AUTHOR=Wu Ruizhao , He Feng , Rong Ziyang , Liang Zhixue , Xu Wenxing , Ni Fuchuan , Dong Wenyong TITLE=TP-Transfiner: high-quality segmentation network for tea pest JOURNAL=Frontiers in Plant Science VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1411689 DOI=10.3389/fpls.2024.1411689 ISSN=1664-462X ABSTRACT=
Detecting and controlling tea pests promptly are crucial for safeguarding tea production quality. Due to the insufficient feature extraction ability of traditional CNN-based methods, they face challenges such as inaccuracy and inefficiency of detecting pests in dense and mimicry scenarios. This study proposes an end-to-end tea pest detection and segmentation framework, TeaPest-Transfiner (TP-Transfiner), based on Mask Transfiner to address the challenge of detecting and segmenting pests in mimicry and dense scenarios. In order to improve the feature extraction inability and weak accuracy of traditional convolution modules, this study proposes three strategies. Firstly, a deformable attention block is integrated into the model, which consists of deformable convolution and self-attention using the key content only term. Secondly, the FPN architecture in the backbone network is improved with a more effective feature-aligned pyramid network (FaPN). Lastly, focal loss is employed to balance positive and negative samples during the training period, and parameters are adapted to the dataset distribution. Furthermore, to address the lack of tea pest images, a dataset called TeaPestDataset is constructed, which contains 1,752 images and 29 species of tea pests. Experimental results on the TeaPestDataset show that the proposed TP-Transfiner model achieves state-of-the-art performance compared with other models, attaining a detection precision (AP50) of 87.211% and segmentation performance of 87.381%. Notably, the model shows a significant improvement in segmentation average precision (mAP) by 9.4% and a reduction in model size by 30% compared to the state-of-the-art CNN-based model Mask R-CNN. Simultaneously, TP-Transfiner’s lightweight module fusion maintains fast inference speeds and a compact model size, demonstrating practical potential for pest control in tea gardens, especially in dense and mimicry scenarios.