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MeJA-induced hairy roots in
Plumbago auriculata L. by RNA-
seq profiling and key synthase
provided new insights into the
sustainable production of
plumbagin and saponins
Yirui Li 1†, Zi-an Zhao1†, Ju Hu1,2, Ting Lei1, Qibing Chen1,
Jiani Li1, Lijuan Yang1, Di Hu3 and Suping Gao1*

1College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China, 2College of
Biology and Pharmacy, Yulin Normal University, Yulin, China, 3School of Fine Arts and Calligraphy,
Sichuan Normal University, Chengdu, China
Naturally synthesized secondary metabolites in plants are considered an important

source of drugs, food additives, etc. Among them, research on natural plant

medicinal components and their synthesis mechanisms has always been of high

concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that

can be treated with methyl jasmonate (MeJA) for the rapid or sustainable

production of natural bioactives from hairy roots. In the study, we globally

analyzed the changes in the accumulation of plumbagin and others in the hairy

roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based

on 100 mmol/L of MeJA treatment by RNA-seq profiling, and we found that there

was a significant increase in the accumulation of plumbagin and saponin before

24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA

signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway

was activated downstream subsequently by the Mfuzz and weighted gene co-

expression analysis. Under the shared metabolic pathway, the high expression of

PAL3 and HMGR promoted the activity of the “gateway enzymes” phenylalanine

ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR),

which respectively induced the high expression of key reaction enzyme genes,

including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl

pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin.

We speculated that large amounts of ketones and/or aldehydes were formed

under the action of these characteristic enzymes, ultimately achieving their co-

accumulation through polyketone and high-level sugar and amino acid

metabolism. The study results provided a theoretical basis for carrying out the

factory refinement and biosynthesis of plumbagin and saponins and also provided

new ideas for fully exploiting multifunctional agricultural crops and plants and

developing new agricultural by-products.
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1 Introduction

Human health issues have been a hot topic for centuries. In

recent years, with the emergence of natural product drug research,

the enormous resources of millions of plants and their

contributions to human health have been discovered (Singh et al.,

2017). Researchers hope to fully tap into their functions and

maximize their socioeconomic benefits (Gong et al., 2020; Ji et al.,

2020). The naturally synthesized secondary metabolites in plants

are considered important sources of drugs, food additives, etc (Zhou

et al., 2024). Even with the rapid advances in modern medicine, it is

still necessary to use natural plant extracts to meet human health

needs (Oguntibeju, 2018). The use of inducers to regulate the

biosynthesis of secondary metabolites is considered an important

method to significantly increase the content of target metabolites,

and it is also an effective means to maintain the natural authenticity

of products (Sohn et al., 2022). Therefore, it is an important

foundational work for production and use in healthcare,

including solving the problem of low efficiency in the synthesis of

secondary metabolites in plants and increasing the content of

medicinal components through biotechnology for production,

which is increasingly being sought after by scholars (Xu et al.,

2017; Rogowska et al., 2022).

The application of exogenous jasmonates (JAs) has been fully

recognized for their ability to trigger plant growth and development

(Mao et al., 2023; Zhou et al., 2024). It has been proven to be a key

signal in plants that plays an adaptive role in resisting abiotic stress,

and it is also a major promoter in enhancing secondary metabolites

such as phenols, terpenoids, and flavonoids (Zhou et al., 2024).

MeJA can regulate gene transcription and upregulate the expression

of enzymes related to the synthesis of biometabolites, thereby

promoting the accumulation of key secondary metabolites (Mao

et al., 2023; Moghadam et al., 2024; Zhang et al., 2024b). Meanwhile,

it has been proven to stimulate the biosynthesis of secondary

metabolites in plants with nearly four times higher potency

(Shuang and Hong, 2020), such as the accumulation of saponins

and total flavonoids, in a manner that is evident in hairy root

cultures (Ali et al., 2014; Rogowska et al., 2022). Its main advantage

is that MeJA, as a stress hormone, is a prominent stress hormone

related to plant survival under stress conditions, and it could

directly target the JA signaling pathway (Gunjegaonkar and
Abbreviations: PAHR, Plumbago auriculata L. hairy roots, ATCC, American

Type Culture Collection; C4H, cinnamate-4-hydroxylase; CHS, chalcone

synthase; DEG, differentially expressed gene; DMAPP, dimethylallyl

pyrophosphate; DW, dry weight; ELISA, enzyme-linked immunosorbent assay;

F26G, furostanol glycoside 26-O-b-glucosidase; FPS, farnesyl pyrophosphate

synthase; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; HMG CoA, 3-

hydroxy-3-methylglutaryl CoA; HPLC, high-performance l iquid

chromatography; IPP, isopentenyl diphosphate; JAs, jasmonates; MeJA, methyl

jasmonate; MVA, methylvaleric acid pathway; MEP, 2-C-methyl-D-rhodoseric

acid 4-phosphate in plastid pathway; PAL, phenylalanine ammonia lyase; RPKM,

reads per kilobase per million mapped reads; RT-qPCR, quantitative real-time

PCR; TF, transcription factor; WGCNA, the weighted gene co-expression

analysis; 4CL, 4-coumarate CoA ligase; P. auriculata, Plumbago auriculata L.;

P. indica, Plumbago indica L.; P. zeylanica, Plumbago zeylanica L.
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Shanmugarajan, 2019). By stimulating the differential expression

of transcription factors, MeJA regulated biosynthesis-related genes

and promoted the biosynthesis of terpenes and phenylpropanoids

(Yao et al., 2021). Therefore, these studies provided new ideas

regarding the use of exogenous MeJA and the application of

biotechnology for identifying candidate genes and understanding

the potential biosynthesis and regulatory mechanisms of secondary

metabolites (Mao et al., 2023).

Plumbago auriculata L. (P. auriculata) (Figure 1) is one of the

representative plants of the Plumbaginaceae, Plumbago, which is

capable of synthesizing the secondary metabolite plumbagin (5-

hydroxy-2-methyl-1,4-naphthoquinone). Its plumbagin content is

accumulated in large quantities in the roots or hairy roots and

participates in important physiological metabolic processes (Han

et al., 2002; Widhalm and Rhodes, 2016; Zhao et al., 2023), and it is

studied to determine its anticancer, antidiabetic, anti-inflammatory,

and antiradiation effects, among others (Checker et al., 2019; Wang

et al., 2019c; Zhang et al., 2021; Liang et al., 2023; Shu et al., 2023).

Of even greater interest is the great potential of the substance to

function as a suppressor of many human and agricultural pathogens

(Singh et al., 2017). In this study, we found that MeJA stimulated a

large increase in plumbagin in the hairy roots of P. auriculata,

which would provide an exciting research idea for expanding

biopesticide inhibitors.

Although the biosynthetic pathways of quinones have been

conjectured (Widhalm and Rhodes, 2016), the tissue-specific nature

of the accumulation of such substances and their derivatives

(Jadhav et al., 2014) posed a difficulty in their study, resulting in

little information about their biosynthetic genes, intermediate

formation, and regulation. Three ideas on the mechanism of their

biosynthesis have been proposed in the existing studies: firstly, the

biosynthesis of quinones was stimulated and controlled by auxin

(Kumar et al., 2023), MeJA, ethylene (Yazaki et al., 1997), etc.;

secondly, quinone biosynthesis was a process to stimulate

transcriptional regulation of a large number of metabolic genes to

regulate the synthetic reaction enzymes (Jiao et al., 2016; Vasav

et al., 2020); and thirdly, phenylalanine was a precursor for the

synthesis of quinones, andMeJA could act as a non-biological signal

to regulate the expression of PAL in plants; thus, it achieved the

synthesis of quinones through encoding phenylalanine ammonia-

lyase (PAL) (Nopo-Olazabal et al., 2014; Widhalm and Rhodes,

2016). Based on the above, the involvement of a large number of

reactive enzymes in the synthesis of plumbagin has been reported in

Plumbago indica L. (P. indica) and Plumbago zeylanica L. (P.

zeylanica) (Springob et al., 2006; Vasav et al., 2020). However, it

is regrettable that there are no reports on the pathway of quinone

biosynthesis due to inducer stimulation of the hairy roots, and there

is a gap in the research on P. auriculata. Therefore, it has become an

important and challenging issue to explore the biosynthetic

pathways and regulatory mechanisms of plumbagin in a novel

medicinal floral crop of P. auriculata and to promote

its accumulation.

In addition to inducing the production of quinones, MeJA also

induces other secondary metabolites (Sun et al., 2010). For example,

MeJA stimulated the production of saponins in plants, which had

similar medicinal properties to plumbagin (Seki et al., 2015; Guo
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et al., 2021; Chen et al., 2023). The principle is that MeJA acts as an

inducer of the bioactive compound saponin by supplying the rate-

limiting enzyme, 3-hydroxy-3-methylglutaryl CoA reductase

(HMGR), through the terpene precursor isopentenyl diphosphate

(IPP), which activates the HMGR activity and regulates the

accumulation of the saponin substance (Pollier et al., 2013), and

this phenomenon has also been verified in hairy roots (Kochan

et al., 2019). Recent studies have found that the synthesis or

accumulation of total plant saponins may first come from the

contribution of farnesyl pyrophosphate synthase (FPS), thus

demonstrating that HMGR and FPS are the key enzymes affecting

saponin synthesis (Xu et al., 2018), and current studies have focused

on the saponin synthesis pathway as well as on the methylvaleric

acid (MVA) pathway (Lu et al., 2022) or the 2-C-methyl-D-

rhodoseric acid 4-phosphate in the plastid (MEP) pathway

(Zheng et al., 2021). In the present study, we were surprised to

find that the hairy roots of P. auriculata stimulated by MeJA also

promoted the large accumulation of saponins in addition to the

efficient accumulation of plumbagin, a phenomenon not previously

reported. Based on this interesting phenomenon, we were prompted

to explore in-depth the key role played by those reactive enzymes

and synthetic genes in the co-accumulation of plumbagin and

saponin. How do they regulate the biosynthetic pathways of the

two substances? Unfortunately, the answer was not given in

previous reports.

In our previous study, we screened 100 mmol/L of MeJA as the

optimal inducer treatment concentration using the hairy roots of P.

auriculata established in a previous stage (Zhao et al., 2023). Under

this concentration, the induced content of plumbagin produced was

1.56 times higher than that of the control. Based on this

phenomenon, we conducted the study and analysis of RNA-seq

and key metabolite accumulation in hairy roots. We aimed to
Frontiers in Plant Science 03
explore the transcriptional activity and accumulation pathways

that affect the synthesis of bioactive components such as

plumbagin and also to clarify the key role of synthetic precursor

substances in their future industrial production.

In conclusion, these results provided a theoretical basis and new

insights for the comprehensive exploitation of the compound value

of P. auriculata, as well as the biorefinement, development, and

processing of functional compounds.
2 Materials and methods

2.1 Plant materials and treatments

The experimental materials were the hairy roots (PAHR 15834)

of P. auriculata (Zhao et al., 2023). These were induced to form after

30 days using a culture of sterile leaves of P. auriculata by

Agrobacterium rhizogene-mediated genetic transformation

(ATCC15834), which was purchased from the American Type

Culture Collection (ATCC), Rockville, Maryland, USA.

PAHR 15834, consisting of 600 bottles of monoclonal materials,

was cultivated (Supplementary Figure S1). From these, 540 hairy

roots, which had the same growth trend, were selected and placed in

100 mL of 1/2 MS liquid medium containing 10 mmol/L, 50 mmol/L,

and 100 mmol/L of MeJA, respectively. The PAHR 15834 cultured

in a medium supplemented with 95% ethanol in the same amount

as MeJA was used as the control, with 135 replicates per treatment

(45 replicates with 1 biological replicate, set 3 times). The

incubation conditions were 25°C ± 2°C, 120 rpm, and constant

temperature shock incubation in total darkness for 40 days. The

samples were taken at 0 h, 4 h, 8 h, 16 h, 24 h, 48 h, 72 h, 5 days, 10

days, 15 days, 20 days, 25 days, 30 days, 35 days, and 40 days,
A B

FIGURE 1

Ornamental traits in the horticulture of P. auriculata. (A) Ornamental traits during the flowering period of potted P. auriculata and (B) the
inflorescence of P. auriculata.
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respectively, where 0 h was set up as the control. The collected

samples were repeatedly shaken and rinsed with ddH2O to remove

excess culture medium. After cleaning, they were frozen in liquid

nitrogen and stored at −80°C.
2.2 Plumbagin content in the hairy roots
by HPLC

The study was carried out to determine the content of

plumbagin in hairy roots using a modified HPLC method.

Appropriate samples of PAHR 15834 at 0 h, 4 h, 8 h, 16 h, 24 h,

48 h, 72 h, 5 days, 10 days, 15 days, 20 days, 25 days, 30 days, 35

days, and 40 days were taken and dried at 65°C for 24 h and then

adjusted to 45°C to dry to a constant weight. The dried samples

were thoroughly ground and passed through a 40-mesh sieve, and

the sieved powder was accurately weighed to 0.5 g and set aside.

To optimize our method based on the experimental method of

Zhao et al. (2023), 25 mL of methanol (HPLC, purity ≥ 99.9%) was

added to the samples by vortexing and shaking for 30 s and then

ultrasonically extracted at room temperature for 30 min. The

extracts were collected and filtered using 0.22-mm micropore

filters, and the extracted liquid was placed in the dark at 4°C for

backup. For testing (used Essentia LC-16, Shimadzu Hong Kong,

China)) into 1.5-mL Agilent vials for content determination on the

Agilent Technologies 1260 Infinity II liquid chromatography

system and separated at a C18 column (Shim-pack GLS C18 4.6

× 250 mm, 5 mm) with a flow rate of 1 mL·min−1 and 40°C column

temperature. The mobile phase A was acetonitrile, and liquid B was

ultrapure water (using a 0.45-mm microporous filter membrane

before use). The gradient elution steps were as follows: 40% A, 60%

B, 0 min; 75% A, 25% B, 21 min; 90% A, 10% B, 23 min; and 90% A,

10% B, 30 min, at a flow rate of 1.0 mL·min−1, with a detection

wavelength of 254 nm, separated at a column temperature of 40°C

with a sensitivity of 0.16 AUFS, and an injection volume of 20 mL in

all cases, with retention. The sensitivity was 0.16 AUFS, the

injection volume was 20 mL, and the retention time was 21 min.

A linear regression equation y = 150.3x − 126.3 (R² = 0.9999) was

constructed for quantitative analysis using the standard of

plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone, CAS: 481–

42-5, Sigma-Aldrich, Saint Louis, MO, purity ≥ 98%). At the same

time, the optimal MeJA treatment concentration was screened

according to the results of plumbagin content, and RNA-seq and

other physiological indices were analyzed under the

optimal treatment.
2.3 Analysis of soluble sugar and soluble
protein content

Based on the method of Fan et al. (2022), we used approximately

0.1 g of the sample, added it to 1 mL of distilled water, and ground it

into a homogenate. Then, it was poured into a centrifuge tube,

sealed, and boiled in a water bath for 10 min. After cooling, the

sample was centrifuged at 8,500 rpm at room temperature for
Frontiers in Plant Science 04
10 min. The supernatant was placed into a 10-mL test tube and

diluted to 10 mL with deionized water. The test solution was

prepared by following the instructions (ADS-WTDX039–50, Plant

soluble sugar content detection kit, Jiangsu Aidisheng Biological

Technology Co., Ltd. Jiangsu, China), and it was added to the

sample and mixed well, placed in a water bath at 95°C for 10 min,

and cooled to room temperature. The 200-mL liquid was transferred

to a micro cuvette or a 96-well plate, and the absorbance values of

the blank tube and the assay tube were read at 620 nm, respectively,

DA = Aassay − Ablank. The standard curve was established as y =

0.3154x − 0.0023 (R2 = 0.9996). Based on the standard curve, the

soluble sugar content was calculated.

Approximately 0.1 g of the sample was prepared, added to 1 mL

of extraction solution, homogenized in an ice bath, and centrifuged

at 10,000 rpm at 4°C for 10 min, and the supernatant was taken. The

test solution was prepared by following the instructions of the

manufacturer [ADS-F-SP001, Soluble Protein Content (BCA) Kit,

(Jiangsu Aidisheng Biological Technology Co., Ltd. Jiangsu,

China)]. The liquid was added to the sample, mixed well, and

placed at 60°C for 30 min. The other steps were the same as for the

soluble sugar content. Absorbances were read at 562 nm. The

standard curve was established as y = 0.3154x − 0.0023

(R2 = 0.9996). Based on the standard curve, the soluble protein

content was calculated.
2.4 RNA preparation, transcriptome
sequencing, library construction, and
gene annotation

PAHR 15834 was treated with 100 mmol/L of MeJA, which was

taken at 0 h (N), 8 h (T1), 16 h (T2), and 24 h (T3) for high-throughput

sequencing analysis. Each treatment consisted of three biological

replicates. After treatment, the hairy roots were washed and dried

with distilled water, quickly frozen in liquid nitrogen, and then stored

at −80°C until tested.

The extraction of total RNA from the tissue samples was done

using the RNAprep Pure Plant Plus kit (Tiangen, Beijing, China) (Li

et al., 2020a). RNA degradation and contamination were monitored

by 1% agarose gel electrophoresis. RNA purity was assayed using

NanoDrop 2000. RIN was detected using an Agilent 2100 RNA

6000 Nano Kit. The NEBNext® Ultra™ RNA Library Preparation

Kit was used for the library construction (Li et al., 2022). The

libraries were assayed with Qubit 2.0 and Agilent 2100 systems. The

transcriptome sequencing was based on SBS technology using

Illumina HiSeq™ 4000 for raw reads (Fan et al., 2022). The

above steps were completed by Gene Denovo Co., Ltd.

(Beijing, China).

High-quality clean reads were obtained by removing splice

sequences, read lengths containing an adaptor, read lengths with

N ratios greater than 10%, and low-quality data (the number of

bases with a quality value of Q ≤20 accounted for more than 40% of

the entire read length). The clean data of each sample were

assembled from scratch using the short read and long assembly

software Trinity (version 2.0.6) in order to obtain the Unigene
frontiersin.org
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library. The functional gene annotation of Unigene sequences

obtained from splice assembly by BLAST software was based on

one or more of the following databases: NR, Swiss-Prot, GO, KOG,

and eggNOG (Li et al., 2022). The homology results of Unigene in

KEGG (Kyoto Encyclopedia of Genes and Genomes) were obtained

using KOBAS 2.0. The functional annotation information for

Unigene used the HMMER software against the Pfam database.

The GO functional annotation information was obtained using

Blast2GO software, the KOG functional classification statistics were

performed on predicted genes (Shi et al., 2023), and the KEGG

annotation was performed on Unigene to obtain pathway

information (Cun et al., 2024).
2.5 Gene structure sequencing and gene
expression analysis

Prediction of Unigene coding region sequences and their

corresponding amino acid sequences was made using the

TransDecoder (version r2014070464) software. Bowtie was used

to compare the reads obtained from the sequencing of each sample

with the Unigene library. Expression levels were evaluated in

combination with RSEM, and FPKM values were utilized to

indicate the expression abundance of the corresponding

Unigene. Differential expression analysis was performed using

EBSeq to obtain the set of differentially expressed genes between

the two differently treated samples. The Benjamini–Hochberg

method (q-value) was used to correct the significant p-value

obtained from the original hypothesis test during the differential

expression analysis, and the corrected p-value (i.e., FDR) was

ultimately used as a key indicator for the screening of differentially

expressed genes. Genes with an FDR <0.05 and |log2(FC)| ≥1

according to DESeq2 were considered differentially expressed

genes (DEGs) (Liu et al., 2022).
2.6 Analysis of the content of total
saponins and total flavonoids

Dried samples of PAHR 15834 taken at 0 h, 4 h, 8 h, 16 h, 24 h,

and 48 h, weighing 0.05 g, were analyzed using the Total Saponins

Content Assay Kit [ADS-400-F, Total saponin content test box,

(Jiangsu Aidisheng Biological Technology Co., Ltd. Jiangsu,

China)] for extraction and detection. One milliliter of extraction

solution was added and ultrasonically extracted for 1 h,

centrifuged for 10 min at 8,500 rpm at 25°C, and the total

saponin content at 589 nm was analyzed (Uematsu et al., 2019).

Dried samples (0.1 g) of PAHR 15834 were taken at 0 h, 4 h,

8 h, 16 h, 24 h, and 48 h, and 1.5 mL of 60% ethanol was added

and extracted by shaking at 60°C for 2 h. The centrifugation was

carried out for 10 min, and the supernatant was taken at 25°C at

12,000 rpm. The sample was fixed with 60% ethanol to 1.5 mL,

and the total flavonoid content [used ADS-W-KY007–48, Total

Flavonoids (TF) Kit, Jiangsu Aidisheng Biological Technology

Co., Ltd.] was determined at 510 nm (Huang et al., 2014).
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2.7 Analysis of PAL, HMGR, C4H, 4CL, CHS,
and FPS enzyme activities

The general enzyme activity assays served as our references

(Rosler et al., 1997; Fan et al., 2022; Li et al., 2023a). The PAHR

15834 samples were taken at 0 h, 4 h, 8 h, 16 h, 24 h, and 48 h for

enzyme activity assay. The PAL activity was assayed using MM-

0899O2 Plant phenylalanine ammonia lyase (PAL) ELISA

Research Kit (Jiangsu Meimian Industrial Co., Ltd. Jiangsu,

China); C4H was assayed using MM-0942O2 Plant cinnamate-

4-hydroxylase (C4H) ELISA Research Kit (Jiangsu Meimian

Industrial Co., Ltd. Jiangsu, China); HMGR activity was

assayed using MM-1929O2 Plant 3-hydroxy-3-methylglutaryl

coenzyme A reductase (HMGR) ELISA Research Kit

(Jiangsu Meimian Industrial Co., Ltd. Jiangsu, China); 4CL

activity was assayed using MM-0945O2 Plant 4-coumaric acid

coenzyme A ligase (4CL) ELISA Research Kit (Jiangsu Meimian

Industrial Co., Ltd. Jiangsu, China); CHS activity was assayed

using MM-2162O2 Plant chalcone synthase (CHS) ELISA

Research Kit (Jiangsu Meimian Industrial Co., Ltd. Jiangsu,

China); and FPS activity was assayed using MM-1522O2 Plant

farnesyl pyrophosphate synthase (FPS) ELISA Research Kit

(Jiangsu Meimian Industrial Co., Ltd. Jiangsu, China).
2.8 RT-qPCR expression level analysis of
the key DEGs

Total RNA was extracted from the roots using the RNAprep

Pure Plant Plus Kit (Tiangen, Beijing, China) and SteadyPure

plant RNA Extraction Kit (Accurate Biotechnology (Hunan,

China) Co., Ltd.), and residual genomic DNA was removed

during the extraction process. The RNA concentration and

quality were assayed with Thermo Scientific ND One, and the

RNA integrity was assayed by 1.0% agarose gel electrophoresis.

Reverse transcription of 1,000 ng of RNA into 20 mL of system

cDNA was performed using the Evo M-MLV RT Mix Kit with

gDNA Clean for qPCR Ver.2 (Accurate Biotechnology (Hunan,

China) Co., Ltd.). ddH2O was used to dilute the cDNA to 30 mL
for qPCR.

To verify the reliability of the RNA-seq data, RT-qPCR validation

analysis was performed on randomly selected candidate genes that

were contained in Unigene0000019, Unigene0012859, Unigene002300,

Unigene0028761, Unigene0030931, Unigene0030968, and

Unigene0039043. The RT-qPCR expression level analysis was used

to identify candidate genes of interest on the KEGG synthesis pathway,

including Unigene0015669 (PAL3), Unigene0002103 (HMGR),

Unigene0033249 (4CL1), Unigene0031514 (FPS2), Unigene0033266

(F26G), Unigene0003471 (IPP2), and Unigene0035269 (CHS2). Primer

5.0 was used for the primer design, andACTINwas used as the internal

reference gene. All primers were obtained from Biotechnology Co., Ltd.

(Shanghai, China, https://www.sangon.com), and the primer

information is shown in Supplementary Table S1.

For RT-qPCR, the SYBR Green Pro Taq HS qPCR Kit (Accurate

Biotechnology (Hunan) Co., Ltd.) was used. The 10-μL reaction
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system contained 5 μL of 2X SYBR Green Pro Taq HS Premix, 0.2

μL of forward primer (10 μmol/L), 0.2 μL of reverse primer (10

μmol/L), 1 μL of cDNA, and 3.6 μL of sterile water. Based on the

study of Xu et al. (2018), we optimized the qPCR procedure as

follows: 95°C, 3 min; 95°C, 15 s; 60°C, 30 s; the above steps were

cycled 40 times, 65°C, 15 s; 95°C, 5 s. The Bio-Rad CFX96™

detection system was used. All reactions were repeated three times.

The amplification products were detected by agarose gel

electrophoresis and RT-qPCR solubility curves to verify the

specificity of the primers. The relative expression levels of DEGs

were calculated using the 2−DDCT method.
2.9 Data analysis

All data were statistically analyzed using SPSS 22.0, and a one-way

ANOVA was used to determine the significant differences (P < 0.05).

Pearson’s correlation analysis was conducted using Origin 2021. Excel

2016 was used for data sorting. GraphPad Prism 9, R language,

TBtools, and Origin 2021 were used to graph the results. All data

were subjected to not less than three biological replicates, and the

analysis was expressed as s ± x (standard error, SE).
3 Results and analysis

3.1 Effect of MeJA treatment on the
accumulation of plumbagin in hairy roots

To investigate the dynamic changes of MeJA-induced

accumulation of plumbagin in hairy roots, PAHR 15834 was

dynamically sampled for content assay after 40 days of incubation. It
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was known from the study that both the PAHR 15834 extract and

plumbagin standard had signals at 21 min, indicating that they

belonged to the same substance and were both plumbagin

(Figures 2A, B). Based on the above conditions, the samples at each

stage were examined and calculated, showing that MeJA-treated

PAHR 15834 had the best effect on stimulating the accumulation of

plumbagin at 100 mmol/L of MeJA treatment (Figure 2C) compared

with the control. At this concentration, the accumulation of plumbagin

increased significantly to 7.44 mg/g in dry weight (DW) at 24 h, which

was 1.91 times higher than that of the control group. For the next 2

days (48 h) to 35 days, plumbagin still accumulated, but the rising

trend leveled off and reached a peak of 8.24 mg/g DW at 25 days,

which was only an increase of 0.79 mg/g DW; plumbagin was

decreased to 7.15 mg/g DW at 40 days, which was lower than the

amount of plumbagin accumulation at 24 h. Therefore, MeJA

treatment was effective in promoting the accumulation of plumbagin

in hairy roots. Because of the consideration of production efficiency

and cost, we experimentally only analyzed the samples at 0 h (control),

4 h, 8 h, 16 h, 24 h, and 48 h under 100 mmol/L of MeJA treatment.
3.2 Effect of MeJA treatment on soluble
sugar and soluble protein content in
hairy roots

The soluble sugar and soluble protein contents were determined in

PAHR 15834 at different treatment times (Figure 3). The soluble sugar

content increased with the increase in MeJA treatment time

(Figure 3A), and compared with the control, the soluble content

increased significantly at 8 h, 16 h, 24 h, and 48 h (P < 0.05). The

content at 48 h could be 25.86 mg/g higher than the control. The

soluble protein content in PAHR 15834 showed an increasing and then
A

B

C

FIGURE 2

Plot of plumbagin content and trend of changes in PAHR 15834 at different times of MeJA treatment. (A) Peak diagram of plumbagin standard; (B) peak map
of plant samples (one of the randomized samples is used as an example); and (C) bar graphs indicate the cumulative content of plumbagin at each time
point, and line graphs indicate the trend of content accumulation of plumbagin in hairy roots over time under different MeJA treatments. Error bars indicate
± SE (n = 3). Asterisks indicate significant differences between different groups (*P < 0.05, **P < 0.01).
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a decreasing trend with the time of MeJA treatment (Figure 3B) and

reached the extreme value of 22.93 mg/g at 24 h. Compared with the

control, the soluble protein content in PAHR 15834 was significantly

increased in all treatments (P < 0.05), which could be improved by 9.96

mg/g, 1.4 times the control. It indicated that MeJA could promote

soluble sugar and soluble protein accumulation in PAHR 15834.
3.3 Global characterization of
transcriptome data after RNA-seq analysis

The four treatment points of 0 h (control), 8 h, 16 h, and 24 h were

selected for transcriptome sequencing. The total RNA quality of each

extracted sample was examined, and the RNA concentration, OD

value, RIN value, and 28S/18S ratio of each sample met the sequencing

requirements before sequencing. After sequencing was completed, a

total of 82.44 Gb of raw read lengths were obtained, and 77.33 Gb of

clean read lengths were filtered. The GC content (%) of the 12 libraries

ranged from 46.78% to 50.02%, with clean read lengths of 18.0 Gb or

more for each sample and a Q30 of 92.57% or more (Supplementary

Table S2). A total of 549,625,354 raw reads and 528,890,566 clean

reads were obtained, of which clean reads for all samples were above

96%, fitness reads were above 0.5%, and low-quality reads were less

than 3.5%. The assembly obtained 46,221 Unigenes, of which the GC

percentage was 42.085 and the average length was 1,348 bp. These

results indicated that the accuracy and quality of the sequencing data

were highly amenable to further bioinformatics analysis.
3.4 Differential gene expression analysis
reveals candidate genes involved in the
biosynthesis of plumbagin and saponins

3.4.1 Differential gene statistics
The number of differentially expressed genes between

treatments and controls was counted using histograms with
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P <0.05 and log2|FC| ≥1 as screening conditions (Figure 4A). The

set of differentially expressed genes common or unique to each

analyzed combination was screened by a Venn plot (Figure 4B). As

shown in Figure 5A, a total of 8,189 DEGs were screened in N vs.

T1, with 3,008 upregulated genes and 5,181 downregulated genes.

There were 2,741 upregulated genes and 5,624 downregulated genes

identified in N vs. T2. The number of upregulated and

downregulated genes in N vs. T2 were 2,741 and 5,624,

respectively. In the 8,548 DEGs of N vs. T3, there were 3,650

upregulated genes and 4,988 downregulated genes. There were

5,037 identical differentially expressed genes in the three

treatment groups compared with the control (Figure 4B), with

1,621, 1,669, and 2,077 DEGs specific to T1, T2, and T3,

respectively. To better focus on the candidate genes that

consistently affect plumbagin accumulation after MeJA treatment,

we analyzed the 5,037 DEGs that were co-differentially expressed.
3.4.2 Analysis based on Mfuzz gene
expression patterns

Based on the results of the Venn plot analysis, to define the

spatiotemporal expression characteristics of the transcriptome

dataset, we used Mfuzz to perform cluster analysis of the 5,037

DEGs that were co-intersected in the 12 samples, classified them

into six clusters, and demonstrated the gene expression trend of

each cluster (Figure 5A). Notably, the expression trend of cluster 6

(C6) was different from the other clusters with an upward trend,

and we hypothesized that it is essential and critical for the

accumulation of the secondary metabolites. Finally, we targeted

1,582 genes in C6 and analyzed the KEGG pathways of the derived

DEGs (Figure 5B), which were enriched in 15 KEGG pathways

(RichFactor ≥0.1) . The most notable pathways were

“Phenylpropanoid biosynthesis,” “Cysteine and methionine

metabolism,” “Terpenoid backbone biosynthesis,” “Pantothenate

and CoA biosynthesis,” “Valine, leucine, and isoleucine

biosynthesis,” etc., which proved our conjecture.
A B

FIGURE 3

Changes in soluble sugar content and soluble protein content in PAHR 15834 at each sampling time after MeJA treatment. (A) Soluble sugar content
and (B) Soluble protein content. Error bars indicate ± SE (n = 3). Asterisks indicate significant differences between different groups (***P < 0.001,
****P < 0.0001).
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3.4.3 Correlation analysis between co-expression
networks of genes, physiological parameters,
and DEGs

Weighted correlation network analysis (WGCNA) is an

analytical method for finding co-expressed gene modules and

exploring the association of specific traits or phenotypes with

gene networks (Figure 6). We tried to use this approach to gain a

preliminary understanding of the key factors involved in the

biosynthesis of saponins and plumbagin. The results of WGCNA

were shown as 11 modules, and the correlation between modules

and traits is shown in Figure 6A. Using R2 ≥0.5 for both modules

and phenotypic characteristics, almost all P <0.05, and consistent

with the expression pattern of C6 gene expression as the screening

criteria, we finally localized the three modules, MM.cyan (100
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DEGs), MM.black (1,244 DEGs), and MM.magenta (894 DEGs),

all of which had a high positive correlation.

The KEGG-enriched pathways of DEGs in these three modules

were further analyzed, and in the MM.cyan module (Figure 6B),

these DEGs were enriched (P < 0.05) in eight pathways, such as

“Glycosaminoglycan degradation,” “Valine, leucine and isoleucine

degradation,” “ Protein processing in endoplasmic reticulum,”

and “Protein export”. In the MM.black module (Figure 6C),

the DEGs were enriched in seven pathways, including

“Biosynthesis of secondary metabolites,” “Flavonoid biosynthesis,”

“Phenylpropanoid biosynthesis,” “Biosynthesis of antibiotics,” and

“Phenylalanine, tyrosine, and tryptophan biosynthesis,” and seven

other pathways were enriched (P < 0.05). The DEGs in the

MM.magenta module (Figure 6D) were mainly enriched in
A B

FIGURE 5

The Mfuzz and KEGG enrichment analyses in 5,073 DEGs. (A) Cluster analysis plot of the expression patterns of the six modules of a total of 5,073
DEGs identified based on the Mfuzz package in R. (B) KEGG-enriched analysis in 1,582 DEGs.
A B

FIGURE 4

Statistical analysis of transcript differential genes. (A) The statistical plot of the number of up- and downregulated expressions of DEGs in the three
treatment groups compared with the control group. (B) The Venn plot analysis of the three treatment groups compared with the control group.
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“Terpenoid backbone biosynthesis” and “Sphingolipid metabolism”

(P < 0.05). Therefore, we suggested that the genes in the MM.cyan

module might mainly exercise the metabolite synthesis

environment and energy consumption functions, and the genes in

the MM.black and MM.magenta modules were related to

metabolite biosynthesis.

3.4.4 GO/KEGG enrichment analysis of DEGs
based on WGCNA and Mfuzz

Subsequently, to make a stronger correlation between

physiological traits and gene expression patterns and to go for

more efficient screening of genes associated with metabolite

synthesis, we subjected the genes in C6, MM.black (1,244 DEGs),

and MM.magenta (894 DEGs) to Venn plot analyses (Figure 7A).

Finally, 505 DEGs were targeted. These DEGs were analyzed for

KEGG pathway enrichment (Figure 7B), and the enriched pathways

were “Terpenoid backbone biosynthesis” (11 DEGs) ,

“Phenylpropanoid biosynthesis” (14 DEGs), “Sesquiterpenoid and

triterpenoid biosynthesis” (4 DEGs), and “alpha-Linolenic acid
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metabolism” (6 DEGs), with P <0.01 and RichFactor ≥0.05. Also,

to understand which pathways played key roles in the continuous

MeJA stimulation until the end, we performed KEGG-enrichment

analysis for the N and T3 treatment groups. As shown in Figure 8,

among the four pathways with Q-values <0.05, “Phenylpropanoid

biosynthesis” and “Sesquiterpenoid and triterpenoid biosynthesis”

indicated that both were dominant in the synthesis of plumbagin

and saponins.

The results of previous studies showed that “Phenylpropanoid

biosynthesis” and “Sesquiterpenoid and triterpenoid biosynthesis”were

upstream pathways for the biosynthesis of saponins. “Phenylpropanoid

biosynthesis”was an upstream pathway for ketones, and quinones were

formed by ketone polyketide reaction formation (Vogt, 2010;Widhalm

and Rhodes, 2016; Wang et al., 2019b). Among these pathways, we

suggested that Unigene0002103 (HMGR), Unigene0028762 (HMG1),

Unigene0031514 (FPS2), Unigene0031515 (FDS1), Unigene0003471

(IPP2), Unigene0033266 (F26G), Unigene0033249 (4CL1),

Unigene0015669 (PAL3), Unigene0033324 (HST), etc. might play an

important role in the synthesis of saponin and plumbagin.
A B

C D

FIGURE 6

Correlation analysis between co-expression networks of genes, physiological parameters, and DEGs (Liu et al., 2022). (A) Co-expression networks
were constructed using the WGCNA (v1.47) package in R. Gene expression values were imported into the WGCNA to construct co-expression
modules using the automatic network construction function blockwiseModules with default settings. (B–D) These were the KEGG-enriched pathway
maps of DEGs in the MM.cyan, MM.black, and MM.magenta modules, respectively.
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Therefore, the contents of total saponins and total flavonoids, as

well as PAL, C4H, CHS, 4CL, HMGR, and FPS activities, were

examined at four sampling times, and their contents showed a

tendency to increase and then decrease or level off with time. Except

for the enzyme activities of PAL and C4H and the content of total

saponins, which reached the highest value at 16 h, the rest reached the

highest peak at 24 h (Figure 9). These results were in agreement with

the results of previous experiments on the content of plumbagin. We

determined the relationship between all the physiological indicators

tested and these DEGs (Supplementary Figure S2), and the WGCNA

and physiological data showed a high degree of positive correlation.
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Therefore, these genes could efficiently mobilize key reactive enzyme

activities in both the saponin and plumbagin synthesis pathways,

thereby promoting their co-accumulation.
3.5 Analysis of the results of changes in the
expression levels of genes related to
plumbagin and saponin synthesis

Eight genes were randomly selected for RT-qPCR analysis to verify

the reliability of the RNA-seq results, and it was found that the
FIGURE 8

GO/KEGG based on differentially expressed genes shared by WGCNA and the Mfuzz under N vs. T3 treatment groups. The vertical coordinate of the
left panel is −log10(Q-value), the horizontal coordinate is the z-score value (the difference between the number of upregulated differential genes
and the number of downregulated differential genes as a proportion of the total number of differential genes), and the yellow line represents the
threshold of Q-value = 0.05. The list of KEGG terms with the top 20 Q-values is shown on the right.
A B

FIGURE 7

GO/KEGG analysis of DEGs shared between the WGCNA- and Mfuzz-screened modules. (A) Venn plot analysis of DEGs in cluster 6, MM.black, and
MM.magenta. (B) KEGG analysis based on the 505 DEGs generated by the intersection in (A).
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expression trends of all selected genes were consistent with the RNA-seq

results (Supplementary Figure S3). We used RT-qPCR to detect key

genes that stimulate or regulate the activity of reactive enzymes

(Figure 9) and verified the transcript expression levels of

Unigene0015669 (PAL3), Unigene0002103 (HMGR), Unigene0033249

(4CL1), Unigene0031514 (FPS2), Unigene0033266 (F26G),

Unigene0003471 (IPP2), and Unigene0035269 (CHS2) in 0 h, 4 h,

8 h, 16 h, and 24 h in hairy roots of PAHR 15834 underMeJA treatment

(Figure 10). They are considered key genes regulating plumbagin and

saponin synthesis. The results showed that HMGR, PAL3, and FPS2

showed an increasing and then a decreasing trend based on the

expression levels, indicating that they may play a role in the

presynthesis stage. Meanwhile, the expression levels of the remaining

genes were increasing or increasing first and then leveling off. These

results were consistent with those in Figure 10 and suggested that they

might be the key genes that can continuously influence the activity of key

enzymes to promote the co-accumulation of plumbagin and saponin.
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4 Discussion

4.1 MeJA plays a vital role in inducing
secondary metabolite synthesis and
phytohormone signaling

MeJA plays a dual role in plant growth and development,

activating plant defense mechanisms (Wang et al., 2021) and

acting as an inducer to stimulate the synthesis of secondary

metabolites (Chen et al., 2007; Li et al., 2021). In this study,

DEGs were abundantly distributed in the “metabolic processes”

and “response to stimulus” of the “Biological Processes” and

“catalytic activity” in “Molecular Functions” in level 2 GO terms

(Supplementary Figure S4) in all three modules screened by

WGCNA. It indicated that under MeJA treatment, the hairy

roots of P. auriculata produced a defense response that actively

mobilized the accumulation of metabolites as well as the catalytic
FIGURE 10

Effect of MeJA on gene expression in the production and synthesis pathways of plumbagin and saponins. Error bars indicate ± SE (n = 9).
A B C D

E F G H

FIGURE 9

Under MeJA treatment, changed in key synthase activity and substance content over time. (A) PAL activity, (B) C4H activity, (C) CHS activity, (D) 4CL
activity, (E) HMGR activity, (F) FPS activity, (G) total flavonoid content, and (H) total saponin content. Error bars indicate ± SE (n = 3 or n = 6).
Asterisks indicate significant differences between the different groups (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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activity of the cells. This was also proven by Wasternack and

Strnad (2019). Notably, in the GO/KEGG enrichment analysis of

WGCNA, Mfuzz, and DEGs, we found a significant enrichment in

“alpha-linolenic acid metabolism” (Figure 7B). This is the JA

biosynthesis pathway (Liu et al., 2022), and JA serves as an

important signaling hub that regulates an endogenous rise in JA

levels as a means to induce the formation of secondary

compounds such as terpenoids and flavonoids (Wasternack and

Strnad, 2019; Li et al., 2020b). On the other hand, exogenous

MeJA can effectively activate response factors in JA signaling, such

as ERFs, WRKY, and bHLH, and the spatiotemporal expression

patterns of these response factors were consistent with the

biosynthesis and accumulation of secondary metabolites. This

conclusion has been validated in Lycoris aurea (Zhou et al.,

2024), and we also found that these transcription factors were

actively expressed (Supplementary Figure S5). In this study, we

hypothesized that the exogenous addition of MeJA could mediate

the JA signaling transduction pathway and thus synergistically

regulate the increase in the content of secondary metabolites, such

as plumbagin, total flavonoids, and saponins. In addition, the

studies have shown that genes were upregulated significantly by

MeJA treatment related to terpenoid biosynthesis, phenylalanine

metabolism, and the JA signaling pathway and the expression of

most key enzyme genes were actively regulated in the synthesis

pathways of terpenoids and flavonoids (Shi et al., 2023), which was

consistent with our research. Wang et al. (2021) suggested that

this was a strategy for plants to improve their resistance.

Therefore, MeJA acted as a “trauma hormone” and formed

“defensive” secondary metabolites in specialized cells, such as

the hairy roots in P. auriculata, to balance the damage caused by

external stimuli, by means of signaling cascades and cellular tissue

accumulation (Talebi et al., 2018). Plants competed to form these

special secondary metabolites in order to adapt and maintain

metabolic balance (Garrido et al., 2022), and this was responsible

for the increase in plumbagin content, total flavonoids, and

saponins (Figures 2C, 9G, H).
4.2 Phenylpropanoid biosynthesis and
terpenoid backbone biosynthesis played
key roles in the synthesis of plumbagin
and saponins

Plants synthesize phenylpropanoid compounds, phenylpropanoid

derivatives, terpenoids, etc. in response to this specific environmental

change in order to manage and balance the effects of the environment

in which they are growing and/or other life forms (Le Roy et al., 2016;

Dong and Lin, 2021). Phenylpropanoid biosynthesis and terpenoid

backbone biosynthesis are major pathways for the production of a

variety of specialized metabolites to withstand environmental stresses

and complete growth and development (Vogt, 2010; Tholl, 2015; Dong

and Lin, 2021). The phenylpropane pathway could be regulated by

MeJA application, mainly through the activation of PAL, C4H, 4CL,

etc., and their enzymatic activities were enhanced by the expression of

key genes involved in phenylpropane metabolism, promoting key
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biosynthetic reactions (Zhang et al., 2024a). In our study, a large

number of transcription factors such asMYBs,WRKYs, and ERFs were

detected in the three modules of WGCNA (Supplementary Figure S5),

which were key to the activation of the phenylpropanoid pathway

(Bonawitz et al., 2014; Wang et al., 2019a; Xiao et al., 2023). The

production of multiple secondary metabolites was enhanced by these

transcription factors through transcriptional reprogramming, which

activated downstream genes that control reactive enzymes during this

process (Moghadam et al., 2024), such as the activation of the first

enzymatic reaction. These reactions were as follows: PAL catalyzed the

conversion of phenylalanine to cinnamic acid, which is subsequently

hydrolyzed by C4H and converted to p-coumaric acid; under the

action of 4CL, p-coumaric acid formed coumaroyl CoA, which then

binds to CHS to form the ketone backbone (Le Roy et al., 2016; He

et al., 2022). In early studies, plumbagin was characterized as the key

and was specific to type III polyketide synthases (PKS) in the synthetic

pathway, in which CHS was noted to be a type III PKS that was

ubiquitous in plants and was involved in polyketone (Jadhav et al.,

2014). In RNA-seq, high expression of CHS genes and a large increase

in CHS enzyme activity led to the accumulation of plumbagin in the

hairy roots of P. auriculata. Therefore, the accumulation of daidzein in

the hairy roots of P. auriculatamight be mainly influenced by the CHS

in “phenylpropanoid synthesis.” Fortunately, in addition to the above

enzymes, we also found other enzymes, such as caffeic acid 3-O-

methyltransferase (Unigene0025020), shikimate O-hydroxycinnamoyl

transferase (Unigene0033324), and cinnamyl-alcohol dehydrogenase

(Unigene0017777), in the “phenylpropanoid biosynthesis” pathway

that we eventually focused on. These enzymes have been shown in

existing studies to catalyze the production of aldehydes and to provide

precursors for the formation of the benzene and quinone rings of

quinones (Widhalm and Rhodes, 2016; Dong and Lin, 2021).

Therefore, we suggested that MeJA treatment in the hairy roots of P.

auriculata activates the phenylpropanoid biosynthesis pathway to

promote quinone accumulation. Unfortunately, the metabolic

network of plants is complex and diverse, as is the entire process of

polyketone, which goes through aldehyde condensation, aldehyde

cyclization, hydroxylation, and oxidation (Jindaprasert et al., 2008),

which was due to the fact that we did not have a complete

understanding of the synthetic pathway and did not validate the

function of key genes in forming ketones or aldehydes of plumbagin,

which we will complete in future studies.

On the other hand, terpenoid synthesis consists of two parts:

terpenoid backbone biosynthesis and backbone modification

(Tholl, 2015). In the b terpenoid backbone biosynthesis, IPP and

dimethylallyl pyrophosphate (DMAPP) were cyclized or aligned to

form different types of oligomers, followed by the assembly of a

series of terpene skeletons catalyzed by various cyclases (Zhang

et al., 2023). It has been shown in terpenoid backbone biosynthesis

that they are synthesized via the isoprenoid pathway. The active

intermediate IPP and the MVA pathway, which were in the

mitochondria and cytoplasm, were realized in the presence of

HMGR, FPS, etc (Xu et al., 2018). Among them, IPP was also a

key precursor substance for the synthesis of steroid saponins (Li

et al., 2023b). After RNA-seq analysis by WGCNA and Mfuzz, 11

DEGs were finally focused on the “terpenoid backbone
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biosynthesis” pathway (Figures 6D, 7B), among which two genes

related to HMGR and four genes related to FPS were upregulated.

In the RT-qPCR expression level analysis of one gene related to

HMGR and FPS as well as the change in the activities of HMGR and

FPS at each treatment time (Figure 9), this indicated that MeJA

treatment promoted the accumulation of triterpenoid saponins. In

previous studies, alpha-linolenic acid metabolism and terpenoid

backbone biosynthesis pathways were proposed, which were crucial

for MeJA activation of terpenoid biosynthesis, respectively (Zhang

et al., 2024b). These results have been similarly validated in our

study (Figure 7). In addition, the high expression of F26G

(Unigene0033266) (Supplementary Figures S2, 10), a synthase

gene that produces steroidal saponins, was also found in our

results, so we believed that “terpenoid backbone biosynthesis” was

the key to the synthesis of saponins.
4.3 Plumbagin and saponin biosynthesis
shared the MVA pathway and activated the
PAL and HMGR “gateway enzymes” for
co-accumulation

The plant shikimic acid pathway is the upstream pathway for

phenylpropanoid biosynthesis (Vogt, 2010), and phenylalanine is the

end product of the shikimic acid pathway and the initiator of the

MVA pathway (Tholl, 2015; Zhang and Liu, 2015). The MVA

pathway serves as a core metabolic pathway that provides

precursors for the cytoplasmic biosynthesis of ketones, aldehydes,

and triterpenoids, as well as for the biosynthesis of terpenoids (e.g.,

ubiquinone, polyphenol) in the mitochondria (Tholl, 2015). PAL, the

gateway enzyme for phenyl propionic acid metabolism, constructs an

upstream reaction network for flavonoids (Liu et al., 2023) and

realizes the shift of the shikimic acid pathway to the various

branches of phenyl propionic acid metabolism by catalyzing the

generation of trans-cinnamic acid from phenylalanine (Zhang and

Liu, 2015; Dong and Lin, 2021), thus affecting the changes in key

genes involved in the initiation of phenylpropanoid (C4H and 4CL)

and flavonoid (CHS and CHI) biosynthesis (Wan et al., 2023; Zeng

et al., 2024). HMGR is the major rate-limiting enzyme regulating

isoprenoid biosynthesis (Nieto et al., 2009), and it catalyzes the

irreversible conversion of 3-hydroxy-3-methylglutaryl CoA (HMG

CoA) tomevalonate, which is synthesized through the MVA pathway

in saponins (Joga et al., 2024). A study by Yin et al. (2023) showed

that optimizing its gene surface enzyme activity could promote the

synthesis of downstream substances, such as efficiently controlling

the accumulation of terpenoids (Lu et al., 2022; Zhang et al., 2023).

Unlike previous studies, we found that MeJA activated the two

“gateway enzymes” PAL and HMGR after treating the hairy roots

in P. auriculata, and the expression levels of PAL3 andHMGR, which

were involved in the regulation of the enzymes, showed a tendency of

increasing and then decreasing with the increase in treatment time,

which was consistent with the accumulation of plumbagin and

saponins. In addition, precursor substances involved in the MVA

pathway required induction from JA. In the study, we also found the

involvement of transcription factor families such as ERFs and bHLHs

(Supplementary Figure S5), suggesting that JA-mediated and JA-
Frontiers in Plant Science 13
regulated genes were involved in genes regulating the formation of

secondary metabolic compounds (Major et al., 2017). Based on this,

we concluded that MeJA treatment took the lead in affecting the JA

signaling and the shikimic acid pathways in P. auriculata.

Subsequently, the high expression of PAL3 and HMGR in the

MVA pathway was stimulated and induced by the high expression

of CHSs downstream of the plumbagin synthesis pathway and IPPs

and FPSs in the saponin synthesis pathway, which activated the

synthetic reactive enzymes to synthesize plumbagin and saponins

methodically under the shared metabolic flux of the MVA pathway.
4.4 Soluble sugars and soluble proteins
were important precursor metabolites
affecting the synthesis of plumbagin
and saponins

The primary metabolites of plants, such as sugars and proteins,

are plant growth regulators and secondary metabolite precursors, and

their content levels are affected, such as during plant resistance to

environmental changes, secondary metabolism synthesis, and so on

(Murcia et al., 2017; Li et al., 2024). In the MM.cyan module, we

found Unigene0032085 (At5g47720), which is annotated as acetyl-

CoA C-acetyltransferase. It is formed by the condensation of acetyl-

CoA, an important starting molecule for metabolite biosynthesis, and

this type of enzyme is produced in large quantities in gluconeogenesis

(Vishwakarma et al., 2013). Previous studies reported that three

acetyl-CoA were converted to IPP in the MVA pathway, which is a

precursor for saponin synthesis (Chen et al., 2017). In this study, the

soluble sugar content in the hairy roots of P. auriculata increased

substantially, providing a large amount of acetyl-CoA for the

subsequent synthesis of secondary metabolites. It was hypothesized

to possibly provide energy reserves and a synthetic environment for

the completion of secondary metabolisms, such as saponins, and to

lay the foundation for the activation of the downstream enzyme-

linked reactions to achieve biosynthesis. On the other hand, the

soluble proteins play a role in plant metabolism by recognizing

signals and transporting them from the endoplasmic reticulum

(ER) to various locations involved in biological reactions

(Hadlington and Denecke, 2000). In MM.cyan, there was a large

enrichment of DEGs in “Protein processing in endoplasmic

reticulum” and “protein export” (Figure 6B). In the MVA pathway,

enzymes are mostly located on the cytoplasmic lysosome or

endoplasmic reticulum, and precursor-reactive enzymes for the

synthesis of plumbagin and saponin have been shown to act on the

endoplasmic reticulum through transmembrane regions, such as

HMGR (Tholl, 2015). In addition, amino acids are important

energy metabolites and precursors of bioactive molecules and play

a key role in the saponin synthesis pathway (Wang et al., 2019b). The

higher glycolysis and serine levels, which were induced under abiotic

stress, trigger the MVA pathway to promote saponin biosynthesis.

Therefore, we hypothesized that the increase in soluble proteins in the

hairy roots of P. auriculata, in addition to responding toMeJA, might

also be actively engaged in transmembrane transport and energy

transfer, and the synthesis of reactive enzymes would be allowed to

function in a suitable environment.
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5 Conclusion

The materials used in this study were the hairy roots of P.

auriculata. A significant accumulation of plumbagin and saponin in

hairy roots was found after treating PAHR 15834 with 100 mmol/L of

MeJA. Combining RNA-seq profiling and analysis using Mfuzz and

WGCNA, the pathways for their synthetic accumulation were

predicted, as shown in Figure 11. We hypothesize that MeJA could

effectively stimulate the JA signaling and shikimic acid pathways and

mediate the MVA pathway. Meanwhile, the energy and synthetic

environments provided many soluble sugars and soluble proteins for

the formation of plumbagin and saponins. Under the shared metabolic

flux of this pathway, it mediated the high expression of PAL3 and
Frontiers in Plant Science 14
HMGR, successfully activating the activities of the “gateway enzymes”

PAL and HMGR in the phenylpropane and mevalonate pathways, and

induced the high expression of CHSs in the downstream plumbagin

synthesis pathway, FPSs and IPPs in the saponin synthesis pathway,

and CHSs in the downstream plumbagin synthesis pathway. Among

them, DEGs were heavily enriched in phenylpropanoid biosynthesis

and terpenoid backbone biosynthesis, and it was hypothesized that the

expression of DEGs in the pathway activated the activity of a series of

reaction synthases, which formed a large number of ketones and

aldehydes under the action of their synthesis reaction enzymes and

ultimately contributed to the co-accumulation of plumbagin

and saponins through the highly efficient polyketone and a high

level of sugar metabolism and amino acid levels. The study provides
FIGURE 11

Prediction of the synthesis pathway in plumbagin and saponins after MeJA treatment of the hairy roots of Plumbago auriculata.
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a theoretical basis for carrying out factory refinement and biosynthesis

of plumbagin and saponin and also provides a new idea for the

development and application of multifunctional flower crops.
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