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Background: Populus simonii, a notable native tree species in northern China,

demonstrates impressive resistance to stress, broad adaptability, and exceptional

hybridization potential. DOF family is a class of specific transcription factors that

only exist in plants, widely participating in plant growth and development, and

also playing an important role in abiotic stress response. To date, there have been

no reported studies on the DOF gene family in P. simonii, and the expression

levels of this gene family in different tissues of poplar, as well as its expression

patterns under cold, heat, and other stress conditions, remain unclear.

Methods: In this study, DOF gene family were identified from the P. simonii

genome, and various bioinformatics data on the DOF gene family, gene

structure, gene distribution, promoters and regulatory networks were analyzed.

Quantitative real time PCR technology was used to verify the expression patterns

of the DOF gene family in different poplar tissues.

Results: This research initially pinpointed 41 PSDOF genes in P. simonii genome.

The chromosomal localization results revealed that the PSDOF genes is unevenly

distributed among 19 chromosomes, with the highest number of genes located

on chromosomes 4, 5, and 11. A phylogenetic tree was constructed based on the

homology between Arabidopsis thaliana and P. simonii, dividing the 41 PSDOF

genes into seven subgroups. The expression patterns of PSDOF genes indicated

that specific genes are consistently upregulated in various tissues and under

different stress conditions, suggesting their pivotal involvement in both plant

development and response to stress. Notably, PSDOF35 and PSDOF28 serve as

pivotal hubs in the interaction network, playing a unique role in coordinating with

other genes within the family.
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Conclusion: The analysis enhances our comprehension of the functions of the

DOF gene family in tissue development and stress responses within P. simonii.

These findings provide a foundation for future exploration into the biological

roles of DOF gene family.
KEYWORDS

Populus simonii, DOF family, phylogenetic analysis, chromosome localization,
expression pattern
1 Introduction

The DNA binding with one finger (DOF) transcription factors are

a group of specific transcription factors exclusively present in plants,

encompassing gymnosperms, angiosperms, and certain lower algae.

DOF transcription factors belong to a subfamily within the zinc finger

protein family, characterized by the presence of oligomerization sites,

nuclear localization signals, and two principal domains encompassing

a total of 200 – 400 amino acids (Zou and Sun, 2023). One of the

domains is called the N-terminal DNA-binding domain, also known

as the DOF domain, which exhibits a highly conserved C2-C2 single

zinc finger structure composed of the CX2CX21CX2C motifs. This

single zinc finger structure endows it with unique DNA recognition

abilities, especially the ability to specifically recognize the AAAG/

CTTT functional element in plant promoter sequences. Moreover,

there are four absolutely conserved Cys residues and a Zn+ covalently

bound in this single zinc finger structure. Zn+ and Cys residues are

necessary for the DOF protein to maintain its activity (Khan et al.,

2023). The other domain is the transcriptional regulatory domain

located at the C-terminal of the DOF protein. Its amino acid sequence

is relatively variable and lacks conservatism, which leads to the

functional diversity of the DOF protein in plants (Noguero et al.,

2013; Gupta et al., 2015). The distinctive structures and functionalities

of the DOF gene family allow it to bind to DNA and interact with

regulatory elements, participate in various physiological and

biochemical processes in plants, and play a crucial role in regulating

gene expression at all stages of plant growth and development, as well

as in resisting stress responses (Zou et al., 2019; Ruta et al., 2020).

Based on the findings of genome-wide analysis, DOF genes are

abundantly present across the genomes of diverse plants. For

instance, in model plants, we observed the presence of 36 DOF

genes in Arabidopsis thaliana, whereas 30 members of the DOF

family were identified in Oryza sativa (Lijavetzky et al., 2003). DOF

family members have also been discovered in ornamental plants,

including Chrysanthemum morifolium, where a total of 20 DOF

genes were identified (Song et al., 2016). Furthermore, the DOF

family is ubiquitous in numerous crop species. Specifically, 33 DOF

family members have been identified in Capsicum annuum (Wu

et al., 2016), while 20 members were detected in Spinacia oleracea
02
(Yu et al., 2021). And, 74 family members were discovered inMusa

acuminata (Dong et al., 2016), and 36 family members in Cucumis

sativus (Wen et al., 2016). Moreover, the DOF family’s presence has

been confirmed in woody plants as well. Specifically, 25 DOF genes

have been detected in Prunus persica (Chen et al., 2017), while 24

members of the DOF family have been identified in Prunus sibirica

(Li et al., 2022a). There are also related studies in Salicaceae plants.

For example, Wang et al. identified the 41 DOF genes in Populus

trichocarpa and studied the expression level of it under osmotic

stress and abscisic acid stress (Wang et al., 2017). In addition, Wang

et al. also identified the 44 DOF genes in Populus simonii × Populus

nigra and elucidated the role of DOF genes in promoting nitrogen

assimilation and utilization (Wang et al., 2022). These extensive

studies indicate that DOF family genes are universally distributed

throughout the plant kingdom, laying a solid foundation for further

investigations into their diverse functions and roles. Nonetheless,

there have been no reported studies on the DOF gene family in P.

simonii, and the expression levels of this gene family in different

tissues of poplar, as well as its expression patterns under cold, heat,

and other stress conditions, remain unclear.

Numerous investigations have underscored the pivotal role of

DOF genes across a spectrum of biological processes, spanning from

plant growth and development to stress responses and gene

regulation. Currently, the involvement of DOF family members in

the developmental processes and stress tolerance of diverse plants,

such as grape, tea, petunia, poplar, and A. thaliana, has been firmly

established. In grape, a comprehensive analysis identified 25 DOF

genes, among which VaDOF17d was found to notably elevate

raffinose levels in callus under cold stress conditions (Wang et al.,

2021). After experiencing varying degrees of drought stress, the

expression levels of specific DOF family members in tea underwent

significant changes. Notably, the expression of CsDOF10 was

significantly upregulated under moderate drought conditions,

indicating its crucial role in coping with drought stress (Yu et al.,

2020). In petunias, DOF family members participate in the

reproductive development of plants. Specifically, the expression of

PiDOF14 effectively promotes the degradation of the tapetal layer,

thereby inhibiting meiosis of microspore cells and ultimately

resulting in a male sterility phenotype (Yue et al., 2021). In A.
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thaliana, the overexpression of AtDOF4.1 leads to significant delays

in flowering and developmental defects in reproductive organs.

Simultaneously, the overexpression line of this gene exhibits

reduced organs, including leaves, flowers, and stems, indicating

that AtDOF4.1 functions as a transcription suppressor (Ahmad

et al., 2013). Furthermore, the overexpression of the gene PnDOF30,

originating from P. simonii × P. nigra, in A. thaliana notably

enhances the growth of transgenic A. thaliana plants when

subjected to low nitrogen conditions (Wang et al., 2022).

P. simonii, a notable native tree species in northern China,

demonstrates impressive resistance to stress, broad adaptability,

and exceptional hybridization potential (Chen et al., 2013).

Considering the substantial impact of DOF genes on growth and

stress responses in various plant species, coupled with the scarcity of

research on this gene family in P. simonii, it becomes imperative to

further explore the functions and contributions of DOF genes

within this particular species. To comprehend the unique traits

and functions of these genes within P. simonii, we explored multiple

aspects, including identifying family members, phylogenetic

relationships, chromosome localization, gene structure, specific

expression profiles, protein-protein interactions, and conducting

qRT-PCR analysis. This study provides valuable insights for further

research on the potential roles of the DOF gene family in the

growth, development, and stress resistance of P. simonii.
2 Materials and methods

2.1 Identification of DOF genes
in P. simonii

In order to identify the DOF family members within the P.

simonii genome, we obtained the full DOF protein sequence of A.

thaliana from the Tair database (https://www.arabidopsis.org/).

Moreover, we constructed a high-quality reference genome of P.

simonii, featuring a contig N50 of 24 Mb (Cai et al., 2023). Initially,

we used the BlastP program (e-value, 1 × e−5) in Tbtools software

(v2.080) to identify PSDOF protein sequences, employing A. thaliana

DOF proteins as query sequences (Chen et al., 2020). From the search

results, we eliminated duplicate sequences to obtain the presumptive

member sequences. Subsequently, to further validate the candidate

protein sequences, we utilized the NCBI “batch Web CD-Search

Tool” (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi).

This tool can be used to detect and confirm whether each

candidate protein is a bona fide DOF protein based on the

presence of conserved domains. Finally, we employed the online

tools SMART (http://smart.embl-heidelberg.de/smart/set_mode.cgi)

and Pfam (http://pfam-legacy.xfam.org/) to perform rigorous

verification of the conserved domains within our search results.

Through this extensive verification process, we were able to identify

the potential PSDOF genes. Additionally, using Tbtools software, we

performed comprehensive biochemical characterization of each

PSDOF protein, analyzing important parameters including amino

acid composition, molecular weight, and instability index.
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2.2 Phylogenetic analyses of DOF genes in
P. simonii

To explore the evolutionary relationships among PSDOF

proteins, we conducted an extensive analysis utilizing the

candidate protein sequences. Initially, we conducted multiple

sequence alignment using the Muscle program within MEGA

software (v11.0), following its default parameters (Tamura et al.,

2021). Next, phylogenetic trees were constructed in MEGA using

the neighbor-joining (NJ) method. To improve the tree topologies’

dependability and consistency, a bootstrapping process involving

1000 iterations was executed. For better visual understanding and

analysis of phylogenetic relationships, the ultimate phylogenetic

tree of the PSDOF genes underwent refinement and annotation via

the Interactive Tree of Life (iTOL) web tool (https://itol.embl.de/).
2.3 Chromosomal localization and synteny
analysis of PSDOF genes

The Tbtools software was utilized to identify the chromosomal

locations of DOF genes on 19 chromosomes in P. simonii,

employing General Feature Format (GFF) data for visual

representation. Following this, utilizing the locational data of

genes on chromosomes, the PSDOF genes were methodically

rebranded as PSDOF1 to PSDOF41. For an in-depth examination

of PSDOF genes’ synteny within P. simonii, pairs of syntenic genes

were pinpointed using McscanX analysis. Subsequently, the synteny

ircus plot produced was meticulously developed using Tbtools

software’s “Advanced Circos” program. Furthermore, Tbtools

software’s “One-step MCScanX” program enabled the syntenic

examination of DOF genes in P. simonii, P. trichocarpa, and A.

thaliana. The results of this study were visually depicted through

the “Multiple Synteny Plot” program of Tbtools software.
2.4 Gene structure, conserved motif and
promoter cis-elements analysis

The “Gene Structure View” program of Tbtools software was

employed to visually depict the exon/intron arrangement of PSDOF

genes, utilizing genomic structural data along with gene

identification information. Additionally, a web-based application

called “Multiple Em for Motif Elicitation” (MEME v5.5.3), available

at http://memesuite.org/tools/meme, was utilized to examine the

preserved motif patterns in proteins produced by PSDOFs.

Furthermore, the promoter region sequences of PSDOF genes,

covering a 2000 base pair area before the translational start site

(ATG), were isolated from the P. simonii genome. Foreseeing cis-

elements in these promoters was made easier using the PlantCARE

tool, available at https://bioinformatics.psb.ugent.be/webtools/

plantcare/html/. Following this, Tbtools software was utilized to

graphically depict these cis-elements.
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2.5 Expression analysis and interaction
network construction of PSDOF genes

RNA sequencing was conducted on various tissues, including

terminal buds (NT), axillary buds (NB), leaves (NL), stems (NS),

phloem (NP), and roots (NR) of P. simonii, to assess the expression

level of PSDOF genes, more details about the plant materials and

sample collection can be found in Cai et al., 2023. Subsequently, the

expression levels were graphically depicted using heat maps

generated with Tbtools software. In order to delve deeper into

how PSDOF genes are expressed under various stress scenarios, the

data gathered included information from heat, cold, and salt stress

treatments. Subsequently, the data underwent normalization and

was employed to create an expression heatmap, effectively depicting

the transcriptional reactions of all PSDOF genes linked to

stress scenarios.

Furthermore, to forecast the interactions between 41 PSDOF

protein sequences, protein-protein interaction (PPI) networks were

developed via the STRING website (https://www.string-db.org/).

Subsequently, the derived network files were rendered visible

through Cytoscape software (v0.9.2) (Kohl et al., 2011).
2.6 RNA extraction and qRT-PCR analysis

The samples’ total RNA was extracted utilizing the plant total

RNA extraction kit provided by Takara (Beijing, China). In order to

validate our earlier expression profile results, we randomly selected

15 genes and conducted reverse transcription-quantitative PCR

(RT-qPCR) analysis using specifically designed primers. The

Tbtools software was employed to create customized primers for

each gene, using Actin as the benchmark internal gene (Regier and

Frey, 2010) (Supplementary Table S1). The ABI 7500 RT PCR

system was utilized in our qRT-PCR analysis. The comparative

expression levels of the chosen genes were determined through the

2-DDCt method (Pfaffl, 2001). For the purpose of maintaining

consistency and dependability, three biological duplicates were

employed in the analysis of gene expression.
3 Results

3.1 Identification of PSDOF genes and its
physicochemical properties

Using the protein sequences of A. thaliana as a reference, we

successfully identified 41 members of the DOF family in P. simonii

through alignment and screening processes. Subsequently, each of

the 41 PSDOF genes was named in sequential order based on their

homologous chromosome positions, ranging from PSDOF1 to

PSDOF41. Delving deeper into PSDOF genes’ characteristics,

along with other basic information, were summarized in

Supplementary Table S2. The analysis revealed variations among

the PSDOF genes. Specifically, the number of amino acids ranged
Frontiers in Plant Science 04
from 159 to 504, with PSDOF40 showed the largest count with 504

amino acids, and PSDOF10 was the smallest with 159. The lipid

amino acid index exhibited a wide range, varying from 43.58 to

65.29, whereas the predicted isoelectric point (pI) ranged from 4.76

to 9.48. Additionally, the instability index displayed significant

variation, spanning from 38.85 to 72.38. Lastly, the molecular

weights exhibited a range from 17.70 to 55.21 kDa, with PSDOF1

exhibiting the lowest molecular weight of 17.70 kDa and PSDOF41

displaying the highest at 55.21 kDa.
3.2 Phylogenetic analysis of PSDOF genes

Based on the homology of DOF proteins within the

phylogenetic tree, the 41 PSDOF genes were classified into seven

distinct subfamilies, specifically designated as Group I, Group II-A,

Group II-B, Group III, Group IV, Group V-A, and Group V-B

(Figure 1). The subfamily containing the largest gene count

encompassed eight members of the DOF family. On the other

hand, the subfamily with the least number of members were Group

II-A and Group V-A, both having four members from the

DOF family.
3.3 Motif composition of PSDOF genes

To further explore the functional domain of PSDOF proteins,

we undertook a thorough analysis of the amino acid motifs

(Figure 2A). The majority of PSDOF genes are grouped together

on a solitary clade, exhibiting a uniform motif composition at

corresponding positions, hinting at potential similarities in their

biological functionalities. However, there are significant differences

in motif composition among different groups. For example, the

most abundant and complex motif arrangement is observed in

Group II-B, while Group II-A, Group IV, and Group V-A display

the fewest number of motifs and the simplest arrangement.

Moreover, particular motifs demonstrated specificity towards

specific groups. For instance, motif 8 is present only in all genes

of Group I, while motif 7 is detected exclusively in every gene of the

Group V-B branch, thus distinguishing it from other branches.
3.4 Structure composition of PSDOF genes

In order to gain deeper insights into the local structural

characteristics of the DOF domain, we conducted a comparative

analysis of PSDOF protein sequences. The results observed that

each gene harbors a common conserved domain zf-DOF, indicating

a high degree of conservation within the PSDOF family

domain (Figure 2B).

Furthermore, an exon-intron analysis was performed on

PSDOF genes to elucidate their structural diversity (Figure 2C).

The research identified introns in 24 genes, with most genes having

only one intron, as seen in PSDOF1 and PSDOF7, while a minority
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contained three introns, such as PSDOF6. Additionally, each gene

exhibited varying numbers of exons, ranging from 1 to 4. For

instance, PSDOF6 possessed the highest number of exons with 4

exons, whereas others like PSDOF5 and PSDOF35 contained only

one exon. The majority of family members typically contained two

or three exons. In the same group, a considerable proportion of

PSDOF genes exhibit similar gene structures in terms of exon count.

For example, all family members in Group II-B possessed two exons

except PSDOF10 and PSDOF29. Notably, PSDOF6 possesses exons

and introns but lacks untranslated regions (UTRs), suggesting it

may have undergone significant evolution.
3.5 Analysis of cis-elements in the
promoter regions of PSDOF genes

For exploring the biological roles of PSDOFs, the PlantCARE

database was employed to examine cis-elements in the preceding 2

kb sequences of each gene. In the promoter region upstream, seven

unique cis-elements were discovered, mainly consisting of elements

responsive to growth, hormones, and abiotic stress (Figure 3). The

element influencing plant growth encompassed responsiveness to

light. Hormone response elements included responsiveness to

auxin, MeJA, gibberellin, abscisic acid, and salicylic acid. Abiotic

stress response elements mainly consisted of defense and stress

responsiveness. The varied nature of cis-elements indicates the vital

involvement of PSDOF genes in numerous biological functions,
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especially in a range of hormonal reactions and other vital

biological routes.
3.6 Chromosome localization and synteny
relationship of PSDOF genes

By analyzing the genomic data of P. simonii, we unveiled the

chromosomal distribution of PSDOF genes, as illustrated in

Figure 4. Among the 19 chromosomes of P. simonii, except for

chromosome 18 where the PSDOF genes was not found, the

number of PSDOF genes distributed on the remaining 18

chromosomes varies. Notably, PSDOF genes were most densely

distributed on chromosomes 4, 5, and 11, each containing four

genes. However, certain chromosomes harbored only one PSDOF

gene, such as chromosome 9 and 16. Furthermore, the largest

chromosome, chromosome 1, contained only two genes, PSDOF1

and PSDOF2.

For an in-depth exploration of the evolutionary connections

within the PSDOF gene family, synteny analysis was performed

(Figure 5). The study uncovered 37 pairs of homologous genes

within the 41 PSDOF genes, predominantly on chromosomes 2 and

14, with a higher prevalence of homologous gene pairs, succeeded

by chromosome 8. In contrast, chromosome 13 had a relatively

small count of homologous gene pairs. It’s notable that certain

PSDOF genes show associations with multiple genes situated on

different chromosomes.
FIGURE 1

Phylogenetic relationship among PSDOF genes. Seven distinct subfamilies, symbolized by cyan, pink, green, purple, blue, yellow, and red arcs.
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3.7 Synteny relationships of DOF genes in
P. simonii and different species

Aiming to delve more profoundly into the development of the

PSDOF gene family, we created a comparative chart that includes P.

simonii and two notable species, P. trichocarpa and A. thaliana

(Figure 6). Of the 41 PSDOF genes, 62 gene pairs were identified as

homologous to A. thaliana, while 119 gene pairs were found to be

homologous to P. trichocarpa. These homologous gene pairs with P.

simonii displayed varying distributions on each chromosome.

Notably, homologous genes in A. thaliana and P. trichocarpa

were predominantly concentrated on chromosome 8 of P.

simonii, with 12 and 16 pairs, respectively. Conversely,

homologous gene pairs between A. thaliana and P. simonii were

dispersed on chromosome 7, 15, and 17 of P. simonii, with only two

pairs of homologous genes. Notably, there was no distribution of

homologous gene pairs on chromosome 19 of P. simonii.

Analogously, the distribution of homologous genes between P.

trichocarpa and P. simonii exhibited variation, as there were a higher

numberofhomologousgenes locatedonchromosomes1-14anda lower

number on chromosomes 16, 17, and 19. Intriguingly, the homology in

DOF genes between P. simonii and P. trichocarpawas markedly greater

compared to those with A. thaliana. The disparity could be ascribed to

their more intimate familial ties and evolutionary background.
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3.8 Analysis of PSDOF genes
regulatory network

Based on the homology of PSDOF genes with A. thaliana proteins,

we constructed a protein interaction network encompassing all PSDOF

genes, aiming to gain deeper insights into the potential connections

between these genes. The results, depicted in Figure 7, revealed that 16

out of 41 PSDOF genes were implicated in the construction of the gene

regulatory network. Among these genes, PSDOF25, PSDOF28,

PSDOF35, and PSDOF38 exhibited stronger interactions with others,

playing pivotal roles in the protein interaction network. As an example,

PSDOF25 functioned as a central gene, engaging with eight additional

genes, such as PSDOF29, PSDOF35, and PSDOF36. Furthermore,

PSDOF20 also played a pivotal role in the network by engaging in

interactions with seven other genes. Conversely, PSDOF37 and

PSDOF40 exhibited limited interactions with other genes, with

PSDOF37 interacting solely with PSDOF39 and PSDOF40 interacting

exclusively with PSDOF41.

3.9 Analysis of PSDOF genes expression
profiles in different tissues

A thorough investigation into the functions of DOF genes in

plant development and stress response is imperative for enhancing
A B C

FIGURE 2

Motif, conserved domain, and gene structure analysis of PSDOFs family. (A) The arrangement of motifs in the PSDOF protein, motif 1-6 is depicted
through boxes in various colors. (B) Conserved domain of PSDOF genes. (C) Structure of exons and introns in PSDOF genes. The areas of UTR,
exons, and introns are depicted using green boxes, yellow boxes, and black lines, in that order.
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our comprehension of the biological roles played by these genes. For

an in-depth analysis of the distinct roles of DOF genes in P. simonii,

transcriptome sequencing was employed to thoroughly investigate

these genes’ expression profiles in different tissues of P. simonii.

The results demonstrated in Figure 8A showed that PSDOF

genes were expressed in all tissues of P. simonii, but their

expressions were significantly different. For example, the genes
Frontiers in Plant Science 07
PSDOF20 , PSDOF14 , and PSDOF11 , which have higher

expression in the NL, have significantly lower expression in other

tissues such as NS, and NP. On the other hand, genes such as

PSDOF7, PSDOF13, and PSDOF34 were highly expressed in two

tissues, namely NS and NR. It was further observed that most of the

genes, such as PSDOF27, PSDOF23, and PSDOF33, had relatively

high expression in the NR and NP, low expression in the NT and
FIGURE 3

Analysis of cis-acting elements of PSDOFs promoter. The brightly hued squares to the right represent cis-elements, each serving distinct roles.
FIGURE 4

Chromosome distribution of PSDOFs family. Each gene’s genomic position is accurately charted on the chromosome, determined by its distinct
physical coordinates. The left-side displays the chromosome count (Chr01-Chr19), while the right-side lists all the genes.
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NB. It is noteworthy that compared to other genes, the hub gene

PSDOF28 exhibits relatively high expression levels across various

tissues, indicating its potential predominant role in the growth and

development of P. simonii. Meanwhile, the other three hub genes

such as PSDOF25 show relatively high expression levels specifically

in roots, suggesting their potentially pronounced roles in

root function.
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3.10 Analysis of PSDOF genes expression
profiles in different stress conditions

Through the examination of P. simonii transcriptome data in

conditions of heat, cold, and salt stress, the expression patterns of

PSDOF genes under different stressors were extensively studied

(Figure 8B). The results indicate that under heat stress conditions,
FIGURE 5

Circso diagram of PSDOF genes. The external to internal heat map illustrates how gene density and GC ratio are distributed along the chromosome.
Syntenic segments in the P. simonii genome are denoted by gray lines, while green lines represent pairs of PSDOF genes that are collinear.
FIGURE 6

Synteny relationship of PSDOF genes among P. simonii, A. thaliana and P. trichocarpa. Orange lines indicate pairs of DOF genes aligned in a straight
line, while gray lines show segments of P. simonii that are similar in structure to the genomes of both plants.
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the expression levels of eight genes including PSDOF11, PSDOF31,

and PSDOF8 are elevated, while the expression levels of the

remaining members of the PSDOF family are relatively low.

Twenty PSDOF genes, including PSDOF23, PSDOF15, and

PSDOF21, among others, exhibited elevated expression levels

under cold stress conditions. Additionally, the expression of genes

such as PSDOF9, and PSDOF17 was upregulated under salt stress

conditions. Additionally, we observed that the hub gene PSDOF35

exhibits elevated expression levels under three types of stress,

suggesting its involvement in stress response. It can be found that

the genes distributed on the same branch from phylogenetic tree
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have a certain similarity in their expression to the same stress

condition. For example, the genes PSDOF11, PSDOF31, and

PSDOF8 belonged to the same branch in the evolutionary tree,

and their expression under heat stress conditions was significantly

higher than that under cold and salt stress conditions.
3.11 Quantitative reverse transcription
polymerase chain reaction analysis

Fifteen PSDOF genes were chosen at random for qRT-PCR

analysis with tailored primers, enhancing our comprehension of

PSDOF gene expression patterns in various tissues. The way these

PSDOF genes are expressed across various tissues aligns well with

the gene expression patterns identified earlier via transcriptome

sequencing, confirming the utility of RNA-seq data in evaluating

these genes’ expression levels (Figure 9).
4 Discussion

The DOF gene family is a unique gene family in plants, playing

crucial roles in plant growth, development, and adaptation to

adversity. Although some members of the DOF family have been

identified in other plant species, comprehensive genomic analysis of

DOF genes in P. simonii has not been conducted, and their

regulatory functions remain unclear. This study conducted a

comprehensive investigation and expression analysis of the DOF

family using genome data, providing a foundational understanding

for further exploration of the development and stress responses of

P. simonii.
A B

FIGURE 8

Expression patterns of PSDOF genes. (A) A thermal chart depicting PSDOF genes across various tissues. The shift in the color spectrum from blue to
orange signifies varying degrees of expression, ranging from low to high. (B) Patterns of PSDOF genes expression under varying stress conditions.
The shift in color from blue to purple symbolizes the evolution of expression levels within the spectrum, ranging from low to high.
FIGURE 7

Interaction network of PSDOF genes. Network nodes represent
proteins, while edges represent interactions between proteins in
the network.
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Based on earlier research, the structure and number of gene

families are not only related to the genome of a species, but also to

the evolutionary process of a plant (Lohani et al., 2021;

Waschburger et al., 2024). The research revealed 41 DOF genes in

P. simonii, but the count of DOF genes varied across different

species. When compared with reported numbers in other species,

the number of DOF family members in P. simonii exceeds those

reported in tea (16) (Yu et al., 2020), chickpea (37) (Nasim et al.,

2016), and watermelon (36) (Zhou et al., 2020). Conversely, the

count of DOF family members is lower than that reported in

Brassica napus (117) (Lohani et al., 2021), cassava (45) (Zou

et al., 2019), and P. simonii × P. nigra (44) (Wang et al., 2022).
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Additionally, the number of DOF genes in P. trichocarpa (41)

(Wang et al., 2017) was similar to that in P simonii in this study,

indicating that DOF genes were relatively conserved in P simonii.

Exploring the protein motifs within PSDOFs will deepen our

comprehension of their unique functions in developmental and

stress adaptation. In studies of motif composition, it was found that

all members of the PSDOFs possess motif 1, indicating its potential

conservatism and its determination of the functional role of DOF

genes. Similar studies have also been conducted in sweet potato

(Zhang et al., 2023) and sunflower (Song et al., 2024), where

individual motifs were found to be present in all family members.

This finding parallels our research results, suggesting that the motif
FIGURE 9

Gene expression profiles derived from RNA-seq and qRT-PCR. On the X-axis, six distinct tissues are illustrated. The expression data from qRT-PCR is
displayed on the left y-axis, whereas the right y-axis illustrates the comparative expression levels of genes confirmed via RNA-seq. The error bars
represent the standard error.
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may be a key motif within the DOF family, playing a crucial role in

the functionality of DOF genes. Furthermore, the conserved motifs

within the same subfamily of DOF proteins is largely consistent,

suggesting that members of the DOF protein family may have

similar functions in plant growth, development, and stress

responses. The presence of specific motifs found exclusively

among members of a particular subgroup, such as motif 8 being

present in all genes of Group I, indicates the unique evolutionary

significance of these motifs within that subgroup. This

phenomenon has also been observed in Brassica napus, consistent

with our research findings (Lohani et al., 2021).

The analysis of the gene structure of PSDOFs will help us to

further explore its specific function in the process of evolution (Li

et al., 2021). The analysis of the amino acid sequence revealed that

the PSDOF gene possesses a highly conserved zf-DOF domain,

suggesting a relatively conserved evolutionary trajectory for the

DOF family in plants. The majority of PSDOF genes belonging to

the same subgroup exhibit comparable intron-exon structures, yet a

few genes demonstrate distinct and specific structures. Additionally,

the number and length of introns and exons vary among genes in

different branches, potentially due to extended evolutionary

processes. In this study, the number of introns in all genes except

PSDOF6 was between 0 and 2, which was similar to the number of

introns in maize (Chen and Cao, 2015), rice (Khan et al., 2021),

pepper (Kang et al., 2016), and Cerasus humilis (Liu et al., 2023).

This similarity suggests a relatively stable gene structure for the

PSDOF family. Additionally, studies have reported that the presence

of introns is advantageous for organismal functionality. For

instance, due to alternative splicing, organisms can increase

protein diversity, resulting in enhanced functional capabilities of

genes (Lohani et al., 2021).

The role of cis-acting elements in gene expression is crucial, and

analyzing gene promoters is key to comprehending gene expression

in plants. During this study, we identified active elements, including

light responsive, hormone responsive, and abiotic stress responsive

elements, within PSDOFs. These elements play crucial roles in plant

growth and development, closely resembling the cis-acting elements

analyzed in wheat (Liu et al., 2020), lotus (Cao et al., 2022), and

blueberry (Li et al., 2022b). These studies also indicate that the

composition of DOF gene promoter elements is relatively

conserved, and the associated DOF genes play roles in growth,

development, and stress responses.

By examining the expression profiles of PSDOF genes across

various tissues of P. simonii, we gain valuable insights into the

dynamic gene expression patterns that underlie its growth and

development. The findings revealed that PSDOF genes exhibit

elevated expression levels in specific tissues of P. simonii, thus

highlighting their crucial role in the plant’s growth and

developmental processes. At the same time, a small number of

PSDOF family members show different tissue-specific expression

patterns, which means that this small number of genes may have a

specific function. Similar findings have been reported in many

studies as well. In A. thaliana, DOF2.1 pro, DOF5.3 pro, DOF4.6

pro gene expression in leaves an early stage plays an important role

in vascular development (Gardiner et al., 2010). The expression of

OeuDOF4 gene was significantly upregulated in olive, which
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indicated that OEUDOF 4 gene was involved in the development

of olive leaves (Mariyam et al., 2021). Moreover, prior studies have

shown the pivotal involvement of DOF genes across multiple stages

of grape fruit development and ripening (Da Silva et al., 2016). The

DOF genes plays a role in the production of starch in maize. When

ZmDOF36 is overexpressed, it elevates starch levels while

diminishing reduced sugar and soluble sugar, aiding in the

development of methods to control starch production in maize

endosperm (Wu et al., 2019). Additionally, in Brassica napus,

BnCDF1 plays a transcriptional regulatory role in flowering time

and frost resistance. Overexpression of BnCDF1 in A. thaliana

delays flowering time by modulating the expression patterns of CO

and FT flowering time control genes, leading to significantly

enhanced frost tolerance (Xu and Dai, 2016). These results

indicate that DOF genes play irreplaceable roles in the growth

and development of various plants.

DOF genes are crucial in controlling the non-living stress

response of plants (Ma et al., 2015). In this study, we found that

the expression levels of most PSDOF genes are significantly

upregulated under stress conditions, indicating their involvement

in stress adaptation. Similarly, PSDOF genes have been found to be

induced by stress in other plants. Under salt stress, except for

PgDOF8, the expression of other PgDOFs genes in pearl millet

leaves was up-regulated, and the up-regulation of PgDOF5 was the

most significant (Anup et al., 2017). Under high temperature stress

in passion fruit, the majority of PeDOF members were inducible,

and the expression of PeDOF11 was upregulated most significantly

(Chen et al., 2023). In walnut, research has revealed that JrDOF3

contributes to enhancing the heat stress response of JrGRAS2.

Arabidopsis plants overexpressing JrGRAS2 exhibited increased

tolerance to heat stress (Yang et al., 2018). In Gossypium

hirsutum, research has identified changes in the gene expression

levels of GhDOFD9.6 in response to salt stress. Additionally, genes

such as GhDOFA5.7, GhDOFA7.4, and GhDOFD11.3 were found to

significantly respond to low-temperature stress (Li et al., 2018).

Moreover, it has been hypothesized that certain TaDOFs in wheat

serve as dynamic modulators of ROS clearance pathways, as

indicated by their responsive behavior towards heavy metal stress,

as reported by Liu et al. (2020). These expression analyses further

confirm the roles played by DOFs in stress regulation. In addition,

RT-qPCR analysis was conducted to confirm the RNA-seq findings,

with an emphasis on the expression patterns of PSDOF genes.
5 Conclusion

This research led to the identification and categorization of 41

DOF genes in P. simonii, examining them across multiple

dimensions including phylogenetic evolution, gene architecture,

and evolutionary connections. The findings indicate that certain

PSDOF family members are crucial in the growth of plant tissues

and their reaction to diverse stress scenarios. Notably, PSDOF35

and PSDOF28 serve as pivotal hubs in the interaction network,

playing a unique role in coordinating with other genes within the

family. The findings of our research offer valuable insights for

delving deeper into the biological roles of DOF genes in P. simonii.
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