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Detecting and controlling tea pests promptly are crucial for safeguarding tea

production quality. Due to the insufficient feature extraction ability of traditional

CNN-based methods, they face challenges such as inaccuracy and inefficiency

of detecting pests in dense and mimicry scenarios. This study proposes an end-

to-end tea pest detection and segmentation framework, TeaPest-Transfiner (TP-

Transfiner), based on Mask Transfiner to address the challenge of detecting and

segmenting pests in mimicry and dense scenarios. In order to improve the

feature extraction inability and weak accuracy of traditional convolution

modules, this study proposes three strategies. Firstly, a deformable attention

block is integrated into themodel, which consists of deformable convolution and

self-attention using the key content only term. Secondly, the FPN architecture in

the backbone network is improved with amore effective feature-aligned pyramid

network (FaPN). Lastly, focal loss is employed to balance positive and negative

samples during the training period, and parameters are adapted to the dataset

distribution. Furthermore, to address the lack of tea pest images, a dataset called

TeaPestDataset is constructed, which contains 1,752 images and 29 species of

tea pests. Experimental results on the TeaPestDataset show that the proposed

TP-Transfiner model achieves state-of-the-art performance compared with

other models, attaining a detection precision (AP50) of 87.211% and

segmentation performance of 87.381%. Notably, the model shows a significant

improvement in segmentation average precision (mAP) by 9.4% and a reduction

in model size by 30% compared to the state-of-the-art CNN-based model Mask

R-CNN. Simultaneously, TP-Transfiner’s lightweight module fusion maintains

fast inference speeds and a compact model size, demonstrating practical

potential for pest control in tea gardens, especially in dense and

mimicry scenarios.
KEYWORDS
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1 Introduction

As a vital economic crop, tea faces annual challenges from

various pests during its cultivation, significantly impacting

productivity and quality. Major tea pests include Jacobiasca

formosana, Geisha distinctissima, Arctornis alba, Measuring worm,

Tortricida, Amata germana, and Euricania ocellus, among others.

Throughout the evolution of some tea pests, their morphological

characteristics often undergo significant changes (Ihsan-ul Haq

et al., 2003), making it difficult to manually track pest dynamics.

Additionally, the mimicry and dense distribution characteristics

exhibited by some tea pests complicate their identification and

localization. Consequently, these challenges have driven the

development of artificial intelligence for pest monitoring.

Convolutional neural network (CNN) is a primary choice for

image processing and is widely used in various fields of computer

vision. Sharma et al. (2022); Yang et al. (2024), and Singh et al.

(2022) conduct image recognition and classification tasks across

different application fields by constructing CNNs with various

architectures. These studies leverage the excellent feature

extraction capabilities of CNN and demonstrate the superiority

and robustness of their respective models through experiments.

As deep learning continues to revolutionize various domains, its

application in plant monitoring has garnered significant attention,

leading to innovative solutions and enhanced performance in plant

disease and pest detection. Liu and Wang (2021) explore challenges

in the practical application of deep learning for plant disease and

pest detection. They propose potential solutions, presented research

ideas to address these challenges, and offered insightful suggestions.

Kaur et al. (2024) utilized the H-CSM model, which integrates

support vector machine (SVM), convolutional neural network

(CNN), and convolutional block attention module (CBAM) to

detect and classify plant leaf diseases. Experimental results

indicate a classification accuracy of 98.72%. Kang et al. (2023)

introduce MCUNet, a corn leaf pest detection and segmentation

model that outperforms mainstream neural networks. Furthermore,

aiming to obtain a more lightweight model, Agarwal et al. (2023)

propose a pest detection method utilizing the EfficientNetB3 model.

Experimental results demonstrate the effectiveness in achieving

high accuracy for classifying various pests in image datasets. Dai

et al. (2023) introduce an improved YOLOv5m-based method for

pest detection in plants. By integrating Swin-Transformer and

Transformer mechanism, their approach improves the detection

accuracy and efficiency. Besides this, Jiao et al. (2022); Tian et al.

(2023), and Yang et al. (2023a) also utilized deep learning methods

to detect and classify pests on various plants. In summary, these

studies have predominantly relied on conventional detection

methods for monitoring and has not performed segmentation of

the detected pests or leaf diseases. By achieving high detection

accuracy through the construction of pest datasets and model

improvements, these studies effectively address challenges such as

small targets, multiscale detection, and real-time requirements.

In contrast, the field of pest or leaf diseases monitoring in tea

gardens remains relatively underexplored, with only a few studies

focusing on tea pest monitoring (Wang et al., 2023; Yang et al.,

2023b; Ye et al., 2024). These studies primarily concentrate on the
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detection of tea pests without further segmentation of individual

pests. The complex distribution of pests in tea gardens,

characterized by mimicry and dense populations, presents

significant challenges for traditional pest detection models. As for

tea pest monitoring, a previous work conducted by Zhou et al.

(2021) uses automatic machine learning to classify each image in

the TeaPestDataset. Xue et al. (2023); Yang et al. (2023b), and Lin

et al. (2023) utilize the popular object detection model YOLO

(Redmon et al., 2016) to detect tea plant diseases or pests. Hu

et al. (2021) employ a discriminative pyramid network for semantic

segmentation of tea geometrids in natural scenes. Experimental

results demonstrate excellent performance in the semantic

segmentation of tea geometrids. In contrast, this research treats

each pest as an individual entity, achieving specific pest counts and

improving edge processing capabilities by developing a deeper

network for instance segmentation. Furthermore, this study not

only accurately identifies both larva and adult tea geometrids but

also encompasses the identification and processing of 27 other

common pests in tea gardens. Moreover, Hu et al. (2024) employ

hybrid architecture based on transformer to detect tea pests in

complex backgrounds. However, previous researches on tea pest

monitoring primarily focus on classification, detection, or semantic

segmentation tasks, ignoring the importance of instance

segmentation tasks for pest control. This study summarizes

previous researches on tea pest detection and applies instance

segmentation tasks to improve the effectiveness of tea pest

control. Instance segmentation offers a promising solution to

these issues by enabling pixel-wise parsing of pest images, thereby

accurately predicting the position of each pest.

Additionally, in practical applications, traditional detection

methods face significant limitations, particularly in scenarios

involving target overlap and occlusion, leading to suboptimal

detection performance. Moreover, precise pesticide application in

tea gardens necessitates adjusting dosages based on pest size to

balance effective pest control with environmental concerns. Various

pests and disease pathogens exhibit different degrees of resistance to

pesticides at various growth stages. Consequently, pesticides should

ideally be applied during periods when pests are most susceptible.

The results of segmentation tasks can provide detailed information

on pest growth, development, and distribution, which is critical for

precise pesticide application.

To address these limitations caused by detection models, recent

studies committed to segmentation tasks have shown potential

solutions. Classical two-stage segmentation models, such as Mask

R-CNN (He et al., 2017), Mask Scoring R-CNN (Huang et al.,

2019), HTC (Chen et al., 2019), and DCT-Mask (Shen et al., 2021)

exhibit excellent segmentation performance. Besides this, one-stage

models such as BCNet (Ke et al., 2021) and SOLO (Wang et al.,

2021) also have superior performance and efficiency. However,

these segmentation models may lack sensitivity to details and

edge features, leading to unsatisfactory extraction results and

aliasing. Mask Transfiner (Ke et al., 2022) incorporates

Transformer architecture into the model to provide supervision

and self-correction for regions erroneously predicted by Mask R-

CNN. Built upon this innovative mechanism, the segmentation

performance of the edge area is significantly optimized.
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The attention mechanism is a crucial component in various

algorithmic theories within the realm of computer vision. The

integration of the attention module with the deep network

enhances the network’s ability to better extract target features (Xu

et al., 2021)—for instance, Wang et al. (2022) demonstrate the

effectiveness of the attention module combined with D2Det in pest

segmentation. Yang et al. (2023b) improve the YOLOv7-tiny model

by utilizing deformable convolution and attention mechanism,

achieving 93.23% accuracy on their self-made tea pest

segmentation dataset. Additionally, Zhang and Huang (2022)

design a novel attention mechanism to overcome challenges such

as scale changes, complex backgrounds, and dense distribution in

light trap images. Experimental results show that the model

outperforms both classic detection models and lightweight

detection models.

Besides this, the deformable convolutional network (DCN) (Dai

et al., 2017) enhances feature extraction accuracy by employing

deformable convolution kernels. A deep convolutional network

combined with a deformable convolution structure is proposed by

Cao et al. (2020) to overcome geometric transformations.

Experiments have demonstrated that the framework, when fused

with the DCN, effectively improves the accuracy as well as inference

speed of object detection. Significant improvement has been

observed in the trade-off between them.

In order to effectively solve the monitoring problems of tea pests

in mimicry and dense scenarios, this study proposes a framework

named TeaPest-Transfiner (TP-Transfiner) for tea pest detection

and segmentation tasks using an enhanced Mask Transfiner

framework. The main contributions are as follows:
Fron
• Provide a dataset including 1,752 tea pest images and

corresponding annotated file, which can be used in the

object detection and instance segmentation tasks.

• Fuse the attention mechanism into the backbone network

and improve the FPN architecture of the Mask Transfiner

to get a novel pest monitoring model TP-Transfiner.

• Implement experiments and demonstrate that while

maintaining lightweight, TP-Transfiner outperforms
tiers in Plant Science 03
classical models for tea pest detection and segmentation

tasks, particularly in dense and mimicry scenarios.
2 Materials and methods

This section summarizes the datasets used in this study and the

implementation details of the proposed TP-Transfiner model.

Specifically, Section 2.1 discusses the collection, annotation, and

data augmentation of the TeaPestDataset. Section 2.2 details the

overall process and implementation of the TP-Transfiner model.

Section 2.3 presents the evaluation metrics used in the experiments.
2.1 TeaPestDataset and data augmentation

To develop widely applicable pest detection and segmentation

models, a carefully selected and labeled dataset is necessary. In this

study, various types of pest images in diverse scenarios are collected

and manually labeled, resulting in a total of 1,752 images. The

original pictures in the dataset are primarily sourced through three

methods. The first method involved images provided by agriculture

and forestry-related laboratories and pictures pertaining to tea pest

knowledge. The second method consisted of on-site shooting in tea

gardens using mobile devices. The third source was from Internet

search engines. Consequently, the collected scenes are mainly

categorized into indoor (laboratory or specimen) and outdoor

(natural environment of the tea garden) scenes. Specifically, there

are 1,492 images of outdoor scenes and 260 images of indoor scenes.

These images serve as the original dataset for tasks related to the

localization and segmentation of pest instances.

Figure 1 presents samples of the dataset. The first row displays

the original images, and the second row shows the annotated

images. The dataset includes images and annotations of tea pests

in mimicry and dense scenarios, providing a foundation for the

model’s robust generalization performance in these complex scenes.

During the dataset design process, 22 common pest species found in
A B D E

F G IH J

C

FIGURE 1

Original and annotated images of the pests. (A–E) Original and (F–J) ground truth.
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tea plantations are selected. However, considering the significant

morphological differences during different growth stages of some

pests, the larvae and adult stages of certain pests are further

subdivided. Consequently, the final dataset comprises 29

categories, with the specific quantities of images in indoor and

outdoor scenes for each type of pest illustrated in Figure 2.

The initial sample size is limited, and there is inconsistency in

the number of various data types. This condition may lead to

model overfitting, causing a tendency to predict categories with a

higher number of samples. Hence, the original dataset is

augmented to achieve a more uniform distribution of each data

type. In addition to rotation and cropping, random affine

transformations and random color transformations (including

adjustments to image brightness, contrast, saturation, and hue)

are applied to enhance the model’s generalization ability, as shown

in Figure 3. Finally, the dataset in this study includes a total of

34,928 images across 29 categories. The process of making the

dataset is to divide the 1,752 original images in a ratio of 7:2:1 and

then perform data augmentation on the training set and validation

set. To avoid falsely high precision, the test set remains the

original images.
2.2 TeaPest-Transfiner

This study introduces an optimized framework—for

instance, segmentation of tea pests based on Mask Transfiner.

Primarily, it integrates the attention mechanism and DCN

module into backbone network, replacing the backbone

network in Mask Transfiner. Additionally, it utilizes the

feature-aligned pyramid network (FaPN) (Huang et al., 2021)

as a feature extraction module to segment the edge of each

instance in high quality. Figure 4 depicts the network diagram of

the optimized Mask Transfiner segmentation model, referred to

as TP-Transfiner.
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2.2.1 Backbone network
Most of the time, backbone network refers to the feature

extraction network, and its function is to extract information

from the image, which is then utilized by the box head and mask

head. In this study, a ResNet fused with attention module and FaPN

are combined as the backbone network of Mask Transfiner, which is

used to extract features of pests.

2.2.1.1 ResNet

The ResNet is proposed by He et al. (2016), and it has been

proven to effectively improve the accuracy and convergence of deep

learning. A ResNet learns image data by its well-designed residual

block (as shown in Figure 5A), which can be defined as Equations 1

and 2.

y = F(x, Wif g) + x (1)

y = F(x, Wif g) +Wsx (2)

where F(x, {Wi}) denotes the residual mapping to be learned,

and x is the input vector of previous layers or image. If the

dimensions of x and F are not equal, a linear projection Ws can

be applied to match the dimensions, as shown in formula 2.

According to the research of He et al. (2016), the experimental

results illustrate that the residual block has the ability in solving

problems such as gradient vanishing and training degradation of

the deep network. ResNet has outstanding feature extraction

performance without increasing the model parameters and

computational burden. Therefore, ResNet is chosen as the

backbone network. At the same time, to balance efficiency and

accuracy, ResNet-50 is chosen.

2.2.1.2 Attention mechanism

The attention mechanism in deep learning draws inspiration

from the attentional processes observed in human vision.

Essentially, it comprises a set of weight parameters that can
FIGURE 2

Schematic diagram of the number of types of data collection.
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autonomously learn during the training period through the

network. The mechanism prioritizes region of interest (RoI) in a

dynamically weighted manner, simultaneously suppressing

irrelevant background regions.

Dai et al. (2019) propose a solution to address the issue of

context fragmentation by integrating the transformer attention

module into the backbone network. Building upon this

foundation, Zhu et al. (2019) conduct a comprehensive study

that investigated the influence of four different factors: the query

and key content, the query content and relative position, the key

content only, and the relative position. Additionally, they explore

the impact of incorporating deformable convolution into the
Frontiers in Plant Science 05
network. Empirical results show that a proper combination of

deformable convolution and the key content only term in

transformer attention achieves the best accuracy–efficiency

trade-off compared with the transformer attention module

alone. Based on this conclusion, the key content self-attention

module is integrated into the ResNet-50 backbone network in this

study. Detailed information is indicated by Equation 3.

x = uTmV
C
mxk (3)

where um is a learnable vector. It captures salient key content

which should be focused on the task and is irrelevant to the query. T

represents the transpose of a vector, and m represents one of the
FIGURE 4

Framework of TP-Transfiner.
A B D

E F G H

C

FIGURE 3

Examples of data augmentation. (A) Original, (B) flip, (C) noise adding, (D) flip and noise adding, (E) adjust hue 1, (F) adjust hue 2, (G) adjust
saturation, and (H) adjust saturation and noise adding.
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attention heads. VC
m is learnable embedding matrices for the key

content and xk denotes the input.

Specifically, the 3 × 3 regular convolution in the residual block is

replaced with a deformable convolution block. Subsequently, a 3 × 3

deformable convolution in the residual block is followed by the

addition of a self-attention module, contributing to the deformable

attention block (as shown in Figure 5B). To apply a pre-trained model

without altering its original behavior, the self-attention module is

inserted using a residual connection. The output of the self-attention

module is then multiplied by a learnable scalar initialized to zero. The

residual block after the third stage of ResNet-50 is replaced with an

optimized one, and the feature map outputted by ResNet-50 serves as

the input for FaPN for multi-scale feature extraction.

2.2.1.3 FaPN

Achieving accurate mimetic pest instance detection requires the

availability of both high-quality spatial information for precise

object detection and robust semantic information for effective

classification. FaPN optimizes FPN by replacing 1 × 1

convolutions with a feature selection module (FSM) and adding a

feature alignment module (FAM) during upsampling, as shown in

Figure 6. Inspired by SENet (Hu et al., 2018), FSM accurately

extracts crucial information about features and recalibrates them by

performing channel reduction and suppressing redundant feature

maps. FSM can be represented by Equation 4.

bCi = Fs(Ci + fm(z) ∗Ci) (4)

Here z signifies the data obtained through global average pooling

of the input feature map Ci, while fm(z) denotes the modeling of the

importance of each feature map through a process involving a 1 × 1

convolution followed by a sigmoid activation on z.

FAM refines each sampling position within the convolution

kernel by employing a learnable offset, thereby aligning the
Frontiers in Plant Science 06
upsampled feature map with a set of feature maps. The feature

map Ci-1 furnishes the spatial position to determine Pi, ensuring

alignment with Ci-1. FAM can be explained by Equation 5:

bPi   = Fa Pi, f∘     (Ĉ i−1 ∘   Pi)
� �

(5)

where ∘ signifies the channel concatenation operation, f° denotes

the learned offset, and Fa(·) represents the alignment function.

2.2.2 Segmentation algorithm
To avoid a large number of edge pixels being misclassified,

Mask Transfiner considers not only the high-level semantics of the

image but also the large-resolution deep feature maps. With these

fusion features, Mask Transfiner gains better result than the classic

framework for tea pest detection and segmentation tasks in dense

and mimicry scenarios. Besides this, the bounding box used for the

detection task is generated by the original Faster R-CNN (Ren

et al., 2016).

The mask head of Transfiner employs a quadtree structure to

represent discrete points at various levels, addressing the discrete

distribution characteristics of information loss areas. It utilizes a

segmentation network based on Transformer to predict the label of

each tree node instance in discontinuous space. As shown in

Figure 4, the network comprises three modules—node encoder,

sequence encoder, and pixel decoder—which work together to

convert discrete nodes into unordered pixel sequences and predict

instance labels for each point.

2.2.3 Loss function
Based on the structures above, the entire Mask Transfiner

framework can be trained in an end-to-end manner. As shown in

Equation 6, a multi-task loss function is defined as:

L = l1 LDetect + l2LCorase + l3LRefine + l4LIncoherent (6)
A B

FIGURE 5

Structure comparison of residual block in ResNet-50. (A) Original residual block and (B) deformable attention block.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1411689
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1411689
Here LRefine signifies refinement with L1 loss between predicted

labels for incoherent nodes and their ground-truth labels. In TP-

Transfiner, LRefine is replaced with smooth L1 loss. Besides this, a

binary cross-entropy loss LIncoherent is utilized for detecting

incoherent regions. The detection loss, denoted as LDetect,

encompasses both localization and classification losses derived

from the base detector, exemplified by Faster R-CNN.

Subsequently, LCoarse represents the loss attributed to the initial

coarse segmentation prediction generated by Mask R-CNN. The

weights l1,2,3,4 are initially given as {1.0,1.0,1.0,0.5}, respectively.

To mitigate the challenge posed by mimetic and close contact

instances, focal loss (Lin et al., 2017) is introduced to LCoarse during

training. Focal loss is tailored to address class imbalance in object

detection tasks, where background class pixels dominate.

Traditional cross-entropy (CE) loss struggles with the surplus of

background samples, hindering optimal learning for the minority

foreground class. Similarly, the mimicry of tea pests requires TP-

Transfiner model to pay more attention to instances camouflaged

within the background during training.

2.2.3.1 Focal loss

Yao et al. (2022) utilize focal loss to train Mask R-CNN and

Mask Scoring R-CNN for peach disease segmentation.

Experimental results indicated that after parameter adjustment,

focal loss not only enhances segmentation accuracy but also

improves detection rate. Based on this conclusion, focal loss is

introduced to LCoarse to enhance the performance of TP-Transfiner,

and parameters are adjusted in the same way.
Frontiers in Plant Science 07
Focal loss introduces a modulating factor that down-weights the

contribution of well-classified examples, focusing more on the hard-

to-classify samples. The key idea is to assign lower weight to easily

classified examples and higher weight to misclassified or

challenging examples. Equation 7 shows detailed definition for

focal loss.

FL(pt) = −o
N

i=1
ai(1 − pi)

g log(pi) (7)

Here pt represents the predicted probability of the true class,

and g is a focusing parameter initially defined. Notably, ai

represents the category weight assigned to each sample, where

samples belonging to the same category share identical weights.
2.3 Evaluation metric

This study primarily focuses on object detection and instance

segmentation tasks. Mean average precision (mAP) serves as a

commonly used evaluation metric in object detection. Araújo et al.

(2019) and Hong et al. (2020) proposed that its corresponding index

is the average of the average precision rate (mAP). This metric is

calculated using the values of true positive (TP) and false positive

(FP) to assess the detection and segmentation results. Equations 8

and 9) can be employed for calculation. The higher the two

parameters are, the better the detection and segmentation results.

Bbox −mAP = mean(
TP

TP + FP
) (8)
FIGURE 6

Structural comparison of FPN and FaPN.
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Seg −mAP =o
k

i=1

AP(i)
C

(9)

where TP, FP, and FN represent true positive, false positive, and

false negative, respectively. AP is the average precision of pixels

segmentation, and C is the number of segmentation categories.

Furthermore, AP50 and AP75 in detection task represent mAP of

Bbox when IoU is 0.5 and 0.75, respectively. Also, AP50 and AP75

in segmentation task represent mAP of mask when IoU is 0.5 and

0.75, respectively.
3 Results and discussion

This section summarizes all the experiments and related

extended discussions conducted in this study to demonstrate the

effectiveness of the TP-Transfiner model. Section 3.1 presents the

hyperparameter settings and the training process of the model.

Section 3.2 discusses the results of adjusting two parameters in focal

loss. Section 3.3 compares the TP-Transfiner with state-of-the-art

models. Section 3.4 details the ablation study of the model.
3.1 Implementation

The experiments in this paper are conducted in Linux

environment of the CentOS system, utilizing Python 3.7 and the

PyTorch 1.7.1 framework. Two NVIDIA Tesla V100 32 GB GPUs

are employed for training. Stochastic gradient descent (SGD) with

momentum is chosen as the optimization method during training,

with a momentum parameter set to 0.9 and 1K constant warm-up

iterations. Besides this, the initial learning rate is set to 0.01, with a

weight decay factor of 0.0001. The batch size is 8, and the training

process extends over 12 epochs. The learning rate is reduced to 0.1

times the original value after the 8th and 11th epochs, respectively.

After each epoch, the model is validated on the validation set and
Frontiers in Plant Science 08
the weights of the current model are saved. The Mask Transfiner

encoder consists of three standard transformer layers. Each layer

has four attention heads with feature dimension at 256.

Furthermore, the improved Mask Transfiner is initialized using

the original Mask R-CNN model pre-trained on the COCO dataset

(Lin et al., 2014) to accelerate the training process. All experiments

are conducted on Detectron2 (Wu et al., 2019).
3.2 Adaption of parameters

In the current study, focal loss is utilized with empirical values

of g = 2 and a = 0.25. However, it is noted that different data

distributions may require different parameters. Therefore, various

values of g and a are tested to accommodate these variations. As

shown in Table 1, the implementation of focal loss enhances the

overall accuracy of TP-Transfiner, with BCE loss resulting in

the lowest accuracy. For each g, the optimal a is determined to fit

the dataset. As a increases, the weight of difficult samples increases,

but excessively large a values can decrease the accuracy of the

model. Table 1 demonstrates that the experimental results align well

with these observations. The table only displays detailed results

when g = 2. For g = 1,3,4,5, only the optimal results are shown. After

multiple rounds of testing, the model achieves the best result on the

validation set when g = 2 and a = 0.45. As a result, focal loss

improves the overall segmentation accuracy by 2.1%.

To illustrate the optimization achieved with focal loss, the

accuracy on the validation set and changes in loss during the

training period are depicted. Figure 7A presents the validation

mAP of bounding boxes (IoU = 0.5) from epoch 1 to epoch 12

when training the dataset with different loss functions, indicating

that the validation mAP of bounding boxes is higher with focal loss

compared to BCE loss. Figure 7B shows the validation mAP of

segmentation (IoU = 0.5) over the same epochs when trained with

different loss functions, similarly demonstrating that the mAP of

segmentation is higher with focal loss. Figure 7C illustrates the
TABLE 1 Training parameter and test results based on TP-Transfiner with different loss functions.

Model
Bbox_mAP

(%)
Segm_mAP

(%)

Loss type
Epoch g a

LCoarse LRefine

TP-Transfiner 67.499 64.000 BCE Smooth L1 loss 12

TP-Transfiner 68.501 65.650 Focal Smooth L1 loss 12 2 0.25

TP-Transfiner 67.875 65.744 Focal Smooth L1 loss 12 2 0.35

TP-Transfiner 67.372 66.123 (+2.1) Focal Smooth L1 loss 12 2 0.45

TP-Transfiner 68.247 65.913 Focal Smooth L1 loss 12 2 0.55

TP-Transfiner 67.359 64.851 Focal Smooth L1 loss 12 2 0.75

TP-Transfiner 67.259 63.473 Focal Smooth L1 loss 12 2 0.95

TP-Transfiner 67.960 65.290 (+1.3) Focal Smooth L1 loss 12 1 0.45

TP-Transfiner 67.834 65.237 (+1.2) Focal Smooth L1 loss 12 3 0.55

TP-Transfiner 67.900 65.217 (+1.2) Focal Smooth L1 loss 12 4 0.55

TP-Transfiner 67.791 65.010 (+1.0) Focal Smooth L1 loss 12 5 0.45
The bold value indicates segmentation accuracy when the model performs best. The values in brackets are the added values compared to the first row of Table 1.
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trend of training loss under different loss functions. It is evident that

focal loss effectively reduces the loss during the training period

compared to BCE loss, making the model more suitable for the

distribution of the dataset. The results shown in Figure 7 and

Table 1 indicate that the application of TP-Transfiner with focal loss

achieves superior performance compared to BCE loss.
3.3 Comparison to state-of-the-art models

Detecting and segmenting pests in mimicry and dense scenarios

poses a formidable challenge in tea production industry. The

proposed TP-Transfiner model demonstrates excellent performance

in addressing the detection and segmentation tasks especially in dense

and mimicry scenarios. As illustrated in Figures 8A–H, conventional

models such as BCNet, Mask R-CNN, Mask Scoring R-CNN, DCT-

Mask, and HTC struggle to precisely segment intricate parts like

antennae. Similarly, Mask Transfiner encounters difficulty in

effectively capturing detailed features. In contrast, TP-Transfiner

exhibits outstanding performance in accurately detecting and

segmenting pests with detailed characteristics.

3.3.1 Performance in mimicry scenarios
Some tea pests like Measuring worm and Mesosa perplexa are

very good at using the surrounding environment to disguise

themselves. This phenomenon, called mimicry, greatly increases
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the difficulty of the neural network to detect tea pests. Through

superior edge feature extraction ability, TP-Transfiner

demonstrates excellent performance in detecting and segmenting

mimetic pests. In Figures 8I–P, though various models segment the

pest camouflaged in leaves, TP-Transfiner distinguishes itself by

segmenting the detailed antennae and small body. Besides this, as

shown in Figures 8Q–X, BCNet, Mask R-CNN, Mask Scoring R-

CNN, DCT-Mask, and HTC all misidentify branches as pests. The

original Mask Transfiner slightly improved the situation, while TP-

Transfiner improves the segmentation of the mimetic pest very well.

As a result, the proposed TP-Transfiner can effectively detect and

segment the specific contours of tea pests in such scenarios.

3.3.2 Performance in dense scenarios
In the dense scenario depicted in Figure 9, the segmentation

results of TP-Transfiner significantly outperforms other models.

Though some models fail to segment two instances in contact

(BCNet, Mask R-CNN, and Mask Scoring R-CNN) or segment

overlapping objects, TP-Transfiner performs well. Additionally,

TP-Transfiner demonstrates powerful ability in detail processing.

Compared to other models, the mask predicted by TP-Transfiner

comprehensively covers the entire detected pests, while BCNet,

Mask R-CNN, Mask Scoring R-CNN, HTC, DCT-Mask, and

Mask Transfiner retains a large number of unpredicted pixels

belonging to pests. Overall, TP-Transfiner demonstrates superior

edge feature extraction ability compared with other models,
A B

C

FIGURE 7

TP-Transfiner with different loss validation parameters and loss functions. (A) Comparison of mAP of bbox (IoU = 0.5) on different loss,
(B) comparison of mAP of segmentation (IoU = 0.5) on different loss, and (C) comparison of total loss.
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enabling accurate detection and segmentation of tea pests in

dense distribution.

Besides this, this study compares the detection and

segmentation accuracy of seven state-of-the-art models

including BCNet, Mask R-CNN, Mask Scoring R-CNN, HTC,

DCT-Mask, Mask Transfiner, and TP-Transfiner. The results are

shown in Table 2. Compared with BCNet, Mask R-CNN, Mask

Scoring R-CNN, DCT-Mask, and HTC, the original Transfiner

has obvious advantages in instance segmentation, and BCNet and

HTC have higher accuracy in object detection task. Subsequently,

the study optimizes the Transfiner by integrating deformable

convolution, attention mechanism, and FaPN, resulting in the

TP-Transfiner. Comparative analysis reveals that TP-Transfiner

outperforms other methods, achieving the highest detection

accuracy (mAP) of 67.372% and segmentation accuracy (mAP)

of 66.123% for object detection and instance segmentation tasks.

As for the light weight of the model, TP-Transfiner has a more

significant advantage than other segmentation framework (except
Frontiers in Plant Science 10
the original Transfiner). It denotes that TP-Transfiner holds

broader application prospects in tea gardens with limited

hardware equipment.
3.4 Ablation study

3.4.1 Impact of deformable attention block
To evaluate the feature extraction ability of the deformable

attention block on transparent wings, slender antennae, and legs of

tea pests, detailed comparative experiments are conducted.

Figure 10 illustrates the segmentation effects of two different

modules on pests with varying characteristics. It is evident that

the model integrating the deformable attention block significantly

improves the detection and segmentation effect of pest antennae (A,

B), transparent wings (B, C), and mimicry scenario (D). The results

demonstrate the deformable attention block’s exceptional feature

extraction ability for pest’s edges and transparent states. The impact
FIGURE 9

Comparison of segmentation results of different state-of-the-art models for tea pests (Euproctis pseudoconspersa) in dense scenarios.
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FIGURE 8

Comparison of segmentation results of different state-of-the-art models for tea pests with detailed and mimetic feature. (A–H) Arctornis alba,
(I–P) Mesosa perplexa, and (Q–X) Measuring worm.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1411689
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1411689
of the deformable attention block on detection and segmentation

accuracy will be illustrated in the next section.

3.4.2 Effect of different modules
Table 3 illustrates that the integration of various modules into

the Transfiner framework yields distinct accuracy improvements,

with a more pronounced enhancement observed upon combining

three modules. Compared with Transfiner, the proposed TP-

Transfiner model improves the object detection accuracy (mAP)

by 8.6% and the segmentation accuracy (mAP) by 5%. In addition,

the fusion of modules does not affect the inference speed on images.

3.4.2.1 Effect of DCN

DCN learns by updating the offset, allowing the convolution

kernel to align more closely with the shape and size of the object

during sampling. This approach proves to be efficient for

segmenting densely distributed and mimetic tea pests.

Experimental results show that employing DCN enhances the

accuracy of Transfiner, either integrating self-attention and FaPN
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or not, in both tea pest detection and segmentation tasks. Besides

this, the integration of DCN refines the edge feature extraction

results to detailed areas such as the insect’s antennae and legs, as

shown in the feature extraction visualization outputted by the

pyramid network (Figure 11).
3.4.2.2 Effect of self-attention

As an essential component of the Transformer architecture, the

module aims to extract global features from input images. As shown in

Table 3, it can be observed that before integrating DCN, the fusion of

this attention module leads to a decrease in the model’s detection and

segmentation performance. However, incorporating DCN with self-

attention (the deformable attention block) into the backbone results in

a subtle improvement on detection and segmentation accuracy. It is

noteworthy that while self-attention does not significantly improve

accuracy, it enables the backbone network to focus more on detailed

information such as the legs and antenna of pests, as shown in

Figure 11. This mechanism has a significant impact on the TP-

Transfiner’s ability to segment mimetic pest with slender antennae.
A B DC

FIGURE 10

Comparison of segmentation results before (the first row) and after (the second row) integrating the deformable attention block. (A) Mesosa
perplexa, (B) Arctornis alba, (C) Euricania ocellus, and (D) Measuring worm.
TABLE 2 Comparison to different state-of-the-art models.

Model Model size (MB)
Detection Segmentation

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

BCNet
(one-stage)

292.90 59.330 76.910 67.151 52.498 75.301 58.357

MS R-CNN 460.20 56.705 84.605 64.578 56.547 81.881 63.909

Mask R-CNN 335.92 56.971 84.419 66.690 56.704 83.114 63.562

HTC 590.40 61.923 83.300 69.713 57.956 80.821 65.301

DCT-Mask 736.23 57.571 83.304 66.378 58.057 82.768 66.289

Transfiner 202.35 59.886 85.067 68.738 60.687 84.871 69.149

TP-Transfiner 235.07 67.372 87.211 76.271 66.123 87.381 76.002
The six bold values are the accuracies of the best models. For the specific meaning of accuracies, refer to the table header.
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3.4.2.3 Effect of feature-aligned pyramid network

FaPN improves the feature misalignment issue of FPN,

particularly around the border area. Therefore, it assists TP-

Transfiner in enhancing the feature extraction ability for pest edge,

leading to more accurate segmentation of pests in mimicry. A strong

comparison depicted in the feature extraction visualization (Figure 11)

shows that when FaPN is fused (the second line), the most attended

area is distributed around the legs and antennae of the pest. As for the

detection and segmentation accuracy, FaPN significantly improves

model performance, regardless of whether the self-attention and DCN

modules are integrated (as shown in Table 3).
4 Conclusion

To address the limitations of tea pest detection and

segmentation in dense and mimicry scenarios, this study develops
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an end-to-end framework called TP-Transfiner. The framework

integrates a deformable attention block, consisting of deformable

convolution and a self-attention module, to improve pest feature

extraction ability. Additionally, the FPN architecture is enhanced

with a more effective FaPN to address feature misalignment issues.

Focal loss is introduced during the training period, and g = 2 and

a = 0:45 are adjusted to optimize the model’s performance.

Furthermore, to solve the insufficient tea pest dataset for

detection and segmentation tasks, this study conducts a

TeaPestDataset including 29 categories of tea pests. Experimental

results on the TeaPestDataset demonstrate that TP-Transfiner has

outstanding tea pest detection and segmentation performance

compared with several classic models, particularly in dense and

mimicry scenarios. The model achieves state-of-the-art

performance in both object detection (mAP: 67.372%) and instance

segmentation (mAP: 66.123%) tasks, with the same computing

resource requirements as the original model while remaining
A

B D E

F G IH

C

FIGURE 11

Visualization results of feature extraction after the backbone network fuses different modules. (A) Input, (B) FPN, (C) FPN fused with self-attention,
(D) FPN fused with DCN, (E) FPN fused with DCN and self-attention (deformable attention block), (F) FaPN, (G) FaPN fused with self-attention,
(H) FaPN fused with DCN, and (I) FaPN fused with DCN and self-attention (deformable attention block).
TABLE 3 Comparison of models after integrating different modules.

Attention DCN FaPN Backbone
Runtime
(FPS)

Detection Segmentation

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

ResNet-50 9.7 59.886 85.607 68.738 60.687 84.871 69.149

√ ResNet50 7.7 64.915 86.167 74.938 63.811 85.744 73.222

√ ResNet50 9.1 61.434 85.937 71.586 61.498 84.761 70.802

√ √ ResNet50 7.3 64.416 86.237 75.089 63.539 85.989 72.271

√ ResNet50 9.4 65.659 86.462 74.763 63.165 85.620 72.212

√ √ ResNet50 7.2 67.413
(+7.5)

87.230 76.087 65.244
(+4.8)

86.824 74.499

√ √ ResNet50 9.3 65.278
(+5.4)

86.302 73.891 63.627
(+3.0)

85.737 73.235

√ √ √ ResNet50 7.1 68.501
(+8.6)

87.433
(+1.8)

77.793
(+9.0)

65.650
(+5.0)

87.081
(+2.2)

75.643
(+6.5)
f

All models employ focal loss during the training period with g = 0:25 and a = 2:0.
FPS, number of images processed per second.
The six bold values are the accuracies of the bestmodels. For the specific meaning of accuracies, refer to the table header. The values in brackets are the added values compared to the first row of Table 3.
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lightweight. Besides this, the deformable attention block is proven to

have outstanding feature extraction ability on detailed information.

However, the proposed TP-Transfiner needs to be further

improved for pest detection and segmentation in occluded scenes,

and it is inefficient for the accurate detection of pests in real-time

applications. Therefore, future work will focus on simplifying the

model’s architecture. Additionally, this study plans to expand the

variety and quantity of images in TeaPestDataset. These efforts aim

to provide a more precise method for automating pest monitoring.
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