rice

(Sampedro and Cosgrove, 2005) (Figure 1). These four

subfamilies are named IbEXPA, IbEXPB, IbEXLA, and IbEXLB,

with 36, 10, 2, and 11 members, respectively. The sizes of these

subfamilies varied greatly, with the numbers of IbEXPs ranging

from 2 to 36. The EXPA subfamily was the largest (36 members),

whereas the EXLA subfamily had only two members, consistent

with their counterparts in Arabidopsis and rice. The differences

among IbEXPs, AtEXPs, and OsEXPs in the same subfamilies

indicate apparent interspecific divergence of the EXP gene family

among sweetpotato, Arabidopsis, and rice.
3.3 Chromosome localization of
sweetpotato IbEXP genes

Chromosome distribution analysis based on sweetpotato GFF3

genome annotations exhibited that 59 IbEXP genes were located on

14 of 15 chromosomes of sweetpotato; no IbEXP genes were found

on LG 9. In general, IbEXP genes were unevenly distributed on the

14 chromosomes, possibly owing to uneven gene replications of
FIGURE 1

Phylogenetic tree of 59 sweetpotato IbEXP proteins with Arabidopsis and rice EXP proteins. The phylogenetic relationships were constructed by the
MEGA 11.0 software using the neighbor-joining bootstrap method according to the following parameters: poisson model, pairwise deletion, and
1,000 replicates. Different subfamilies are named following the studies in Arabidopsis and rice, and different colors were used to distinguish each
subfamily. Red circles, green triangles, and blue triangles represent sweetpotato IbEXPs, Arabidopsis AtEXPs, and rice OsEXPs, respectively.
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chromosome fragments. LG 14 contained the most IbEXP genes

(11), followed by LG 7 with nine, whereas LG 11 had only one.

Furthermore, there were eight IbEXP genes on LG 4, five on LG 5,

and two to four on other chromosomes (Figure 2). These results
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suggest that the IbEXP distribution has a highly variable density and

is disproportionate to the length of the chromosome. For instance,

the largest chromosome (LG 11) contained only one IbEXP gene,

whereas the smallest chromosome (LG 10) contained three.
FIGURE 2

Localizations of 59 IbEXPs on sweetpotato chromosomes (LG1-LG15). The red arc behind some IbEXPs represents the gene duplication of some EXP
genes in sweetpotato.
FIGURE 3

Segmental duplications and collinearity analysis of IbEXPs in sweetpotato. LG1–LG15 are represented by different colored rectangles. The heatmap
and polyline along each rectangle depict the gene density of each chromosome. Duplicated IbEXP gene pairs on sweetpotato chromosomes are
indicated by colored lines, and these corresponding genes are also marked with colors. Other IbEXP genes that exhibit no collinear relationships
were marked with a black color.
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3.4 Collinearity analysis of sweetpotato
IbEXP genes

In plants, genome duplication facilitates the expansion and

evolution of gene families (Cannon et al., 2004). To explore potential

gene duplications among all 59 IbEXP genes, collinearity analysis was

performed using the MCScanX and BlastP programs. Seven gene pairs

with tandem duplication were identified, comprising IbEXPA2-

IbEXPA3, IbEXPB2-IbEXPB3, IbEXLB8-IbEXLB9, IbEXLB9-

IbEXLB10, IbEXPA29-IbEXPA30, IbEXPA30-IbEXPA31, and

IbEXPA32-IbEXPA33 (Figure 2; Supplementary Table S2–1). These

IbEXP genes exhibiting tandem duplications all belonged to the same

subfamily. In addition, MCScanX and BlastP were used to identify

fragment duplications; the following three gene pairs in the EXPA

subfamily were identified on five (LG1–3, LG5, LG7) of the 15

chromosomes: IbEXPA2-IbEXPA16, IbEXPA4-IbEXPA6, IbEXPA14-

IbEXPA17 (Figure 3; Supplementary Table S2–2). No fragment

duplications of IbEXPA genes were found on any other chromosomes

(LG4, LG6, and LG8–15), nor were any fragment duplications detected

in the other three subfamilies. These segmental duplications occurring

only between genes of the EXPA subfamily may partly explain why the

EXPA subfamily was larger than the others; it also indicates that the

functions of EXPA genes in regulating plant development and response

to stress may be more significant than those of genes in the other three

subfamilies. In brief, these results suggest that gene duplication is

conducive to the expansion of the sweetpotato IbEXP gene family.
3.5 Collinearity analysis of EXP genes
between sweetpotato and other plants

To further investigate the origins and evolutionary relationships of

sweetpotato IbEXP genes, we explored the collinearity relationships

among IbEXPs and orthologous genes in nine representative plants,

comprising I. triloba (the probable diploid wild relative of sweetpotato),

two cereal plants, two representative model plants, two Solanaceae
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plants, and two Brassica plants. A total of 30 (50.8%) IbEXP genes

showed collinear relationships with orthologous genes of I. triloba,

followed by 13 for Solanum lycopersicum, five for Arabidopsis, four for

Capsicum annuum, three for B. oleracea (3), and two for B. rapa; there

were no collinear relationships of IbEXP genes with Triticum aestivum,

Oryza sativa, or Zea mays (Figure 4; Supplementary Tables S3–1/-2/-

3). The results thus suggest a closer relationship between sweet potato

and I. triloba, as the largest number of collinearity relationships existed

between the orthologous genes of these two plants. Moreover, we found

that multiple IbEXP genes had collinear relationships with two genes in

other plant species, particularly I. triloba. Analogously, two IbEXP

genes showed collinearity with a single gene of four different plants (I.

triloba, Arabidopsis thaliana, B. oleracea, and S. lycopersicum)

(Supplementary Tables S3–1/-2/-3). These data indicate that a

number of orthologous genes might originate from a common

ancestor in these plants.
3.6 Motifs, conserved domains, and gene
structure analysis of IbEXPs

To further evaluate the sequence characteristics of sweetpotato

IbEXPs, we investigated their conserved motif composition. The

results showed that a total of 20 distinct motifs were detected based

on the sequences of Arabidopsis and rice (Sampedro and Cosgrove,

2005). IbEXPs belonging to the same subfamilies generally harbored

similar motif compositions, further supporting our subfamily

classification (Figure 5B). Motifs 2, 5, and 11 were found in most

IbEXPs, with the other motifs distributed only in certain IbEXP

proteins. Multiple motifs were found in almost all IbEXP members of

the same subfamily, with some compositional differences among

different subfamilies. For example, almost all members of the EXPA,

EXPB, EXLA, and EXLB subfamilies harboredmotifs 1, 2, 3, 4, 5, 6, 7, 8,

11, and 20, motifs 2, 3, 5, 7, 10, 11, and 16; motifs 2, 6, 9, 10, 11, and 13,

motifs 2, 5, 6, 11, 13, and 15, respectively. Some IbEXPs in the same

subfamily contained specific motifs in addition to their commonmotifs,
B
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FIGURE 4

Synteny analyses of sweetpotato IbEXP genes with those of the other nine representative plants. These plants are Ipomoea triloba (A), Oryza sativa
and Arabidopsis thaliana (B), Brassica rapa and Brassica oleracea (C), Triticum aestivum and Zea mays (D), Solanum lycopersicum, and Capsicum
annuum (E). The chromosomes of various plants are distinguished by their differential colors.
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such as motifs 4, 8, 17, and 18 in EXPA and motifs 14, 16, and 19 in

EXPB. These results suggest that the composition and number of motifs

vary observably among these four subfamilies, and the existence of

specific motifs suggests that sweetpotato IbEXPs may have distinct and

diverse functions.

To explore the sequence diversity of IbEXP genes, exon-intron

composition and conserved domains were examined. Conserved

domain examination using Batch CD-Search showed the presence

of five domains, comprising one pollen_allerg_1 domain and four

typical EXP domains, among all IbEXPs (Figure 5). In the same

subfamily, most IbEXPs contained the same EXP domain and the

pollen_allerg_1 domain, and the EXP domain was located in a similar

position, with few exceptions. These data indicate that the EXP

domain is the most valuable information to distinctly construct the

phylogenetic relationships among IbEXPs. Gene structure detection

displayed that the exon numbers of IbEXP genes varied from 1 to 14,

with one IbEXP gene containing no introns and four having only one

intron (Figure 5). IbEXPA19 harbored the most exons (14), followed

by IbEXPA22 and IbEXPB3 with 11 exons each. Moreover, most of

the IbEXP genes harbored similar gene structures and exhibited

similar exon lengths. Some differences in intron numbers among

IbEXP genes in the same subfamily were found; these may be

associated with the functional diversity of IbEXP genes. All these

results demonstrate that the phylogenetic relationships of IbEXPs are

mainly related to their conserved EXP domains and gene structures.
3.7 Cis-element prediction in IbEXP
promoter regions

Cis-elements, which are located in gene promoter regions, are

non-coding sequences. They are vital for gene expression and
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regulate numerous biological processes (Zhao et al., 2018). To

explore the possible regulatory mechanisms by which IbEXP

genes control plant growth and response to stresses and

hormones, we detected cis-elements in the 2000bp sequences

upstream of the start codon ATG of each IbEXP gene via the

PlantCARE database. A total of 742 cis-elements were found in the

promoter regions of IbEXP genes (Supplementary Table S4–1), and

these were associated with 19 types of biological processes (Figure 6;

Supplementary Table S4–2). IbEXLB5 (g15300.t1) contained the

largest number (31) of cis-elements, and the numbers of cis-

elements in each subfamily varied greatly (Figure 6). All detected

cis-elements detected in this study could be classified into three

categories (Figure 6), as follows:

The first category relates to hormone responses (404), including

the SA-responsive element (21, 2.83%), MeJA-responsive element

(90, 12.13%), gibberellin-responsive element (34, 4.58%), ethylene-

responsive element (59, 7.95%), auxin-responsive element (40,

5.39%), and ABA-responsive element (160, 21.56%). All

subfamilies of IbEXP genes contained abundant ABA-responsive

elements (G-box and ABRE), gibberellin-responsive elements

(GARE, P-box, TATC-box, and CARE), and ethylene-responsive

elements (ERE) in their promoter regions. Members of the EXPA

subfamily contained a higher number of ABA-responsive elements,

auxin-responsive elements, MeJA-responsive elements, ethylene-

responsive elements, and SA-responsive elements compared with

the other three subfamilies, whereas members of the EXLA

subfamily harbored the fewest of these five hormone-related

elements. Notably, only one gibberellin-responsive element was

found in the promoter region of EXLA subfamily members.

Among these five hormone-responsive elements, the ABA-

responsive element was the most frequent, occurring in 43 IbEXP
B C DA

FIGURE 5

Phylogenetic tree, motif pattern, protein domain, and gene structures of 59 sweetpotato IbEXPs. (A). The phylogenetic tree of 59 IbEXP proteins was
constructed by MEGA 11.0 based on the consistent parameters used in Figure 1. (B). Distributions of motifs in each IbEXP protein. 20 motifs were
identified by MEME data. (C). Conserved domain distributions of IbEXP proteins. The CD-search of the NCBI database was used to detect the
distributions of conserved domains of IbEXP proteins. The different colorful boxes present diverse conserved domains of each subfamily. (D). Gene
structures of 59 sweetpotato IbEXP genes. Green and yellow bars were used to represent the UTR and exons, respectively. The black lines were
employed to indicate the introns. The length of IbEXP proteins or genes was estimated using the scale at the bottom.
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genes, followed by the ethylene-responsive element (34 IbEXP

genes). Some IbEXP genes, including IbEXPA2/8/9/17/23/24/26/

34/36, IbEXPB3/4, IbEXLA1, and IbEXLB6/10/11, had multiple

common hormone-responsive elements, indicating the possibility

that these members have more rapid and intense responses to

certain hormones. Simultaneously, IbEXPA1/2/8/911/17/24/25/27/

31/37/39, IbEXPB3/7/8/12, and IbEXLB1/2/3/9/10 harbored diverse

hormone-responsive elements, suggesting their potential roles in

networks of hormone regulation.

The second category relates to growth and development (123),

including the cell cycle regulatory element (3, 0.4%), circadian

control element (11, 1.48%), endosperm expression element (11,

1.48%), flavonoid biosynthetic gene element (2, 0.26%), growth and

development related element (48, 6.47%), meristem expression

element (34, 4.58%), seed-specific regulatory element (7, 0.94%),

and palisade mesophyll cell differentiation element (7, 0.94%). As

shown in Figures 6B, C, some cis-elements were absent from certain

subfamilies, such as the endosperm expression element, cell cycle

regulatory element, flavonoid biosynthetic gene element, growth

and development related element, meristem expression element,

and seed-specific regulatory element. Cis-elements related to

meristem expression were found in the largest number of IbEXP

genes (26), followed by growth and development-related elements

(12 IbEXP genes). The EXPA subfamily contained all eight of these

elements and had a higher number of cis-elements related to

endosperm expression, growth and development, and meristem

expression compared with the other three subfamilies. These results

indicate that members of the EXPA subfamily may be major

regulators during plant growth and development.

The third category relates to stress responsiveness (214),

including a defense and stress-responsive element (26, 3.5%),

drought inducibility, anthocyanin pathway element (70, 9.43%),

drought-responsive element (99, 13.34%), low-temperature
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responsive element (18, 2.43%), and wound-responsive element

(1, 0.13%). Similar to the two categories described above, the EXPA

subfamily also contained the largest number of cis-elements related

to drought inducibility, defense and stress-responsiveness,

anthocyanin pathway, drought response, and low temperature

response. The wound-responsive element was absent from the

EXPA, EXLA, and EXLB subfamilies, and only one of these

elements existed in EXPB. Members in the EXPA subfamilies

contained the highest numbers of the drought-responsive

element, indicating that EXPA members may be the major

regulators of drought response. Moreover, the drought-responsive

element was found in the largest number of IbEXP genes, suggesting

major roles of IbEXP genes in drought-responsiveness.

In short, the number and composition of cis-elements in the

promoter sequences of different IbEXP genes exhibited great

diversity within and among subfamilies. These results suggest that

IbEXP gene expression levels in sweetpotato are controlled by

diverse cis-elements in connection with growth and development,

hormones, and stress responses.
3.8 Protein interaction network analysis for
IbEXP proteins in sweetpotato

Exploring the functional relationships of IbEXP proteins could

be conducive to uncovering their regulatory networks. Therefore, a

protein interaction network for sweetpotato IbEXP proteins was

constructed using STRING software based on the orthology analysis

of Arabidopsis IbEXPs. In general, a few members such as AtEXPA4

(IbEXPA4/6/14/17), AtEXPB3 (IbEXPB10), AtEXPA11

(IbEXPA22/35), and AtEXPA8 (IbEXPA2/31/33) had interaction

relationships with other EXP proteins, whereas the others did not

(Supplementary Figure S1). Furthermore, each AtEXP had
B
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FIGURE 6

Predicted cis-elements in the promoters of 59 sweetpotato IbEXPs. (A). The phylogenetic tree and predicted cis-elements detected from the 2000
bp promoter regions of each IbEXP gene by the PlantCARE database. The same phylogenetic tree as Figure 5 was used. All cis-elements are
classified into three categories: hormone responsiveness, growth and development, and stress responsiveness. (B). The number of cis-elements in
the promoter of IbEXP genes. The left table represents the number of each kind of cis-element found in each subfamily. The red rectangles indicate
the gene number in each subfamily. (C). Venn diagram of three categories of cis-elements.
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interaction relationships with multiple other proteins involved in

development and/or stress responses (Figure 7). Among these

proteins, AtEXPA4 (IbEXPA4/6/14/17) has been reported to be

involved in primary root elongation in Arabidopsis thaliana (Liu

et al., 2021b), AtEXPA8 (IbEXPA2/31/33) and AtEXPB3

(IbEXPB10) are involved in the formation of nematode-induced

syncytia in the roots of Arabidopsis thaliana (Wieczorek et al.,

2006), and AtEXPA11 (IbEXPA22/35) is likely to be involved in

ethylene physiologies (Son et al., 2012). AtEXPA1 (IbEXPA12/13/

25) is involved in the regulation of stomatal opening and salt and

ABA stress (Gao et al., 2010; Wei et al., 2011; Zhang et al., 2011).

Over-expression of AtEXPB2 (IbEXPB1/2/3/4/5/6/7/8/9) could
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alleviate salt stress damage in transgenic tobacco plants

(Chalekaei et al., 2021); AtEXLA2 (IbEXLA1/2) positively

regulates the hypocotyl growth in Arabidopsis thaliana (Boron

et al., 2014); and AtEXP2 (IbEXPA15) is involved in regulating

gibberellin-mediated seed germination and increasing tolerance to

salt and osmotic stress in Arabidopsis (Yan et al., 2014). The

examination of interactions between IbEXP proteins indicates

that IbEXP proteins tend to form complexes through protein

interactions to perform crucial functions in the regulation of

development and/or stress responses. This information will be

conducive to further study of the significant roles of IbEXP

proteins in stress response and plant development.
FIGURE 7

Interaction networks of IbEXP proteins with other functional proteins from different families according to the orthologues in Arabidopsis. The amino
acid sequences of each IbEXP protein in sweetpotato were employed to search the STRING database according to the orthologues in Arabidopsis.
The network node represents proteins, and the edge represents protein-protein associations. The different colored lines between the nodes indicate
the different kinds of interactions. The red numbers (IbEXP protein name) in brackets represent the corresponding orthologues in sweetpotato. The
filled and empty nodes delineate the proteins with known or predicted 3D structures and unknown 3D structures, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1412540
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1412540
3.9 RNA-seq of sweetpotato during
tuberous root development

Numerous members of various gene families have been reported

to be involved in the regulation of sweetpotato tuberous root

development. To explore the roles of members of different gene

families during sweetpotato tuberous root development, we carried

out RNA-seq of sweetpotato roots in different stages (FR, DR, and

MR). More than 34 million sequence reads were obtained for each

cDNA library, representing >5 Gb of sequence data for each sample.

The RNA-seq data exhibited good correlations and were suitable to

be used for further investigations (Supplementary Figure S2). A

summary of the RNA-seq, assembly, annotation, and mapping is

provided in Supplementary Table S5–1. Finally, a total of 45142 genes

were identified from the three cDNA libraries using FPKM to
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estimate gene expression. Using p-value <0.05 and |log2 (fold

change)| ≥1 as the significance threshold in DESeq2, 5488 genes, of

which 3166 were up-regulated and 2322 were down-regulated, were

identified as the differentially expressed genes (DEGs) between DR

and FR, and 9669 genes, of which 4686 were up-regulated and 4983

were down-regulated, were identified as DEGs between MR and FR

(Figure 8; Supplementary Tables S5–2, S5–3). In addition, 3423 DEGs

were found simultaneously in both groups (DR vs. FR and MR vs.

FR) (Figure 8; Supplementary Table S5–4), and these DEGs showed

different expression patterns in these two groups (Figure 8). Most of

the DEGs from different groups (DR vs. FR, MR vs. FR, DR vs. FR,

and MR vs. FR) belonged to different gene families that are known to

be involved in plant development, such as the MADS-box, AP2/ERF,

DEAD, B3, bZIP, bHLH, NAC, Homeobox, Dof, WRKY, MYB, and

AUX/IAA families (Supplementary Tables S5–2; S5–3; S5–4).
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FIGURE 8

RNA-seq analysis of candidate genes that were involved in sweetpotato tuberous root development. (A). Histogram visualizing the differentially
expressed genes (DEGs) in groups DR vs. FR and MR vs. FR. The up-regulated DEGs are shown in red, and the down-regulated DEGs are shown in
green. The y-axis represents the gene number. (B). The Venn diagram represents the 3423 DEGs detected simultaneously in groups DR vs. FR and MR
vs. FR. (C). Hierarchical clustering analysis of 3423 DEGs detected simultaneously in the three developmental stages (FR, DR, and MR). The red and blue
colors indicate the up-regulated and down-regulated DEGs in the heat maps, respectively. The scale bar denotes the value of log10 (FPKM+1); FPKM,
fragments per kilobase of transcript sequence per million base pairs sequenced. (D). Gene Ontology (GO) classification of DEGs that are enriched in
cellular component (CC), biological process (BP), and molecular function (MF) in group DR vs. FR. (E). Gene Ontology (GO) classification of DEGs that
are enriched in cellular component (CC), biological process (BP), and molecular function (MF) in group MR vs. FR. (F). KEGG pathway enrichment analysis
of up- and downregulated DEGs that are primarily enriched in the regulatory pathway in groups DR vs. FR. (G). KEGG pathway enrichment analysis of
up- and downregulated DEGs that are primarily enriched in the regulatory pathway in groups MR vs. FR. “GeneRatio” indicates the ratio of the number of
differential genes associated with one KEGG pathway to the total number of all DEGs.
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To explore the potential functions of these DEGs in sweetpotato

tuberous root development, we performed functional enrichment

using gene ontology (GO) analysis in two groups (DR vs. FR and

MR vs. FR) to categorize the DEGs with respect to cellular

component (CC), biological process (BP), and molecular function

(MF). First, in the DR vs. FR group, for BP, the DEGs were

principally enriched in biological processes, regulation of

transcription, DNA-templated and transcription, DNA-templated;

for CC, the majority of DEGs were associated with the nucleus,

plasma membrane, and integral components of the membrane; and

for MF, most of the DEGs were related to molecular function,

protein binding, and ATP binding (Figure 8; Supplementary Table

S5–5). Second, in the group MR vs. FR, for BP, the DEGs were

principally enriched in biological processes, regulation of

transcription, DNA-templated and transcription, DNA-templated;

for CC, the majority of DEGs were associated with the nucleus,

cytoplasm, and plasma membrane; and for MF, most of the DEGs

were related to molecular function, protein binding, ATP binding,

and DNA binding (Figure 8; Supplementary Table S5–6). In the DR

vs. FR group, 131 pathways were screened using KEGG analysis,

and we found that most of the DEGs were mainly enriched in

multiple pathways associated with biosynthesis, metabolism, and

plant hormone signal transduction (Figure 8; Supplementary Table

S5–7). In the MR vs. FR group, 137 pathways were screened, and the

majority of DEGs were enriched in multiple pathways in

connection with biosynthesis and metabolism (Figure 8;

Supplementary Table S5–8). These results indicate that the DEGs

influence sweetpotato tuberous root development by regulating

transcriptional levels of genes relating to signal transduction, cell

component modification, biosynthesis , and regulation

of transcription.
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3.10 Transcriptome−wide identification of
IbEXP genes during tuberous root
development and their expression profiles
in different tissues

Accumulating evidence suggests that EXP genes have various

critical roles in different developmental processes, such as root

growth and architecture, fruit softening and ripening, seed

production, and nodule formation and development. To

investigate the potential biological roles of IbEXP genes in

tuberous root formation and development, their transcript levels

were explored at different developmental stages (FR, DR, and MR)

based on our transcriptome data. We detected 35 IbEXP genes

from all samples of these three periods and found that they

displayed different expression patterns (Figure 9; Supplementary

Tables S5–9); 13 and 10 IbEXP genes were significantly expressed in

the DR vs. FR and MR vs. FR groups, respectively (Supplementary

Tables S5–9).

To verify our transcriptome data, we performed qRT-PCR

analysis to analyze the expression patterns of eight selected IbEXP

genes from different subfamilies that showed distinct expression

changes in our RNA-seq data in different periods in tuberous roots

and other tissues. The transcript abundances of these IbEXP genes

varied among different tissues (Figure 10). The transcripts of

IbEXPA4, IbEXPA17, IbEXPA25, IbEXPB5, IbEXPB10, IbEXLA2,

and IbEXLB11 markedly accumulated in some developmental

stages of tuberous roots (DR1, DR2, DR3, and MR), and their

levels were significantly higher in one or two DR (DR1, DR2, and

DR3) stages than in the MR stage. Moreover, IbEXPA17, IbEXPA25,

IbEXPB5, and IbEXLA1 also showed high expression levels in

leaves. Transcripts of IbEXLA1 were markedly accumulated in the
FIGURE 9

Heatmap of IbEXPs genes during sweetpotato tuberous root bulking. FPKM.FR, fibrous roots; FPKM.DR, developing tuberous roots; FPKM.MR, mature
tuberous roots. FPKM, fragments per kilobase of transcript sequence per million base-pairs sequenced.
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FR stage and then dramatically reduced at DR1–3 before being

induced by the development of tuberous roots. The expression of

IbEXLB11 was down-regulated with the development of tuberous

roots and was significantly up-regulated in stems and FR. The

expression of IbEXPB5 was increased following tuberous root

development; it showed the highest expression levels in DR3 and

reduced levels in MR. The expression levels of IbEXLA1 in stems

and leaves were significantly higher than those in different

developmental stages of tuberous roots. These results suggest that

the selected EXP genes may have significant roles in different tissues

and developmental stages of sweetpotato roots.
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3.11 Expression patterns of IbEXP genes
under multiple hormone treatments and
abiotic stresses

In addition to their crucial functions in plant development, EXPs

have been confirmed to participate in responses to multiple abiotic

stresses and exogenous plant hormones (Han et al., 2012; Zou et al.,

2015; Yang et al., 2020). Thus, we investigated the transcript

accumulation of eight IbEXP genes under various abiotic stresses

and plant hormone treatments. The expression levels of these IbEXP

genes were enhanced or decreased to varying degrees under different
FIGURE 10

Expression profile analysis of IbEXP genes in different tissues by qRT-PCR. L, mature leaves at 60 dap; S, stems at 60 dap; DR1, tuberous roots at 30
dap; DR2, tuberous roots at 60 dap; DR3, tuberous roots at 100 dap; MR, mature tuberous roots at 120 dap.
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hormone treatments (ABA, ACC, JA, SA) (Figure 11). Specifically, the

transcriptional levels of IbEXPA4/17/25, IbEXPB5/10, IbEXLA1, and

IbEXLB11 can be increased to various degrees by these four hormones,

whereas IbEXLA2 expression levels were reduced. Transcripts of

IbEXPB5/10 and IbEXLA1 displayed high fold changes in expression

(6.6-fold–7.9-fold increase compared with levels at 0 h after ABA

treatment), whereas the other four IbEXP genes (IbEXPA4/17/25,

IbEXLB11) exhibited changes with less than two folds. The expression

levels of IbEXPA4/17/25, IbEXPB5, and IbEXLB11 were up-regulated

about 2.9-fold–26.3-fold compared with levels at 0 h under ACC

treatment. After JA treatment, transcript levels of IbEXPA17/25,

IbEXPB5, IbEXLA1, and IbEXLB11 were increased by 2.9-fold–13.8-

fold at certain time points. After SA treatment, only IbEXLB11

displayed increased transcript abundance (two-fold change);

transcript levels of the other seven EXP genes displayed decreases of

varying degrees at all or some time points.

In consideration of the crucial functions of IbEXP genes in

response to various abiotic stresses, as reported in previous studies,

we also performed expression pattern analysis for the selected

IbEXP genes under low temperature (LT, 4°C) and high
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temperature (HT, 42°C), according to our previous study (Meng

et al., 2020). The results displayed that transcript levels of all eight

selected IbEXPs were increased or reduced to various degrees

(Figure 11). Those of IbEXPA4/25, IbEXPB10, IbEXLA1, and

IbEXLA2 were significantly reduced at all time points, whereas

IbEXPA17 showed marked reduction at all or some time points

under low temperature stress, and its expression increased about

2.3-fold at 48 h. On the contrary, expression levels of IbEXPB5 were

dramatically reduced at all or some time points under high

temperature stress but were observably increased about 4.1-fold–

9-fold at 24 h and 48 h. These results suggest that many IbEXP

genes function as crucial regulators in response to certain hormones

(especially ABA, ACC, and JA), abiotic stresses, and/or

signal transduction.
4 Discussion

Sweetpotato is a significant food crop with broad applications

in industrial materials, animal feed, and human food. It has
B

A

FIGURE 11

Relative expression levels of IbEXP genes detected by qRT-PCR under diverse hormone treatments and abiotic stresses. (A). The expression
levels of detected IbEXP genes under diverse hormone treatments. These hormone treatments include ABA (abscisic acid, 100 mM), ACC (1-
aminocyclopropane-1-carboxylic acid, 100 mM), JA (jasmonic acid, 100 mM), and SA (salicylic acid, 2 mM). 0 h represents the WT seedlings that were
not treated by each treatment. Bars indicate the mean of three biological replicates ± SE. The two-fold expression changes of IbEXP genes in each
treated sample compared to the 0 h sample are considered to be significant expression changes. (B). The expression levels of detected IbEXP genes
under abiotic stresses. The abiotic stress treatments include low temperature (LT, 4˚C) and high temperature (HT, 42˚C). 0 h represents the WT
seedlings that were not treated by each treatment. Bars indicate the mean of three biological replicates ± SE. The two-fold expression changes of
IbEXP genes in each treated sample compared to the 0 h sample are considered to be significant expression changes. The asterisk indicate the
significant differences of IbEXP gene expression changes in treated samples compared to the 0 h sample.
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various natural advantages, including high stress resistance, high

yield, and wide adaptability (Liu, 2017). Plant growth is

determined by cell enlargement and proliferation and is

restricted by the cell wall, which limits increases in the

protoplasm of plant cells. The mechanism of cell wall extension

has long been a focus of investigation owing to the crucial

functions of cell wall enlargement during plant morphogenesis

(Lin et al., 2011). EXPs are necessary for plant development and

play critical roles in the relaxation of the plant cell wall. They are

thus among the most frequently investigated structural proteins.

EXPs promote the growth of the primary cell wall in plants. They

can loosen the cell wall via the cleavage of hydrogen bonds

between hemicellulose and cellulose microfibrils, fill microfibrils,

and combine cellulose networks to form reticular systems (Cho

and Cosgrove, 2000; Li et al., 2003), resulting in increases in cell

wall strength and toughness and continuous extension of the cell

wall (Ding et al., 2016). However, members of the EXP gene family

in I. batatas had not been systematically and comprehensively

characterized. The completed genome sequencing of sweetpotato

and the availability of advanced bioinformatics tools provide an

excellent foundation for the identification and characterization of

specific gene families (Yang et al., 2017). In this study, the IbEXP

genes in I. batatas were systematically characterized and analyzed,

and their multiple molecular characteristics were further explored.

Our study provides a foundation for further investigations of the

regulatory modes and molecular functions of IbEXP genes in

sweetpotato growth and development and stress tolerance.
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4.1 Characterization of IbEXPs
in sweetpotato

In this study, 59 IbEXP genes were identified from the I. batatas

genome, whereas only 37 ItfEXP genes were identified in I. trifida,

suggesting that number expansion of the EXP gene family has

occurred in Ipomoea batatas compared with its diploid wild relative

(Li et al., 2022). These 59 IbEXP genes were divided into four

subfamilies: IbEXPA, IbEXPB, IbEXLA, and IbEXLB, which were

similar to those in other plant species. The number of 59 IbEXP

genes is more than 46, 38, 36, 46, 36, and 38 EXP genes in barley (Liu

et al., 2021a), Brachypodium distachyon (Chen et al., 2020b),

Arabidopsis (Sampedro and Cosgrove, 2005), gingkgo (Guo et al.,

2023), potato (Chen et al., 2019), and tomato (Lu et al., 2016), and is

similar to 52 and 58 EXP genes in tobacco (Ding et al., 2016) and rice

(Sampedro and Cosgrove, 2005), while is obviously less than 75, 88,

92, 93, and 241 EXP genes in soybean (Zhu et al., 2014), maize (Zhang

et al., 2014), sugarcane (Santiago et al., 2018), cotton (Lv et al., 2020),

and common wheat (Han et al., 2019). These differing numbers

suggest that the size of the EXP gene family has changed

significantly in different plants during evolution. Likewise, the sizes

of EXP subfamilies are unevenly distributed in different plant species,

although the EXPA subfamily occupies the highest proportion

compared with the other three subfamilies in all plants (Table 2). In

addition, the 59 IbEXP genes in sweetpotato were disproportionately

distributed on 14 chromosomes. Similar uneven distributions have

been observed in wheat (Han et al., 2019), cotton (Lv et al., 2020),
TABLE 2 Summary of each expansin subfamily in 15 plant species.

Species EXPA EXPB EXLA EXLB Total Reference

Ipomoea batatas 36 (61%) 10 (17%) 2 (3.4%) 11 (18.6%) 59 In this study

Ipomoea trifida 23 (62.2%) 4 (10.8%) 2 (5.4%) 8 (21.6%) 37 (Li et al., 2022)

Saccharum officinarum 51 (55.4%) 38 (41.3%) 3 (3.3%) 0 (0%) 92 (Santiago et al., 2018)

Oryza sativa 34 (58.6%) 19 (32.8%) 4 (6.9%) 1 (1.7%) 58 (Sampedro and Cosgrove, 2005)

Triticum aestivum 121 (50.2%) 104 (43.2%) 16 (6.6%) 0 (0%) 241 (Han et al., 2019)

Zea mays 36 (40.9%) 48 (54.5%) 4 (4.5%) 0 (0%) 88 (Zhang et al., 2014)

Hordeum vulgare 24 (52.2%) 16 (34.8%) 6 (13%) 0 (0%) 46 (Liu et al., 2021a)

Brachypodium distachyon 30 (79%) 4 (10.5%) 3 (7.9%) 1 (2.6%) 38 (Chen et al., 2020b)

Arabidopsis 26 (72.2%) 6 (16.7%) 3 (8.3%) 1 (2.8%) 36 (Sampedro and Cosgrove, 2005)

Glycine max 49 (65.3%) 9 (12%) 2 (2.7%) 15 (20%) 75 (Zhu et al., 2014)

Ginkgo biloba 32 (69.5%) 4 (8.7%) 5 (10.9%) 5 (10.9) 46 (Guo et al., 2023)

Gossypium spp 67 (72%) 8 (8.6%) 6 (6.5%) 12 (12.9%) 93 (Lv et al., 2020)

Nicotiana tabacum 36 (69.2%) 6 (11.5%) 3 (5.8%) 7 (13.5%) 52 (Ding et al., 2016)

Solanum tuberosum 24 (66.6%) 5 (13.9%) 1 (2.8%) 6 (16.7%) 36 (Chen et al., 2019)

Solanum lycopersicum 25 (65.8%) 8 (21.1%) 1 (2.6) 4 (10.5%) 38 (Lu et al., 2016)
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barley (Liu et al., 2021a), and potato (Chen et al., 2019) et al.,

indicating that the number of IbEXP genes on each chromosome is

unrelated to the size of the chromosome. Therefore, IbEXP genes on

chromosomes were clustered instead of being evenly distributed,

possibly owing to uneven gene replications of chromosome fragments.

Although IbEXP protein properties displayed significant

differences, IbEXPs in the same clade harbored relatively conserved

gene structures, motifs, and domains, which could provide an

important reference for phylogenetic analysis and functional

investigation. These results confirm that genes originating from a

single ancestor can gradually expand and evolve (Lv et al., 2020).

IbEXP members of the same subfamily tended to display similar

compositions with respect to motifs, domains, and exon/intron

structure, which were similar to those in other plant species such as

tobacco, soybean, and cotton (Zhu et al., 2014; Ding et al., 2016; Lv

et al., 2020). Gene structure analysis exhibited that about 83.1% of

IbEXP genes harbored 1–5 exons, which displayed similarity with

those of EXP genes in maize (Zhang et al., 2014), soybean (Zhu et al.,

2014), tea (Bordoloi et al., 2021), Populus (Yin et al., 2023), and

banana (Backiyarani et al., 2022). However, several IbEXP genes had

more than eight exons, indicating the high divergence among them.

The N-terminal conserved motifs (DPPB domains) of IbEXP proteins,

which are rich in Cys residues with a characteristic catalytic domain,

may be related to disulfide bond formation (Jin et al., 2020). The C-

terminal motif (pollen_allerg_1 domain), which contains conserved

aromatic amino acids and polar tryptophan residues on its surface,

was considered to be the polysaccharide binding domain. The

existence of these motifs in IbEXP proteins suggests that they are

crucial for the functions of IbEXP proteins in cell wall enlargement

and loosening. Although the conserved DPBB and pollen_allerg_1

motifs were similar among most IbEXPs in the same subfamily, there

were significant differences in molecular characteristics, which may be

generated by sequence differences in non-conserved regions. Some

specific motifs were only found in certain subfamilies, suggesting that

some IbEXP genes may play specific roles in plant development, given

that previous studies have reported that EXPs perform functions in

various biological processes (Zou et al., 2015; Che et al., 2016;

Brasileiro et al., 2021; Zhang et al., 2021a; Chen et al., 2022).
4.2 Evolutionary relationships and
collinearity analysis of IbEXPs
in sweetpotato

Phylogenetic relationship analysis showed that the 59 IbEXPs

could be grouped into four subfamilies based on sequence homologies

and subfamily classifications of Arabidopsis AtEXPs and rice OsEXPs

(Sampedro and Cosgrove, 2005; Choi et al., 2006; Zhang et al., 2014).

At least one IbEXP protein was found in each subfamily of rice and

Arabidopsis (Sampedro and Cosgrove, 2005; Choi et al., 2006),

indicating that the discrepancies of EXP proteins may occur earlier

than dicots and monocots. The IbEXP proteins in sweetpotato were

unevenly distributed among the four subfamilies; most of them were

members of the EXPA and EXPB subfamilies, whereas only a few

belonged to the EXLA and EXLB subfamilies. Similar uneven

distributions of members across these four subfamilies are also
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found in other plants, such as sugarcane (Santiago et al., 2018), rice

(Sampedro and Cosgrove, 2005), Arabidopsis (Sampedro and

Cosgrove, 2005), cotton (Lv et al., 2020), potato (Chen et al., 2019),

and tomato (Lu et al., 2016). These results indicate that members of

the EXPA and EXPB subfamilies may have more crucial roles in plant

growth and development. For instance, the rice OsEXPA10, an Al‐

inducible EXP gene in rice, plays significant roles in cell elongation of

roots (Che et al., 2016). Overexpression of GhEXPA8 in cotton

improves the length of fibers and micronaire value (Bajwa et al.,

2015). TaEXPA2 has crucial functions in seed production and

response to multiple abiotic stresses (salt, drought, oxidative, and

Cd) (Chen et al., 2016, 2017; Ren et al., 2018; Chen et al., 2018b; Yang

et al., 2020). The b-expansin gene OsEXPB2 participates in the

architecture of the root system in rice (Zou et al., 2015). Moreover,

the proportion of members in each subfamily varies greatly among

different plants. The classification of IbEXP proteins displayed both

similarities and discrepancies compared with that of other plants,

suggesting a diversity of functions and structures of EXP proteins exist

in different plants.

Gene duplications are vital driving forces during the processes of

expansion and evolution of many gene families in plants and can

promote the generation of novel functional genes and species,

enabling plants to better resist adverse environmental conditions

(Lynch and Conery, 2000; Cannon et al., 2004; Li et al., 2021).

Previous investigations in moso bamboo (Jin et al., 2020), maize

(Zhang et al., 2014), barley (Liu et al., 2021a), potato (Chen et al.,

2019), banana (Backiyarani et al., 2022), and Brassica species (Li et al.,

2021) suggested that duplication events of tandem, segments, and

genome may explain the expansion and evolution of IbEXP genes in

sweetpotato. Analogously, collinearity analysis showed that multiple

IbEXP genes had duplications of tandems and segments, suggesting

that some IbEXP genes may be generated via gene duplications; this

further supports a mechanism that brings about the expansion of

IbEXP genes. The segmental and tandem duplications made similar

contributions to the increase in IbEXP genes. In addition, the IbEXP

genes exhibiting segmental duplications and tandem repeats were

usually from the same subfamily, and the IbEXP gene pairs were

mainly from the EXPA, EXPB, and EXLB subfamilies, indicating that

expansions of IbEXP genes in specific subfamilies may be beneficial

for sweetpotato growth and development and for adaptation to

changing environmental conditions. These results are similar to

those reported for EXP genes in moso bamboo (Jin et al., 2020),

maize (Zhang et al., 2014), potato (Chen et al., 2019), and so on,

indicating the critical evolutionary functions of segmental and

tandem duplications in gene expansions.

Furthermore, synteny analysis was used to estimate the

relationships between IbEXP genes and their counterparts in nine

plants studied, comprising Ipomoea triloba, Oryza sativa,

Arabidopsis, Zea mays, Triticum aestivum, Capsicum annuum,

Solanum lycopersicum, Brassica oleracea, and Brassica rapa. The

largest numbers of orthologous genes were identified between

sweetpotato and Ipomoea triloba, which further proved their close

evolutionary relationship; the next most closely related plants, based

on orthologous gene numbers, were Solanum lycopersicum,

Arabidopsis, Capsicum annuum, Brassica oleracea, and Brassica

rapa. These orthologous gene pairs may be derived from a
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common ancestor of sweetpotato and other plant species. In addition,

more complex relations such as multiple Ipomoea trilobato-single

sweetpotato genes or multiple sweetpotato-single Ipomoea trilobato

genes were found, indicating that the orthologous genes might have

vital functions in the evolution of IbEXP genes in sweetpotato.

However, there were no orthologous genes between sweetpotato

and three Gramineae plants (Oryza sativa, Zea mays, and Triticum

aestivum), and some EXP subfamilies such as EXLB were lost in

many plants (Zhang et al., 2014; Santiago et al., 2018; Han et al., 2019;

Liu et al., 2021a), probably owing to the abundant chromosomal

fusions and rearrangements taking place in their genomes, and this

selective gene loss has seriously hindered the identification of synteny

relations (Paterson et al., 2012). These findings may be related to the

phylogenetic relationships between sweetpotato and these nine

plants. Large-scale duplications predate plant divergence and have

vital functions in the expansion of the IbEXP gene family.
4.3 Expression patterns and functional
prediction of IbEXPs in sweetpotato

The EXP gene family has received increasing attention owing to

the widespread participation of its members in various biological

processes of plant development and responses to diverse stresses.

Numerous studies have shown that EXP genes are excellent

candidates for regulation of growth and development and for

improving the stress tolerance of crops via molecular breeding

(Choi et al., 2006; Han et al., 2012; Li et al., 2015). For example,

OsEXPA8, OsEXPA10, and OsEXPB2 in rice (Wang et al., 2014; Zou

et al., 2015; Che et al., 2016), GmEXPB2, GmEXLB1, and GmINS1 in

soybean (Guo et al., 2011; Li et al., 2015; Kong et al., 2019; Yang et al.,

2021), and TaEXPA2, TaEXPA8, TaEXPB23 in wheat (Han et al.,

2012; Chen et al., 2017; Chen et al., 2018b; Peng et al., 2019; Yang

et al., 2020) have been proven to have crucial functions in plant

development and/or responses to various adverse environmental

conditions. However, the functions of sweetpotato IbEXP genes in

the regulation of stress resistance and plant development have

remained poorly understood. The expression profiles of genes are

closely related to their biological functions, and the identification of

gene expression can be conducive to the characterization of gene

functions. In this study, our RNA-seq and qRT-PCR results showed

that more than half of the IbEXP genes were involved in sweetpotato

tuberous root development. The IbEXP genes exhibited markedly

differential expression in different tissues and after different

treatments with hormones and abiotic stresses, suggesting diverse

and critical functions of the IbEXP genes in plant development and

stress responses. For instance, the expression levels of multiple IbEXP

genes, particularly IbEXPA4, IbEXPA25, IbEXPB10, IbEXLA2, and

IbEXLB11, showed differential expression in different tissues, and

IbEXPA4, IbEXPB5, and IbEXLB11 were dramatically induced or

suppressed under different hormone and abiotic stresses, indicating

that they may have significant functions in sweetpotato growth and

development and stress/hormone response and/or help plants to

reduce the damage caused by various stresses.

The potential functions of IbEXP genes in growth and

development, stress, and hormone responses were further
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supported by cis-element and evolutionary relationship analysis.

EXP genes in similar subfamilies may be derived from the same

gene/fragment duplication events, and functional investigations of

EXPs have verified conserved and/or similar roles in the same

subfamily of plants (Choi et al., 2006, 2008; Wang et al., 2014; Li

et al., 2015; Che et al., 2016; Yang et al., 2021). Previous studies have

shown that TaEXPA2 (Chen et al., 2017; Ren et al., 2018; Chen et al.,

2018b; Yang et al., 2020), OsEXPA8 (Wang et al., 2014), OsEXPA10

(Che et al., 2016), TaEXPA8 (Peng et al., 2019), and AtEXPA1 (Gao

et al., 2010; Zhang et al., 2011) in the EXPA subfamily; AtEXPB1

(Kwon et al., 2008), GmINS1 (Yang et al., 2021), OsEXPB2 (Zou

et al., 2015), GmEXPB2 (Guo et al., 2011; Li et al., 2015), and

TaEXPB23 (Han et al., 2012) in the EXPB subfamily; AtEXLA2

(Abuqamar et al., 2013; Boron et al., 2014) in the EXLA subfamily;

GmEXLB1 (Kong et al., 2019), MdEXLB1 (Chen et al., 2022), and

BrEXLB1 (Muthusamy et al., 2020) in the EXLB subfamily are

crucial participants in tissue growth and development and/or

various stress responses. Here, phylogenetic analysis showed that

the IbEXPA1/-25/-26 genes were closely linked to AtEXPA1/-10/-15,

the IbEXPB10 gene was closely linked to AtEXPB1/-3 and

OsEXPB16/-17, and the IbEXLA1/2 genes were closely linked to

AtEXLA1/-2/-3. Expression levers of eight genes (IbEXPA4/-17/25,

IbEXPB5/-10, IbEXLA1/-2, and IbEXLB11) displayed tissue

specificity in different tissues, and their transcripts were

observably induced or suppressed under various hormone and

stress treatments, implying that they might have vital roles in

regulation of the pathways of plant development and stress

responses. Furthermore, IbEXP members in the same

phylogenetic branch exhibited both similar and discrepant

expression profiles, suggesting the diversity of their potential

functions. Therefore, we speculated that development-related and/

or stress-response-related IbEXPs that were grouped in the same

subfamilies would participate in the control of plant development

and/or stress/hormone responses.

Previous investigations have shown that plant hormones play

significant roles in controlling plant development and adaptation to

various adverse environmental conditions (Verma et al., 2016).

Moreover, the cis-elements located in gene promoter regions

function as crucial regulators of gene expression. In this study,

numerous cis-elements were detected in promoters of IbEXP genes

and shown to be related to hormones, growth and development,

and stresses; these are ABRE, ARE, ERE, TGACG-motif, CCGTCC-

box, TGA-element, P-box, as-1, CAT-box, LTR, MSA-like, and

TATC-box. The results suggest that these elements could function

as necessary participants in the regulation of growth and

development and hormone and/or stress signaling. In addition,

the expression levels of the examined IbEXP genes (IbEXPA4/-17/-

25, IbEXPB5/-10, IbEXLA1/-2, and IbEXLB11) were markedly

increased or reduced by one or some hormones and abiotic

stresses. These results are similar to those of previous

investigations in moso bamboo (Jin et al., 2020), Ipomoea trifida

(Li et al., 2022), tobacco (Ding et al., 2016), Brachypodium

distachyon (Chen et al., 2020b), and banana (Backiyarani et al.,

2022). However, the exact biological functions of the sweetpotato

IbEXP genes remain to be determined. An investigation of the

involvement of these IbEXP genes in sweetpotato development and
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stress regulation could provide valuable information regarding their

potential functions in growth, development, and stress tolerance.
5 Conclusion

Collectively, in the present study, 59 IbEXP genes from the

sweetpotato genome were systematically identified and characterized

and found to be unevenly distributed on 14 of 15 chromosomes. Their

phylogenetic classification, conserved motifs and domains, collinearity

relationships, gene structure, cis-elements, molecular characteristics,

and chromosome localization were systematically investigated.

Duplication events such as tandem and segmental duplications were

found to have been conducive to the expansion of the sweetpotato

IbEXP gene family, and synteny analysis of orthologous genes between

sweetpotato and typical plant species provided significant insights into

the phylogenetic characteristics of IbEXP genes in sweetpotato.

Moreover, the results of RNA-seq and qRT-PCR analyses revealed

various differential expression patterns of IbEXP genes in different

developmental tissues and following different stress and hormone

treatments. Multiple tissue-specific expression and hormone- or

stress-induced IbEXP genes may have very close relationships with

the transcriptional regulation of sweetpotato development and stress

responses. In conclusion, the present results both contribute to our

understanding of the complexity and importance of the EXP gene

family and lay the foundation for future comprehensive analysis of the

potential functions of this family in regulating plant growth,

development, and stress tolerance.
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