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Inoculation with Jeotgalicoccus
sp. improves nutritional quality
and biological value of Eruca
sativa by enhancing amino acid
and phenolic metabolism and
increasing mineral uptake,
unsaturated fatty acids, vitamins,
and antioxidants
Abdelrahim H. A. Hassan1, Maria Gabriela Maridueña-Zavala2*,
Emad A. Alsherif3, Abeer S. Aloufi4, Shereen Magdy Korany5,
Mohammad Aldilami6, Nahla A. Bouqellah7, Ahmed M. Reyad3

and Hamada AbdElgawad3

1School of Biotechnology, Nile University, Giza, Egypt, 2Centro de Investigaciones Biotecnológicas del
Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador, 3Botany and
Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt, 4Department of
Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia,
5Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt,
6Department of Biology, Faculty of Science, King Abdelaziz University, Jeddah, Saudi Arabia,
7Department of Biology, Science College, Taibah University, Madinah, Saudi Arabia
Plant growth-promoting bacteria (PGPB) are considered a promising tool for

triggering the synthesis of bioactive compounds in plants and to produce healthy

foods. This study aimed to demonstrate the impact of PGPB on the growth,

accumulation of primary and secondary metabolites, biological activities, and

nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To

this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial

16S rDNA-based identification and phylogenetic analysis. The findings revealed

that JW0823 significantly boosted plant biomass production by about 45%

(P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated

plants showed remarkable improvements in their proximate composition and

vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the

accumulation of bioactive metabolites including antioxidants, vitamins,

unsaturated fatty acids, and essential amino acids, thereby improving the

nutritional qualities of treated plants. An increase in the amounts of amino

acids was recorded, with isoleucine showing the highest increase of 270.2%.

This was accompanied by increased activity of the key enzymes involved in

amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate
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synthase, cystathionine g-synthase, and phenylalanine ammonia-lyase enzymes.

Consequently, the total antioxidant and antidiabetic activities of the inoculated

plants were enhanced. Additionally, JW0823 improved antimicrobial activity

against several pathogenic microorganisms. Overall, the JW0823 treatment is a

highly promising method for enhancing the health-promoting properties and

biological characteristics of E. sativa, making it a valuable tool for improving the

quality of this important leafy vegetable.
KEYWORDS

arugula, biosynthetic enzymes, antioxidant, fatty acids, flavonoids, plant growth
promoting bacteria
1 Introduction

Beneficial bacteria, including endophytes and rhizobacteria, form

symbiotic relationships with plants and are known as plant-growth-

promoting bacteria (PGPB). PGPB stimulate plant growth and are

used in agriculture to improve productivity and quality as an

alternative to traditional fertilizers, promoting sustainability

(Bakhshandeh et al., 2020; Saberi Riseh et al., 2021; Crecchio, 2020;

Manoj et al., 2020). They maintain soil fertility (Harris, 1997),

solubilize minerals like phosphate and zinc, and fix nitrogen (Pii

et al., 2016; Yaghoubi Khanghahi et al., 2021b). Furthermore, they

produce growth regulators (Khan, 2021), enhancing plant growth,

metabolism, and stress resistance (AbdElgawad et al., 2021a, 2021b;

Ghorbel et al., 2023), and improve agronomic and physiological traits

in various plants (Yaghoubi Khanghahi et al., 2021a) and induce

hormone production (Harris, 1997). Overall, PGPB support

ecosystem survival and function (Schimel et al., 2007; Paz-Ferreiro

and Fu, 2016). Among PGPB, Jeotgalicoccus sp. can effectively

promote plant growth, colonization and show great potential in

plant tolerance to abiotic stresses (Gong et al., 2016; Li et al., 2022;

Misra et al., 2019; Liu et al., 2011). The genus Jeotgalicoccus was

introduced by Yoon et al. (2003), initially encompassing two species

(J. halotolerans and J. psychrophilus). This new genus was classified

within the Staphylococcaceae family of the Firmicutes phylum. J.

huakuii improved maize growth in alkaline soil and increased the

production of bioactive compounds such as antioxidants,

chlorophyll, and soluble sugars (Misra et al., 2019). Mukasheva

et al. (2016) reported that J. halotolerans strain can produce

growth-promoting hormones (IAA) and ACC deaminase enzyme,

reducing ethylene levels in plants. This genus (ВАК1) demonstrated

growth-promoting and phosphorus-solubilizing properties as well as

antagonistic potential against the causative agents of fungal diseases

(Mukasheva et al., 2016). J. huakuiiNBRI 13E enhanced plant growth

under salt stress (Misra et al., 2019). In this context, J. huakuii NBRI

13E boosted defense enzyme production and osmo-protectant (e.g.,

proline) accumulation, mitigating salinity stress. J. nanhaiensis is also

known as a heavy metal tolerant bacterial strain enhancing
02
phytoremediation potential to remediate arsenic from

contaminated sites (Singh et al., 2019). Recent research has

documented the heavy metal tolerance of Jeotgalicoccus strains

(Ahamed et al., 2024; Alves et al., 2022; Kumari et al., 2022;

Sharma et al., 2024). Additionally, James et al. (2024) highlighted

the role of Jeotgalicoccus-associated plants in mitigating air pollution.

Eruca sativa Mill. (Arugula) is an annual herb found abundantly

worldwide (Warwick, 1994) and is regarded as one of the most

significant leaf vegetables, originating from the Mediterranean region

(Zeven and de Wet, 1982). Valued for its health benefits, it is rich in

fiber and contains antioxidants such as carotenoids, polyphenols, and

vitamin C. Taramira oil, a flavorful oil, is traditionally extracted from its

seeds. The plant’s aerial parts are commonly eaten raw in salads, like

rocket salad. For almost two centuries, the genera Eruca and Diplotaxis

have been recognized for their various health benefits and medicinal

properties, including depurative, anti-inflammatory, digestive,

aphrodisiac, diuretic, and rubefacient effects (Yaniv et al., 1998).

Thus, enhancing the growth and tissue chemical composition of

Eruca plants is crucial for meeting food needs. PGPB play a crucial

role in this process of meeting food and population requirements.

Given the biological potential of Jeotgalicoccus sp. (JW0823), we

hypothesized that symbiotic interactions of JW0823 with Eruca

plants could enhance their tissues’ chemical composition, leading to

improved plant growth and quality. Consequently, this study aimed

to explore the effects of JW0823 on E. sativa by investigating its

impact on plant growth, tissue chemical composition, and bioactive

properties. Overall, JW0823 is introducing as a valuable tool for

improving the quality of this important leafy vegetable, with the

goal of improving agricultural practices and sustainability.

2 Materials and methods

2.1 Isolating, purification and identifying
bacteria from the rhizosphere

Bacteria were isolated using the filtration method described by

Brock (1983). Membrane filtration methods were utilized (Manaia
frontiersin.org
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and da Costa, 1991). The filters are placed on bacterial media plates.

Bacteria were incubated on the plates for 2-7 days at 30-37°C after

inverting. Bacterial biodiversity was observed, and purification of

bacterial colonies was done by streaking several times on the

isolation medium using the streaking plate method and then

subculturing on slants of the same medium. The ability of

bacteria to produce indole acetic acid (IAA) was assessed by the

method described by Patten and Glick (2002), using Salkowski’s

reagent [FeCl3 (0.5 M) solution in perchloric acid (35%)] and

orthophosphoric acid.

Extracting genomic DNA and identifying PCR products were

performed to determine the culture species. DNA from the isolates

was extracted using the Pure Link Genomic DNA Kit (K182001), a

bacterial DNA extraction kit, following the manufacturer’s

procedure. The concentration of extracted DNA was also

measured spectrophotometrically using a Nano Drop ND 1000

(Thermo Scientific, USA). The isolated DNA was validated using a

standard agarose gel (1% w/v). PCR and Sequencing Work

Purification as well as standard sequencing for PCR products

were carried out by Macrogen Company (Seoul, Korea). The PCR

reaction was conducted using 100 ng of genomic DNA in a total

volume of 50 µl, with a reaction buffer at 1x concentration, 30 pmole

of each primer, and 2 units of Taq polymerase. The thermal cycling

conditions (denaturation step at 94°C for 5.5 minutes, followed by

30 cycles of denaturation at 93°C for 1 minute, primer annealing at

53°C for 1 minute, and extension at 72°C for 1.5 minutes). The PCR

products were then purified using QIAquick PCR purification

reagents. The gel was stained with ethidium bromide and

visualized using an ultraviolet transilluminator.

Sequencing reactions were carried out in a MJ Research PTC-

225 Peltier Thermal Cycler using ABI PRISM® BigDyeTM

Terminator Cycle Sequencing Kits with AmpliTaq® DNA

polymerase (FS enzyme) (Applied Biosystems), following the

manufacturer’s instructions. Each template was sequenced in a

single pass using the universal primer 27F (5’-AGAGTTTGATC

(AC)TGCCTCAG-3’). The fluorescent-labeled fragments were

isolated from unincorporated terminators using the Big Dye®X

Terminator™ purification process. The samples were resuspended

in distilled water before electrophoresis using an ABI 3730xl

sequencer (Applied Biosystems). The sequences were examined

for sequence similarity using BLAST (www.ncbi.nlm.nih.gov/

BLAST/) (Altschul et al., 1997), and compared to reference

sequences found in BLAST and downloaded from GenBank

(www.ncbi.nlm.nih.gov/genbank/).
2.2 Experimental setup, plant materials,
and growth conditions

The arugula seeds (E. sativa) (Agricultural Research Centre,

Giza, Egypt). After that, for six hours at room temperature, sterile

arugula seeds were immersed in a liquid suspension of the isolated

strain, JW0823 inoculum (cultured at 30°C, pH 7.8 and 0% NaCl for

48 hours) at 25% concentrations (2.5 × 107 CFU mL−1), while the

control group was submerged in distilled water. The treated and

controlled arugula seeds were sown into sterile soil and three
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biological replicates for each treatment are represented by the

three pots. The clay soil initially contained 14.5 mg organic

carbon (C), 13.7 mg nitrate-nitrogen (N), 1.7 mg ammonium-N,

9.3 mg phosphorus (P)/g air dry soil at a humidity of 0.41 g water/g

dry soil. The soil was watered twice a day and maintained at 58%.

The arugula was cultivated in pots (20 cm high and 15 cm width)

and grown in growth-controlled chambers with the following

conditions: 24°C, 290 ± 12 µmol PAR m−2 s−1, 16 hours of light

and 8 hours of darkness, and 58% relative humidity. All pots were

arranged in a randomized complete block design with five replicates

per treatment. After 5 weeks of growth, the fresh weight (FW) and

dry weight (DW) of the shoots were measured and kept at -80°C

pending biochemical studies. Ultimately, the arugula plants were

preserved for additional examination by freezing them in liquid

nitrogen at -196°C.
2.3 Determination of photosynthetic rate

An EGM-4 infrared gas analyzer connected to an

Environmental Monitor Sensor Probe Type 3 (PP Systems,

Hitchin, UK) was used to determine the photosynthetic rate

(Lichtenthaler, 1987).

A net CO2 exchange (NE) measurement was conducted under

ambient light, followed by a dark respiration measurement with the

enclosure covered with a dark cloth for180 s measurement.
2.4 Pigment analysis

A MagNALyser (Roche, Vilvoorde, Belgium) was employed to

homogenize 200 mg of plant in acetone at 7000 rpm for one minute.

Subsequently, they underwent centrifugation for 20 minutes at

14,000 × g and 4°C. Following the method described by

Almuhayawi et al. (2020), the supernatant was filtered and

subjected to HPLC analysis using a Shimadzu SIL10-ADvp

system equipped with a reversed-phase column at 4°C.

Carotenoids were isolated using a silica-based C18 column with

acetonitrile/methanol/water (81:9:10) and methanol/ethyl acetate

(68:32) as the solvents. A diode-array detector (Shimadzu

SPDM10Avp) was employed to extract and identify b-carotene,
chlorophyll a, and chlorophyll b at wavelengths of 420, 440, 462,

and 660 nm.
2.5 Determination of the nutritional quality

Data about the proximate composition, amounts of amino,

organic, and fatty acids, as well as minerals, vitamins, and phenolics

were obtained according to the following methods, in order to

provide insight into the nutritional quality of E. sativa plants.

2.5.1 Proximate composition analysis
Following Wong et al. (2000)’s procedure, the carbohydrate

content of each arugula plant group, whether treated or untreated

with PGPB, was determined. Additionally, protein concentration
frontiersin.org
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(0.2 g FW) in each plant sample was extracted in 0.1 mM KPO4

buffer at pH 7. Then it was measured according to the method

described by Lowry et al. (1951). After that, it was measured using

the Lowry et al. (1951) method. The total lipid content of the plants

was assessed after homogenizing the samples in a 1:2 (v/v) mixture

of methanol and chloroform, as outlined by Shiva et al. (2018).

Subsequently, the plants were centrifuged at 3000× g for 15 minutes,

and the resulting pellets were dissolved in a 4:1 (v/v) mixture of

ethanol and toluene. To determine the total lipid content, the lipids

were first concentrated and then quantified using a gravimetric

method. The results were expressed as milligrams of lipid per gram

of fresh plant weight. The crude fibers were isolated from the plant

material (Lee, 2002). The enzymatic digestion was performed using

protease at pH 7.6 and 55°C for 24 minutes, followed by treatment

with amyloglucosidase at pH 6 and 0°C for 30 minutes to eliminate

proteins and starches.

2.5.2 Elemental analysis
Following the methodology outlined by AbdElgawad et al.

(2014), 200 mg of plants, treated with bacterial endophytic

inoculation and control plants, were subjected to digestion in a

5:1 (v:v) HNO3/H2O solution to determine their mineral

composition. Subsequently, both major and trace elements were

analyzed using inductively coupled plasma mass spectrometry

(ICP-MS) on a Finnigan Element XR instrument from Scientific,

Bremen, Germany.
2.5.3 Amino acids metabolism
Following the protocol outlined in Sinha et al. (2013), 100 mg of

every plant sample were dissolved in five mL ethanol (80%), while

being spun at 5000 rpm for one minute. Subsequently, a 25-minute

centrifugation at 14,000 x g was conducted, and the supernatant

that resulted was reconstituted in 5 milliliters of chloroform. Then,

one milliliter of water was used to remove any residue. After

resuspension in chloroform, the pellet and supernatant were

centrifuged for 10 minutes at 8000× g. Then filtration through

Millipore microfilters with 0.2-mm pore size was done. Elution (A,

containing 10% acetonitrile, 84% ammonium formate and 6%

formic acid, v/v) and quantification of amino acids (B, containing

2% formic acid, v/v and acetonitrile) were carried out using a

Waters Acquity UPLC TQD apparatus connected to a BEH amide

column. A set of amino acid standards was utilized as the reference.

Glutamyl synthase (GS) activity was measured using the

methodology described by Almuhayawi et al. (2021), with

extraction conducted in 100 mg mL−1 Tris-HCl (50 mM), pH 7.4,

containing 2% polyvinylpyrrolidone, 4 mM DTT, 10 mM MgCl2, 1

mM EDTA, 10% glycerol, and 2 mM PMSF. Subsequently, g-
glutamyl hydroxamate synthesis was assessed, indicating the

presence of GS activity in a Tris-acetate reaction buffer (200 mM,

pH 6.4). Dihydrodipicolinate synthase (DHDPS) activity was

carried out as per Kumpaisal et al. (1987). Plants not exposed to

L-aspartate-b-semialdehyde were used as a negative control. The

reaction was conducted at 36.5°C to facilitate adduct formation

between the reaction product and o-ABA. Trichloroacetic acid

(TCA) at a concentration of 12% was added to stop the process,
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and samples were analyzed at 550 nm following a 60-minute dark

incubation period.

Cystathionine g-synthase (CGS) was extracted in 20 mMMOPS

for 15 minutes at 4°C. The supernatants were combined with a

reaction buffer containing O-phospho-homoserine (5 mM), L-

cysteine (2 mM), PLP (100 µM), and AVG (200 µM). L-

cystathionine formation was isolated using a phenomenex

Hyperclone C18 BDS column on a Dionex HPLC system,

following the method described by Ravanel et al. (1998).

2.5.4 Organic acid analysis
Organic acids in 200 mg of plant samples were detected using

HPLC (0.001 N sulfuric acid, at 210 nm, flow rate of 0.6 mL min−1),

following the method outlined by Hamad et al. (2015). The

detection system comprised an LED model detector (Ultimate

3000) and a liquid chromatographer (Dionex, Sunnyvale, CA,

USA), equipped with an LPG-3400A pump, a TCC-3000SD

column thermostat, and an EWPS-3000SI autosampler. The

separation was conducted at 65°C using an Aminex HPH-87 H

(300 × 7.8 mm) column with an IG Cation H (30 × 4.6) precolumn

from Bio-Red company. UV detection system operating at 210 nm

was used to estimate the concentrations of citric, succinic, fumaric,

and malic acids (LaChromL-7455 diode array, LaChrom, Tokyo,

Japan). Data analysis was performed using the Chromeleon v.6.8

computer program.

2.5.5 Fatty acid analysis
200 mg of the plant samples were extracted in 50% aqueous

methanol at 25°C. The plant material was thoroughly homogenized

in 50% aqueous methanol to ensure efficient extraction. The

mixture was then subjected to shaking, and then the extract was

centrifuged at 4°C for 20 minutes. The GC/MS (Hewlett Packard,

Palo Alto, CA, USA) was used to sperate and identify fatty acid

detection method, which was equipped with an HP-5 MS column

(30 m × 0.25 mm × 0.25 mm). NIST 05 database and Golm

Metabolome (http://gmd.mpimp-golm.mpg.de, accessed on

February 23, 2024) were utilized. A set of amino acid standards

was utilized as the reference.

2.5.6 Vitamin content analysis
To determine the levels of vitamins in plant samples,

approximately 200 mg of fresh plant material was analyzed using

UV and/or fluorescence detectors. For this analysis, thiamine and

riboflavin contents were measured. A reverse-phase C18 column

was utilized for the separation process in high-performance liquid

chromatography (HPLC), with a methanol/water solvent system.

Vitamin C (ascorbate) levels were quantified using HPLC with

Shimadzu equipment (Hertogenbosch, The Netherlands).

Antioxidants were isolated from plant tissues that had been

extracted in 1 mL of ice-cold 6% (w/v) meta-phosphoric acid.

The antioxidants were subsequently separated on a reversed-

phase HPLC column (Farfan-Vignolo and Asard, 2012). The

thiamine and riboflavin contents were again determined using

UV and/or fluorescence detection, with a reverse-phase C18

column used for separation.
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2.5.7 Analysis of phenolics and their
biosynthetic enzymes

To assess the total flavonoid and phenolic concentrations, plant

material (120 mg) was homogenized in 80% ethanol. After

centrifugation at 4°C for 20 minutes, the phenolic content was

determined using the Folin–Ciocalteu reagent, with gallic acid as

the standard reference. Flavonoid content was measured using a

modified colorimetric method with aluminum chloride, with

quercetin serving as the calibration standard. For evaluating

phenylalanine ammonia-lyase (PAL) activity, 0.25 g of frozen

plant material was homogenized in a Tris-HCl buffer (100 mM,

pH 8.8) containing L-phenylalanine (40 mM). The enzyme activity

was assessed by measuring the absorbance of transcinnamic acid

produced at 290 nm, following the protocol by AbdElgawad et al.

(2014). Water was used as a negative control in place of the plant

samples to ensure accuracy in the enzyme assay.
2.6 Biological activities

2.6.1 Antioxidant activities
Several tests were used to assess the plants’ antioxidant potential

(Almuhayawi et al., 2020). About 0.1 g was extracted in 80% ethanol

to determine the ferric reducing antioxidant power (FRAP).

Centrifugation was then carried out (14,000 rpm, 20 min). Next,

0.1 mL of the extract was combined with 20 mM FeCl3 in 0.25 M

acetate buffer, which is known as the FRAP reagent. 2.4 mM

potassium persulphate was combined with 2,20-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) to determine its

concentration. The absorbance was measured at 734 nm, and 0.1

mL of the extract and 0.25 mL of the DPPH reagent were used to

detect the DPPH activity. At 517 nm, the absorption was found.
2.6.2 Antimicrobial activity
2.6.2.1 Assessment of antibacterial activity in plants

The antibacterial activity of the plant extracts was evaluated

using the standard dilution method as outlined by Almuhayawi

et al. (2021). Initially, 100 mg of the plant material was extracted in

dimethyl sulfoxide (DMSO). The resulting extract was then used to

prepare the test medium, which was supplemented with 0.1 mL of a

1:10,000 dilution of a liquid culture of the reference strain

Staphylococcus aureus ATCC 6538 P. This dilution contained

approximately 104–105 bacterial cells per mL. The inoculated

media was incubated at 37°C for 18 hours.

To determine the antimicrobial efficacy of the plant extracts, the

Minimum Inhibitory Concentration (MIC) was measured. The

extracts were tested against a range of bacterial and fungal

species, including Candida glabrata (ATCC 90030), Pseudomonas

aeruginosa (ATCC 10145), Enterobacter aerogenes (ATCC 13048),

Proteus vulgaris (ATCC 8427), Staphylococcus saprophyticus

(ATCC 19701), Escherichia coli (ATCC 29998), Salmonella

typhimurium (ATCC 14028), Staphylococcus epidermidis (ATCC

12228), Candida albicans (ATCC 90028), Streptococcus salivarius
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(ATCC 25975), Aspergillus flavus (ATCC 9170), Enterococcus

faecalis (ATCC 10541), and Serratia marcescens (ATCC 99006).

For comparative purposes, ciprofloxacin (25 mg/mL) was used

as a positive control, while 100% DMSO served as a negative

control. This setup allowed for assessment of the antibacterial

effectiveness of the plant extracts against various pathogens.

2.6.3 Antidiabetic activity
2.6.3.1 Inhibition of a-amylase assay

The a-amylase inhibitory activity was assessed following a

modified method from Dada et al. (2017). To begin, 500 µL of

the plant extract was mixed with 500 µL of 0.02 M sodium

phosphate buffer (pH 6.9, containing 0.006 M NaCl) and 1.0 U/

mL of a-amylase solution. This mixture was incubated at 25°C for

10 minutes. Following pre-incubation, 500 µL of 1% starch solution,

also prepared in 0.02 M sodium phosphate buffer (pH 6.9 with

0.006 M NaCl), was added to the mixture. The reaction was allowed

to proceed at 25°C for another 10 minutes. To halt the reaction, 1.0

mL of DNS (dinitrosalicylic acid) color reagent was added. The test

tubes were then heated in boiling water for five minutes, cooled to

room temperature, and subsequently diluted with 10 mL of distilled

water. The absorbance of the final solution was measured at 540 nm.

The inhibitory activity of the plant extract against a-amylase was

determined by comparing its effect to that of a control.

2.6.3.2 a-glucosidase inhibition assay

For the a-glucosidase inhibition test, a modified version of the

protocol described by Dada et al. (2017) was used. Plant extract (500

µL) was diluted with 100 µL of 0.1 M potassium phosphate buffer

(pH 6.9) containing 1.0 U/mL of a-glucosidase solution and

incubated at 25°C for 10 minutes in a 96-well plate. After the

pre-incubation, 50 µL of a 5 mM solution of p-nitrophenyl-a-D-
glucopyranoside in 0.1 M potassium phosphate buffer (pH 6.9) was

added to each well. The reaction was conducted at 25°C for five

minutes. The inhibition % of a-glucosidase activity was calculated

for the plant extract and compared to the control.

2.6.3.3 Estimation of glycemic index

The glycemic index of the plant extract was determined

following the procedure outlined by Brouns et al. (2005). For this

analysis, the samples were extracted using 80% ethanol, and the

glycemic index was evaluated according to the specified method.
2.7 Statistical analyses

The SPSS program was employed to determine the statistical

analyses (SPSS Inc., Chicago, IL, USA). A T-test was performed to

determine the differences between means. Each experiment was

conducted in triplicate (n = 3). All parameters were subjected to

cluster analysis using the MultiExperiment Viewer (MeV) TM4

software (Dana-Farber Cancer Institute, Boston, MA, USA), based

on Pearson’s distance metric.
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3 Results

3.1 Bacterial identification and
its characterizations

The isolate was identified using biochemical and molecular

methods, while 16S rDNA sequencing analysis revealed that strain

JW0823 is 96.13% linked to the genus Jeotgalicoccus. The

biochemical analysis demonstrated that the bacterial isolate
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JW0823 decomposed tyrosine and produced acid from arabinose,

D-mannitol, and sucrose. The isolate has a broad growth range. It

showed growth at pH levels ranging from 5 to 9, with an optimal pH

of 8. The isolate could grow at 0% and 15% NaCl, with an optimal

NaCl of 7-8%, and no growth above 20% NaCl. Furthermore, the

isolate exhibited a growth temperature range of 15-55°C, with an

optimal temperature of 28-40°C. The isolated JW0823 can produce

IAA (Table 1). The phylogenetic tree (Figure 1) showed that strain

MD36 is closely related to JW0823.
3.2 Bacterial colonization improved the
biomass and photosynthesis of E. sativa

The effect of JW0823 colonization on the biomass,

photosynthesis and pigment contents of E. sativa was studied

(Figure 2). JW0823 -inoculated plants showed a significant

increase in biomass production by about 78.2% in comparison

with untreated control plants (p<0.05). Generally, plant growth is

closely related to the efficiency of photosynthesis, so the pigment

contents were estimated. It was noticeable that chlorophyll a,

chlorophyll b, and chlorophyll a+b contents were enhanced in the

treated plants by about 67.5%, 15%, and 47.4% respectively, and

these elevations were significant (p < 0.05) in the case of chlorophyll

a and chlorophyll a+b only. In addition, b-carotene and lycopene

pigments exhibited significant increases of about 83.3% and 150%

respectively (p < 0.01).
3.2 JW0823 induced the proximate
composition, minerals, and vitamins of
E. sativa

To assess the effect of mycorrhizal colonization on the

proximate composition of E. sativa, we determined total protein,

fat, crude fiber, ash, and carbohydrate contents in treated versus

untreated plants (Figure 3). The proximate composition of the

JW0823-treated plants showed significantly higher contents of
TABLE 1 Biochemical activities of JW0823 bacteria.

Biochemical activities JW0823 bacteria

Nitrate reduction –

Decomposition of:

Hypoxanthine
Starch
Tween 80
Tyrosine
Xanthine

-
-
-
+
-

Acid production from:

Arabinose
Fructose
D-Galactose
D-Glucose
Glycerol
Maltose
D-Mannitol
Sucrose

+
-
-
-
-
-
+
+

Growth at:

pH
Range
Optimum

5-9
8

0% NaCl
15% NaCl
20% NaCl

+
+
-

Temperature (°C):
Range
Optimum

15-55
28-40
FIGURE 1

Phylogenetic tree based on 16S rRNA gene sequences, constructed by the Maximum of likelihood method using MegaX application, showing the
position of strain JW0823 among closest species available at GenBank.
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total protein, crude fiber, ash, and carbohydrate by about 59.9%,

52.7%, 37.9% and 48%, respectively, compared to control samples

(p < 0.05). On the other hand, moisture and fat percentages

showed a slight decline in treated plants compared to untreated

ones. Concerning mineral contents (Table 2), bacterial-treated

plants displayed significantly higher contents (p < 0.05) in all

measured minerals except Cu, Fe, and Mn (Table 3). The highest

increases were recorded for K and Na by 119.1% and 100%,

respectively. Both Zn and Mn contents exhibited an increase of

50% in treated plants compared to the untreated plants. About a

59.8% increase in Mg and 45.9% in phosphorus content was

observed, whereas only a 5% increase in Fe content was

recorded by the inoculated plants.
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Regarding the impact of JW0823 on vitamin contents, the treated

plants exhibited significantly higher levels of each examined vitamin

(Figure 4A). Inoculated plants exhibited significantly higher levels of

vitamin C, vitamin E, D-mannose, and L-galactose than untreated

plants, with increases of approximately 23.9%, 46.11%, 161.5%, and

140.7%, respectively (p < 0.05).
3.3 JW0823 enhanced the functional food
potentiality of E. sativa

To investigate the impact of JW0823 treatment on the functional

food potential, nutritional quality, and bioactive metabolites of E.
FIGURE 2

Effect of JW0823 bacteria on the biomass and pigment contents of Eruca sativa represented by (A) the biomass (B) chlorophyll a, (C) chlorophyll b,
(D) chlorophyll a+b, (E) Beta carotene, and (F) lycopene. Data are represented by means ± standard errors. Bars flagged with 1, or 2 asterisks indicate
significant differences between JW0823 bacteria-treated and control groups at p<0.05, or p<0.01 respectively.
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sativa, we measured the levels of amino acids (Table 3), fatty acids

(Table 4), organic acids (Figure 4B), and phenolics (Table 5) in treated

and untreated plants. Nine out of twenty-two examined amino acids

in the treated plants were significantly increased when inoculated with

JW0823 compared to control ones (p<0.05). However, some amino

acids decreased by JW0823 treatment, such as aspartic acid, glycine,

alanine, histidine, valine, and threonine. Isoleucine, cystathionine g-
synthase (CGS), and methionine showed the highest increments of

270.2%, 200%, and 153.5%, respectively (p<0.05).
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The five estimated organic acids recorded increases in the

treated plants, with malic acid exhibiting the highest increase of

287.2% and oxalic acid the lowest increase of 2.3% (Figure 4B).

Similarly, five out of sixteen detected fatty acids in the target plant

were significantly increased when inoculated with JW0823

compared to control plants, whereas some fatty acids showed a

decrease. Pentacosanoic acid (C24:0), octadecanoic acid (C18:1),

and octadecanoic acid (C18:0) recorded increases in treated plants

by 87.5%, 54.5%, and 43.4%, respectively (p<0.05).
FIGURE 3

Effect of JW0823 bacteria on the proximate composition of Eruca sativa represented by (A) moisture, (B) total proteins, (C) total lipids, (D) crude
fibers, (E) carbohydrates and (F) ash. Data are represented by means ± standard errors. Bars flagged with an asterisk indicate significant differences
between JW0823 bacteria-treated and control groups at p<0.05.
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Additionally, all detected phenolic metabolites exhibited significant

increases in JW0823-treated plants except protocatechuic acid, which

showed a decrease of 14.8%. Genistein and luteolin recorded the

highest increases by 50% and 121.7%, respectively, followed by

fisetin and o-hydroxydaidzein, which exhibited an increase of 50%

each in the inoculated plants compared to untreated plants (p<0.05).
3.4 JW0823 boosted the biological
activities of E. sativa

3.4.1 Antioxidant activity
To evaluate how JW0823 treatment affects the overall

antioxidant activity of E. sativa, we analyzed the levels of total

phenolics, total flavonoids, FRAP, ABTS, and DPPH in both treated

and untreated plants (Figure 5). The plants treated with JW0823

exhibited significant increases in antioxidant activity, with total

phenolics, total flavonoids, FRAP, ABTS, and DPPH levels

increasing by approximately 48.2%, 56.9%, 46.5%, 13.2%, and

50.5%, respectively, compared to the untreated controls (p<0.05).

These improvements in antioxidant activity were associated with

higher phenolic content increased by JW0823 inoculation.

3.4.2 Antimicrobial activity
Furthermore, both inoculated and non-inoculated plant

extracts demonstrated antimicrobial activity against various

bacterial and fungal species. The most pronounced effects were

observed in extracts from inoculated plants, particularly against

Aspergillus flavus, Enterobacter aerogenes, and Pseudomonas

aeruginosa, as indicated by the inhibition zone diameters

(Figure 6). The results showed that JW0823 inoculation led to

significant enhancements in antimicrobial activity of E. sativa

against Staphylococcus saprophyticus, Staphylococcus epidermidis,

Streptococcus salivarius, Salmonella typhimurium, Enterobacter

aerogenes, Serratia marcescens, and Aspergillus flavus, with

increases of approximately 27.1%, 19.9%, 18.1%, 13.5%, 31.7%,

165%, and 37.3%, respectively (p<0.05) (Figure 6).
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3.4.3 Antidiabetic activity
Additionally, plants treated with the bacteria showed notable

increases in antidiabetic activities, with a-amylase inhibition and a-
glucosidase inhibition rising by approximately 24.7% and 49.4%,

respectively (p<0.05). In contrast, there was a modest reduction in

the glycemic index, decreasing by about 6.9% (Figure 7).
4 Discussion

4.1 JW0823 could improve growth and
tissue chemical composition of E. sativa

PGPB can colonize plant roots, improving plant growth (Beneduzi

et al., 2012). Our research findings revealed that E. sativa plants

inoculated with JW0823 showed improved growth compared to

non-inoculated plants. In line with our results, previous studies
TABLE 2 Effect of JW0823 bacteria on the levels of minerals in
Eruca sativa.

Minerals
(mg/g)

Control JW0823
bacteria

K 11.474 ± 0.047 25.228 ± 0.55*

Na 1.561 ± 0.021 3.213 ± 0.02*

Ca 1.485 ± 0.177 1.872 ± 0.258*

Cu 0.008 ± 0 0.009 ± 0.002*

Fe 0.18 ± 0.015 0.172 ± 0.029

P 1.108 ± 0.088 1.625 ± 0.02*

Zn 0.1 ± 0.007 0.147 ± 0.006*

Mn 0.024 ± 0.001 0.034 ± 0

Mg 2.588 ± 0.263 4.143 ± 0.385*
Data are represented by means ± standard errors. Means with an asterisk indicate significant
differences between treated and control groups at p<0.05.
TABLE 3 Effect of JW0823 bacteria on amino acid contents in
Eruca sativa.

Amino acids (mg/g) Control JW0823
bacteria

Aspartic acid 13.55 ± 0.5 6.54 ± 1.38*

Glutamic acid 12.75 ± 0.81 16.57 ± 0.41*

Glutamine 11.79 ± 0.6 14.53 ± 0.46*

Serine 6.01 ± 0.09 8.78 ± 0.86*

Glycine 11.44 ± 1.08 8.01 ± 0.23*

Arginine 21.68 ± 3.4 31.61 ± 9.47*

Alanine 3.49 ± 0.18 2.97 ± 0.22

Histidine 5.79 ± 0.15 2.03 ± 1.33*

Valine 9.07 ± 0.21 2.09 ± 1.47*

Methionine 1.14 ± 0.48 2.89 ± 0.04*

Cystine 1.53 ± 0.02 1.59 ± 0.15

Isoleucine 2.42 ± 1.08 8.96 ± 2.16*

Leucine 14.78 ± 1.05 10.27 ± 1.39*

Tyrosine 6.48 ± 0.15 4.69 ± 0.33*

Lysine 17.32 ± 1.23 14.28 ± 0.15*

Threonine 6.58 ± 0.57 3.01 ± 0.33*

Tryptophan 0.55 ± 0.02 0.39 ± 0

Glutamine synthase 4.91 ± 0.28 6.22 ± 0.01

Dihydrodipicolinate synthase
(DHDPS) (lysine biosynthase)

1.94 ± 0.11 3.29 ± 0.1*

Cystathionine g-synthase
(CGS)
(methionine biosynthase)

0.01 ± 0 0.03 ± 0

Phenylalanine 22.87 ± 2.47 33.87 ± 3.77*

Phenylalanine aminolyase 4.2 ± 0.37 7.01 ± 0.92*
Data are represented by means ± standard errors. Means with an asterisk indicate significant
differences between treated and control groups at p<0.05.
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FIGURE 4

Effect of JW0823 bacteria on the levels of (A) vitamins and
(B) organic acids in Eruca sativa. Data are represented by means ±
standard errors. Bars flagged with 1, 2, or 3 asterisks indicate
significant differences between JW0823 bacteria-treated and
control groups at p<0.05, p<0.01, or p<0.001, respectively.
TABLE 4 Effect of JW0823 bacteria on fatty acids (%) in Eruca sativa.

Fatty acids (%) Control JW0823 bacteria

Tetradecanoic (C14:0) 1.29 ± 0.14 0.78 ± 0.2

Pentadecanoic (C16:0) 13.7 ± 2.53 16.87 ± 1.71*

Eicosanoic (C20:0) 1.93 ± 0.1 1.81 ± 0.33

Docosanoic (C22:0) 1.66 ± 0.25 1.43 ± 0.06

Octadecanoic (C18:0) 7.98 ± 0.68 11.45 ± 1.83*

Pentacosanoic (C24:0) 0.08 ± 0.03 0.15 ± 0.03

Total saturated
fatty acids 26.64 ± 2.49 32.48 ± 2.34*

Pentadecanoic (C16:1) 2.26 ± 0.23 2.98 ± 0.62

(Continued)
F
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TABLE 4 Continued

Fatty acids (%) Control JW0823 bacteria

Pentadecanoic (C16:1) 0.6 ± 0.15 1.29 ± 0.16*

Pentadecanoic (C16:3) 2.45 ± 0.27 1.36 ± 0.11*

Octadecanoic (C18:1) 3.85 ± 0.59 5.95 ± 0.46*

Octadecanoic (C18:2) 31.67 ± 6.57 23.82 ± 0.81*

Heptadecanoic (C18:3) 34.75 ± 8.76 34.4 ± 7.56

Heptadecanoic (C18:4) 2 ± 0.46 1.29 ± 0.16*

Tetracosanoic (C20:3) 0.45 ± 0.18 0.36 ± 0.11

Total fatty acids 78.03 ± 15.49 71.47 ± 7
Data are represented by means ± standard errors. Means with an asterisk indicate significant
differences between treated and control groups at p<0.05.
TABLE 5 Effect of JW0823 bacteria on the concentrations of phenolics
in Eruca sativa.

Phenolics (mg/
g FW)

Control JW0823
bacteria

Total Phenolics 569.536 ± 5.283 1065.631 ± 29.584*

Total Flavonoids 60.662 ± 3.444 116.995 ± 2.954*

Caffeic acid 0.015 ± 0.001 0.026 ± 0

Ferulic acid 1.583 ± 0.025 2.429 ± 0.033*

Protocatechuic acid 0.384 ± 0.137 0.327 ± 0.003

Catechin 0.473 ± 0.019 0.77 ± 0.019

Galic acid 11.959 ± 0.537 18.911 ± 0.432*

p-Coumaric acid 2.244 ± 0.142 4.249 ± 0.072*

Cinnamic acid 2.564 ± 0.123 4.18 ± 0.088*

Resorcinol 0.052 ± 0.008 0.071 ± 0.001

Chlorogenic acid 0.153 ± 0.007 0.241 ± 0.005*

Syringic acid 0.693 ± 0.016 1.523 ± 0.033*

Quercetin 1.406 ± 0.132 2.499 ± 0.052*

Quercetrin 0.135 ± 0 0.268 ± 0.011*

Luteolin 0.046 ± 0.004 0.102 ± 0.003*

Apigenin 0.293 ± 0.03 0.577 ± 0.018*

Isoquercetrin 0.63 ± 0.085 1.264 ± 0.022*

Rutin 1.005 ± 0.102 2.008 ± 0.059*

Ellagic acid 0.258 ± 0.023 0.403 ± 0.009*

Velutin 0.272 ± 0.013 0.454 ± 0.008*

Naringenin 0.004 ± 0 0.007 ± 0

Genistein 0.002 ± 0 0.003 ± 0

Daidzein 0.001 ± 0 0.003 ± 0

Fisetin 0.002 ± 0 0.003 ± 0

O-hydroxydaidzein 0.002 ± 0 0.003 ± 0
Data are represented by means ± standard errors. Means with an asterisk indicate significant
differences between treated and control groups at p<0.05.
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highlighting positive effect of PGPB (e.g., Jeotgalicoccus sp.) such as

enhanced yield and nutrient content (Saleh et al., 2010; Chavoshi et al.,

2018; Misra et al., 2019). Jeotgalicoccus sp. can stimulate plant growth

and yield (Gong et al., 2016; Misra et al., 2019; Singh et al., 2019; Li

et al., 2022). In this context, J. huakuii NBRI 13E has been used in

bioinoculant formulations to boost crop yield and quality (Misra et al.,

2019). This positive effect of PGBP can be explain by their ability to
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induce the production of growth hormones (e.g., IAA) (Egamberdiyeva

and Höflich, 2004), solubilization of phosphate and mineralization of

nutrients (Jeon et al., 2003; Glick, 1995). In this regard, J. halotolerans

was capable of producing growth-promoting hormones auxin

(Mukasheva et al., 2016). IAA is well-documented for their role in

enhancing plant growth by promoting cell elongation and division

(Mishra et al., 2022).
FIGURE 5

Effect of JW0823 bacteria on the total antioxidant activities of Eruca sativa: (A) total phenolics, (B) total flavonoids, (C) FRAP, (D) ABTS and (E) DPPH.
Data are represented by means ± standard errors. Bars flagged with an asterisk indicate significant differences between JW0823 bacteria-treated and
control groups at p<0.05.
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The growth improvement can also be explained by the bacteria’s

ability to enhance nutrient uptake. The potential of bioinoculants as

valuable tools in sustainable agriculture, offering benefits through

enhanced nutrient uptake. The application of JW0823 enhanced

nutritional accumulation in E. sativa. Previous studies highlight the

role of PGBP in enriching plants with macro- and micronutrients

(Yaghoubi Khanghahi et al., 2018; Meena et al., 2017; Ipek, 2019;

Kumar et al., 2022; Helaly, 2017) and increasing soil mineralization

(Shen et al., 2004; Esitken et al., 2010). For instance, Jeotgalicoccus

sp. BAK1 exhibits both growth-promoting and phosphorus-

solubilizing properties (Mukasheva et al., 2016). Similar to J.

halotolerans, other PGBP such as Pseudomonas and Bacilli are

effective microorganisms in the solubilization of phosphate. In

this context, Goswami et al. (2016) demonstrated increases in
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organic acid secretion, including mineral solubilization in soil

(Tahjib-Ul-Arif et al., 2021).

Pervious research also demonstrated that PGBP can stabilize CO2

levels, regulate stomatal conductance, and boost photosystem II

efficiency (Esitken et al., 2010; Orhan et al., 2006; Chen et al.,

2016). For example, J. huakuii improved maize growth through

increasing chlorophyll content (Misra et al., 2019). Applying

JW0823 boosts photosynthesis and soluble sugar production, which

is essential for synthesizing primary (essential oils, unsaturated fatty

acids) and secondary metabolites (polyphenolics) in plants (Misra

et al., 2019). Our results also should that inoculated plants had higher

protein, carbohydrate, and lipid contents compared to non-

inoculated plants. In line with our results, PGBP boosted

carbohydrate metabolism in E. sativa (Wang et al., 2022b; Ilyas

et al., 2020, and Upadhyay and Singh, 2015) and protein and

carbohydrate content in bean seeds (Stefan et al., 2013). It is

noteworthy that carbohydrates not only support photosystem II

but also serve as energy sources for maintain growth (Sami et al.,

2016). The observed increase in protein and amino acid levels may be

attributed to the ability of PGPB to enhance the uptake of NH4 and

NO3, which are then converted into free amino acids (Johansen et al.,

1996; Kumar et al., 2015).

PGPB-induced production of bioactive metabolites contributes

to the synthesis of secondary plant metabolites (Zhou et al., 2021).

For example, high phenolic and flavonoid contents have been

reported in buckwheat plants inoculated with PGBP (Briatia

et al., 2018). J. huakuii has also been shown to boost maize

growth by producing bioactive compounds such as antioxidant

phenolics and proline (Misra et al., 2019). When compared to the

control, Jeotgalicoccus sp. increased the phenol and flavonoid

content in cluster beans (Upadhyay and Singh, 2015), suggesting

improved antioxidant power (Sarkar et al., 2021). On the other

hand, phenolic compounds accelerate the symbiotic relationship

between plants and microorganisms (Mandal et al., 2010). They can

also facilitate oxygenation reactions, and thus, beneficial bacteria

may help inhibit oxidizing enzyme activity (Notununu et al., 2022).
FIGURE 6

Effect of JW0823 bacteria on the antimicrobial activities of Eruca
sativa. Data are represented by means ± standard errors. Bars
flagged with 1 or 2 asterisks indicate significant differences between
JW0823 bacteria-treated and control groups at p<0.05 or
p<0.01, respectively.
FIGURE 7

Effect of JW0823 bacteria on the antidiabetic activities of Eruca sativa sprouts represented by (A) a- amylase inhibition activity (%), (B) a- glucosidase
inhibition activity (%), and (C) glycemic index %. Data are represented by means ± standard errors. Bars flagged with an asterisk indicate significant
differences between JW0823 bacteria-treated and control groups at p<0.05.
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4.2 JW0823 improved the biological
activity of E. sativa

The higher bioactive metabolite content in E. sativa boosts its

biological value, as it is rich in essential amino acids and

polyunsaturated fatty acids, which are crucial nutrients (De

Carvalho and Caramujo, 2018). JW0823 has been observed to

significantly enhance the biological activity of plants and facilitate

the exchange of nutrients, leading to the accumulation of bioactive

metabolites. For instance, increased antioxidant content in E. sativa

was accompanied by substantial enhancements in antioxidant

activities (FRAP). E. sativa been reported to exhibit high total

antioxidant capacities, as well as significant scavenging activity

against ROS (Sarikurkcu et al., 2017). In agreement, plants

exhibited high antioxidant capacities when treated with PGPB

(Chen et al., 2014). Khoobchandani et al. (2010) also investigated

the antimicrobial potential of various solvent extracts of E. sativa

and seed oil against gram-positive (Staphylococcus aureus ATCC

6538 and B. subtilis MTCC 441) and gram-negative (E. coli ATCC

14169, P. aeruginosa MTCC 424, and S. fexneri MTCC 1457)

bacteria that are resistant to antibiotics. They have also been

connected to antifungal (Manici et al., 1997) and antinematode

(Lazzeri et al., 1993) properties (Warton et al., 2001). However, the

research on their antiseptic qualities is limited (Abdou et al., 1972;

Hashem and Saleh, 1999). Overall, anti-diabetic, antibacterial and

antioxidant properties of E. sativa, coupled with its nutritional

value, make it a beneficial component of a balanced diet aimed at

promoting wellness and preventing chronic diseases.
5 Conclusions

Inoculation with JW0823 notably boosted the growth and

nutritional quality of E. sativa, enhancing its proximate

composition, vitamin content, and bioactive metabolites. The

treated plants also exhibited increased antioxidant, antidiabetic,

and antimicrobial activities. Building on these promising results,

future research should explore the broader application of JW0823 in

various crop species and agricultural settings to confirm its

versatility and efficacy. Further studies could also investigate the

long-term effects of JW0823 on plant health and soil sustainability.

Additionally, understanding the underlying mechanisms by which

JW0823 enhances metabolite production and stress resilience could

lead to optimized bioinoculant formulations and targeted

application strategies. assessing the practical benefits and

scalability of this approach in sustainable agriculture.
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