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PNNGS, a multi-convolutional
parallel neural network for
genomic selection
Zhengchao Xie1*, Lin Weng1, Jingjing He1, Xianzhong Feng2,
Xiaogang Xu3, Yinxing Ma1, Panpan Bai1 and Qihui Kong1

1Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China, 2Key
Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and
Agroecology, Chinese Academy of Sciences, Changchun, China, 3School of Computer Science and
Technology, Zhejiang Gongshang University, Hangzhou, China
Genomic selection (GS) can accomplish breeding faster than phenotypic

selection. Improving prediction accuracy is the key to promoting GS. To

improve the GS prediction accuracy and stability, we introduce parallel

convolution to deep learning for GS and call it a parallel neural network for

genomic selection (PNNGS). In PNNGS, information passes through

convolutions of different kernel sizes in parallel. The convolutions in each

branch are connected with residuals. Four different Lp loss functions train

PNNGS. Through experiments, the optimal number of parallel paths for rice,

sunflower, wheat, andmaize is found to be 4, 6, 4, and 3, respectively. Phenotype

prediction is performed on 24 cases through ridge-regression best linear

unbiased prediction (RRBLUP), random forests (RF), support vector regression

(SVR), deep neural network genomic prediction (DNNGP), and PNNGS. Serial

DNNGP and parallel PNNGS outperform the other three algorithms. On average,

PNNGS prediction accuracy is 0.031 larger than DNNGP prediction accuracy,

indicating that parallelism can improve the GS model. Plants are divided into

clusters through principal component analysis (PCA) and K-means clustering

algorithms. The sample sizes of different clusters vary greatly, indicating that this

is unbalanced data. Through stratified sampling, the prediction stability and
Abbreviations: BLUP, best linear-unbiased prediction; BN, batch normalization; CNN, convolutional neural

network; DL, deep learning; DNNGP, deep neural network genomic prediction; DS, days to silk; FHD, flower

head diameter; FLL, flag leaf length; GBLUP, genomic best linear-unbiased prediction; GEBV, genomic

estimated breeding value; GH, grain hardness; GL, grain length; GP, grain protein; GS, genomic selection;

GW, grain width; LightGBM, light gradient boosting machine; LP, leaf pubescence; LPE, leaf perimeter; MAE,

mean absolute error; MAF, minor-allele frequency; MCR, missing call rate; MSE, mean squared error;

NRMSE, normalized root mean square error; PB, primary branches; PCA, principal component analysis; PG,

predictive group; PH, plant height; PL, panicle length; PNNGS, parallel neural network for genomic selection;

PS, phenotypic selection; Relu, rectified linear activation; RF, random forests; RFR, random forest regression;

RRBLUP, ridge-regression best linear unbiased prediction; SC, stem color; SDF, stem diameter at flowering;

SNP, single nucleotide polymorphism; SNPP, seed number per panicle; SSA, seed surface area; SVM, support

vector machine; SVR, support vector regression; TKW, thousand-kernel weight; TP, training population; TR,

total RGB; TW, test weight.
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accuracy of PNNGS are improved. When the training samples are reduced in

small clusters, the prediction accuracy of PNNGS decreases significantly.

Increasing the sample size of small clusters is critical to improving the

prediction accuracy of GS.
KEYWORDS

deep learning, parallelism, genomic selection, plant breeding, stratified sampling
1 Introduction

In recent years, the yield growth rate of rice [Oryza sativa L.]

and maize [Zea mays L.] has gradually slowed (Yu et al., 2022; Tian

et al., 2021). Phenotypic selection (PS) identifies the best individuals

based on phenotypic values estimated from performance in

evaluation trials. It requires a long period and may take many

years to obtain plants with the desired resistance (Bandillo et al.,

2023). In tea variety breeding, PS takes more than 16 years. A tea

breeding program to meet commercial requirements could take

more than 40 years (Lubanga et al., 2023). Genomic selection (GS)

is a breeding method based on high-density molecular markers

(McGowan et al., 2021). GS estimates individual breeding values

through phenotypes and single nucleotide polymorphisms (SNPs).

Seedlings are selected based on their breeding value to shorten the

generation interval and speed up the breeding process (Cappetta

et al., 2020). GS improves the breeding selection accuracy and saves

costs (Beyene et al., 2021). GS has accurate prediction results for

complex traits with low heritability (Bhat et al., 2016; Merrick and

Carter, 2021). Genome technology has also been implemented to

guide breeding practices (Jannink et al., 2010). GS provides new

opportunities for establishing wheat [Triticum aestivum L.] hybrid

breeding programs (Zhao et al., 2015). In GS breeding, it is

necessary to construct a training population (TP) (Somo et al.,

2020). We obtain high-quality phenotypes through precise

measurements. A genotype-to-phenotype prediction model is

established based on the TP’s phenotype and genotype (Karlsen

et al., 2023; van Hilten et al., 2021; Danilevicz et al., 2022). Finally,

the genomic estimated breeding value (GEBV) of the predictive

group (PG) is calculated through the statistical model (Melnikova

et al., 2021). Each PG is evaluated and utilized according to its

GEBV (Park et al., 2020). GS has a selective advantage over PS in

soybean yield. However, GS reduces genetic diversity (Bandillo

et al., 2023).

An early algorithm applied to GS was the best linear-unbiased

prediction (BLUP). Subsequently, various algorithms were

developed based on BLUP. Genomic best linear-unbiased

prediction (GBLUP) assumes that all marker effects have equal

variance (Ren et al., 2021). The ridge-regression best linear unbiased

prediction (RRBLUP) GS model combines all marker information

to predict GEBVs while implementing a penalty function to limit
02
the additive contribution of each marker. Penalties apply equally to

all markers for small and large effect genomic components (Rice

and Lipka, 2019). When we assume the variance of the marker effect

is some prior distribution, the model becomes a Bayesian approach.

Currently, Bayesian methods have been developed into Bayesian A,

Bayesian B, Bayesian Cp, Bayesian LASSO, and Bayesian ridge

regression (Desta and Ortiz, 2014). Bayesian B outperforms GBLUP

as the number of quantitative trait loci decreases (Daetwyler et al.,

2010). BLUP mainly considers the additive effects of multiple genes,

and does not consider dominant effects and interaction effects. For

complex agronomic traits, the BLUP prediction accuracy is less

than 0.5.

To further improve the accuracy of phenotype prediction,

machine learning is introduced into GS. Machine learning is a

data learning algorithm that does not rely on rule design. It

processes large amounts of historical data and autonomously

identifies patterns in the data. In a comparative study, the

phenotypic prediction accuracy of random forest (RF), stochastic

gradient boosting (SGB), and support vector machines (SVMs)

were all around 0.5 (Ogutu et al., 2011). Machine learning

algorithms are generally more complex than linear algorithms.

However, they have higher prediction accuracy (González-

Camacho et al., 2018).

In recent years, deep learning (DL) has achieved great success in

natural language processing, image recognition, and content

generation (Otter et al., 2020; Li, 2022; Liu et al., 2021). With the

introduction of artificial intelligence into the scientific field, many

important discoveries have been made (Wang et al., 2023a). The

Alphafold2 paper presented a DL calculation method for the first

time to predict protein structures with atomic precision (Jumper

et al., 2021). Liu and Wang (2017) proposed a DL model for

predicting GEBV using convolutional neural networks (CNNs).

The prediction accuracy of their DL model is greater than that of

RRBLUP, Bayesian LASSO, and BayesA models. One study

compared the genomic prediction accuracy of GBLUP, light

gradient boosting machine (LightGBM), support vector regression

(SVR), and DL (Wang et al., 2023b). The above research results

show that deep neural network genomic prediction (DNNGP)

outperforms most existing GS algorithms. The deep learning

model performed better than the Bayesian and RRBLUP GS

models, regardless of the wheat dataset size (Sandhu et al., 2021).
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SoyDNGP is a DL model for soybean trait prediction (Gao et al.,

2023). It accurately predicts complex traits and shows robust

performance across different sample sizes and trait complexity.

Transformer-based GPformer is robust and stable to

hyperparameters and can generalize to multiple species (Wu

et al., 2024). Montesinos-López et al. (2021) reviewed the

application of DL methods in GS and summarized the pros and

cons of DL methods. The main pros of DL include: (1) DL models

can capture non-additive effects and complex interactions among

genes; (2) DL models can effectively handle multimodal data; (3)

The DL architecture is very flexible and contains various modules.

DL methods in GS have some defects: (1) DL is a black-box model

and is not helpful for inference and association studies; (2) These

models are more prone to overfitting than traditional statistical

models; (3) Proper DL models require a very complex tuning

process that relies on many hyperparameters. In general, deep

learning algorithms are able to capture nonlinear patterns more

effectively than traditional linear algorithms.

Through continuous research, DL for GS has revealed its

advantages over other machine learning. DNNGP has the

advantages of a simple model, high phenotypic prediction accuracy,

and wide species adaptability. However, DNNGP requires

hyperparameter tuning for each phenotype to achieve optimal

performance. DNNGP is based on CNN, and the convolution

kernel size is its crucial parameter. Since DNNGP is a serial

structure, there can only be one kind of convolution kernel at one

position. The serial structure causes an “information bottleneck”, and

much information is lost in this calculation step (Tishby and

Zaslavsky, 2015). Determining the convolution kernel size is a

time-consuming and computationally intensive task. Convolutional

synchronization has succeeded in the image field (Szegedy et al.,

2015). It enables deeper neural networks and higher model prediction

accuracy without time-consuming hyperparameter tuning. The data

were simultaneously convolved with 1×1, 3×3, 5×5, and 7×7

convolutions to minimize information loss. The convolutional

parallel structure increases the “width” of the model.

Different phenotypes have different prediction difficulties.

Multiple studies show that the prediction accuracy of simple traits

does not exceed 0.8 (Heffner et al., 2011; Heslot et al., 2012). The

prediction accuracy of complex agronomic traits remains around

0.3. In many phenotype predictions, the prediction accuracy of

DNNGP does not reach 0.8. This paper introduces convolution

parallel technology into GS and adjusts it to adapt to one-

dimensional convolution. This GS method is named parallel

neural network for genomic selection (PNNGS). We develop

PNNGS to improve the GS prediction accuracy further. To

increase the stability of predictions, we introduce clustering

algorithms and stratified sampling. The network architecture of

PNNGS is similar to that of DNNGP, in which the convolutional

layer is changed to a parallel convolutional layer. Each convolution

branch has a different convolution kernel. To reduce the overfitting

of PNNGS, we introduce residuals on each branch. We train

PNNGS with four different loss functions. In the trait prediction

of rice, sunflower [Helianthus annuus L.], wheat, and maize, the

prediction accuracy of PNNGS is significantly greater than that of

DNNGP, demonstrating convolutional parallelization ’s
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effectiveness in GS. PNNGS can automatically obtain the optimal

convolution size when simultaneously passing through convolution

kernels of multiple sizes. It significantly reduces hyperparameter

tuning effort. The prediction accuracy of PNNGS for most

phenotypes is close to or exceeds 0.8, which meets the needs of

practical applications. Through clustering algorithms, the plants are

divided into different clusters. We find that wheat is an imbalanced

dataset. Plants located in small clusters reduce the prediction

accuracy of the phenotype. Reducing data imbalance is an

important method to improve GS prediction accuracy.
2 Materials and methods

2.1 Plant materials

In this paper four public plant datasets have been analyzed.

These datasets contain gene files and phenotype files. The

corresponding plant phenotype is predicted through genomic data.

2.1.1 Rice44k dataset
The Rice44k dataset comprises 413 inbred rice accessions

collected from 82 countries (Zhao et al., 2011). These rice

varieties were measured by 44k chips, and 36,901 SNP variants

were obtained. Minor-allele frequency (MAF), missing call rate

(MCR), and heterozygosity are three indicators for filtering sites in

the literature (Thongda et al., 2020). Typical filter conditions are

MAF > 0.05, MCR< 0.2, and heterozygosity< 0.05 (Zhang et al.,

2022), which can filter out more than half of low-quality sites. Other

thresholds for filtering sites, such as MAF > 0.01 or MAF > 0.1, have

been applied in the literature (Backman et al., 2021; Liao et al.,

2017). We filter rice SNP sites according to MAF > 0.05 and MCR<

0.2, and 33,163 SNPs are retained in the gene file. There are 34

phenotypes included in the Rice44k dataset. In this paper, we will

investigate six of these phenotypes: flag leaf length (FLL), leaf

pubescence (LP), panicle length (PL), plant height (PH), seed

number per panicle (SNPP), and seed surface area (SSA).

2.1.2 Sunflower1500k dataset
Marco Todesco et al. (2020) resequenced 1,506 wild sunflower

strains from 3 species (Helianthus annuus,Helianthus petiolaris and

Helianthus argophyllus). We only researched 614 samples of

Helianthus annuus. Sunflower1500k is a large dataset containing

15,697,385 SNP sites and 87 traits. The number of SNPs filtered by

MAF > 0.05 and MCR< 20% sites was 7,902,178. We randomly

selected 30,179 sites and conducted the following research based on

this gene file. This paper focuses on six traits, namely, flower head

diameter (FHD), leaf perimeter (LPE), primary branches (PB), stem

color (SC), stem diameter at flowering (SDF), and total RGB (TR).

To distinguish it from leaf pubescence, the abbreviation of leaf

perimeter is LPE.
2.1.3 Wheat33k dataset
The Wheat33k dataset contains 2000 Iranian bread wheat

landraces from the CIMMYT wheat gene bank (Crossa et al.,
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2016). It is a dataset with a relatively large sample size. Wheat33k

contains 33709 markers and 8 phenotypes. Due to the high quality

of the loci, we did not filter the gene files. Grain hardness (GH),

grain length (GL), grain protein (GP), grain width (GW), thousand-

kernel weight (TKW), and test weight (TW) are the six phenotypes

focused on in this paper. The original literature describes the

heritability of these six phenotypes as 0.839, 0.881, 0.625, 0.848,

0.833, and 0.754.

2.1.4 Maize50k dataset
The Maize50k dataset contains genotype data from 282 inbred

association panels (Cook et al., 2012). After discarding some

nonconvertible sites, Maizi50k contained 50925 SNP sites.

Through the same filter criteria, the number of SNPs is 45562.

The phenotype file contains 285 trait/environment combinations

for 57 traits collected between 2006 and 2009. The genotypic and

phenotypic data are obtained from Panzea datasets. The phenotype

file name of Maizi50k is maize282NAM-15-130212. We download

it from the Internet (http://cbsusrv04.tc.cornell.edu/users/panzea/

download.aspx?filegroupid=9). The phenotype file contains 16

environments. Days to silk (DS) is a phenotype with six

environments. Detailed descriptions of these environments are

provided in Supplementary Table S1. The codes for the six maize

environments are 06CL1, 065, 26M3, 07CL1, 07A, and 06PR.

Through the Maize50k dataset , we study the PNNGS

performance in predicting multi-environment phenotypes.
2.2 PNNGS architecture

The plant breeding values in GS are estimated by thousands or

tens of thousands of SNP sites distributed throughout the genetic

material. The first step is to collect plant genome sequences and

phenotypes (Figure 1A). Since the collected phenotypes often have

some flaws, data cleaning is required. Typical data cleaning includes

removing outliers, imputing missing data, and discarding plants.

The genotypes of diploid plants are divided into three types:

homozygous dominant, heterozygous, and homozygous recessive,

which are typically coded as 0, 1, and 2 (Lippert et al., 2011). Each

wheat allele is recorded as 1 (present) or 0 (absent). These genotype

encoding methods are adopted in this paper. The rows and columns

of the input matrix are samples and SNPs, respectively. The number

of samples in current GS application scenarios is generally several

hundred (Hickey et al., 2017). With the advancement of sequencing

technology, SNP sequencing length has reached millions or even

tens of millions. The number of SNPs is four to five orders of

magnitude greater than the number of samples. The situation

mentioned above is the famous “p>>n” problem in the GS field,

where p represents the number of SNPs and n represents the

number of samples (Yan and Wang, 2023).

The right side of Figure 1A shows the architecture of PNNGS.

PNNGS consists of a parallel module, a dropout layer, a batch

normalization layer, a parallel module, a dropout layer, and a linear

layer in sequence. The dropout layer can reduce model overfitting
Frontiers in Plant Science 04
and alleviate the “p>>n” problem, and the dropout rate is set to 0.5.

A large dropout rate can effectively resist overfitting. However, it

requires the DL architecture to be quite robust. The batch

normalization (BN) layer speeds up network training and

convergence. It controls gradient explosion, prevents gradient

vanishing, and prevents overfitting. Modern neural networks

generally add BN to improve performance (Ioffe and Szegedy,

2015). The data needs to be flattened before entering the linear

layer. The output of the linear layer is the prediction of the plant

phenotype. PNNGS realizes the transformation from plant

genotype to phenotype.

The parallel module contains multiple parallel residual

convolutions, which is the main innovation of this paper

(Figure 1B). The kernel sizes of the first and second paths are 1

and 3, respectively. The kernel size of the nth path is 2n-1. Then, the

calculation results of all parallel branches are concatenated. To

increase the nonlinear representation capability of PNNGS, we pass

the data through the rectified linear activation (Relu) layer and

obtain the output. In image convolution, we generally use two layers

of 3×3 convolutions instead of one layer of 5×5 convolution.

However, this technique does not work here. In one-dimensional

convolution, the convolution parameters are proportional to the

kernel size. We can directly operate using large kernel-size

convolutions. The calculation process of the parallel module can

be expressed through a mathematical formula:

y = Relu(concatenate(f (x, 1), f (x, 3),⋯, f (x, 2n − 1)))

where x is the input and y is the output. Function f is a one-

dimensional residual convolution operation. Its second parameter is

the kernel size. The convolution outputs are concatenated in the

channel dimension. Relu is the most frequently used activation

function in deep learning models. If the function receives any

negative input, it returns 0. However, for any positive value, it

returns itself.

The residual convolution is the sum of the input and the

convolution corresponding to the input (Figure 1C). The residual

convolutions in different paths contain different kernel sizes.

Compared with simple convolution operation, residual

convolution improves model fitting ability and anti-overfitting

ability. Figure 1D shows the PNNGS calculation process with

three branches. The input is [0, 1, 0, 2, 2]. The convolution

kernels of the three branches are [2], [-1, 1, 2], and [2, 1, 0, 1, 1].

To keep the output the same size as the input, we pad the input with

appropriate zeros on both sides. Through the convolution

operation, the outputs are [0, 2, 0, 4, 4], [2, 1, 3, 6, 0], and [1, 2,

5, 4, 2] respectively. After further residual calculation, the final

output is [0, 3, 0, 6, 6], [2, 2, 3, 8, 2], and [1, 3, 5, 6, 4]. With a simple

convolution operation, the output will be [2, 1, 3, 6, 0]. Apparently,

PNNGS performs more diverse computations on the input.

The optimizer for PNNGS is Adam. The learning rate and

weight decay are set to 0.001 and 0.1, respectively. Weight decay is

essentially an L2 regularization coefficient. Training PNNGS is

challenging since the loss function cannot be set to the Pearson

correlation coefficient. The Lp loss function is the most popular in
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the field of machine learning. p is a parameter that adjusts the

sensitivity to outliers. When p is small, the model is robust.

Conversely, it makes better predictions for outliers. Common Lp

loss functions in the literature are L1 and L2. The L1 and L2 losses

are the mean absolute error (MAE) and mean squared error (MSE),

respectively. We train PNNGS based on L05, L1, L2, and L3 loss

functions (Figure 1E). L05 refers to the Lp loss function with p = 0.5.

Lp Loss =o
n

i=1
( yi,true − yi,pred
�
�

�
�)p

The sample size is n. yi,true and yi,pred are the true phenotype and

predicted phenotype of the ith individual, respectively. We tried
Frontiers in Plant Science 05
adding more layers to PNNGS, which only reduced the Lp loss but

not the Pearson correlation coefficient.

PNNGS is a fairly small model for the popular large models.

More details about PNNGS are available in the source program.
2.3 Four other GS models

Four GS models (RRBLUP, RF, SVR, and DNNGP) have been

compared with PNNGS for phenotypic prediction accuracy. These

four GS models have the characteristics of simple principle, stable

performance, and wide application.
FIGURE 1

Schematic diagram of PNNGS. Plant phenotypes and genome sequences are collected. Homozygous dominant, heterozygous, and homozygous
recessive are coded as 2, 1, and 0. The input and output of PNNGS are the genome matrix and plant phenotype, respectively. The parallel module
includes multiple convolutions of different kernel sizes. (A) architecture of PNNGS; (B) structural details of the parallel module; (C) residual
convolution with different kernel sizes; (D) PNNGS calculation process with three branches; (E) four Lp loss functions. PNNGS, a parallel neural
network for genomic selection.
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2.3.1 RRBLUP model
The RRBLUP model is based on the best linear unbiased

prediction model (Rice and Lipka, 2019). The BLUP model is

described as follows:

yi = m +o
q

k=1

xikbk + e i

where m is the phenotypic mean. xik is the genotype of the k
th

site of the ith individual. q represents the number of SNP sites. bk is
the estimated random additive SNP site effect at the kth site, and ei is
the residual error term. yi is the phenotype of the i

th individual.

The loss function of RRBLUP is:

Loss(ytrue,  ypred) =
1
no

q

k=1

(yi,true − yi,pred)
2 + lo

q

k=1

b2
k

where lop
k=1b

2
k is the ridge regression penalty, which reduces

the value range of bk. l is a hyperparameter that controls the

intensity of the penalty. Our goal is to minimize the loss.

The BLUP with penalty term is RRBLUP. Compared with

BLUP, the stability and prediction accuracy of RRBULP are

improved simultaneously.

2.3.2 RF model
RF is a popular supervised machine learning method for

classification and regression. It combines the predictions of

multiple decision trees into a single overall prediction

(Annicchiarico et al., 2015). Training a random forest means

training each decision tree independently. The principle of RF is

that the variance of each decision tree will help avoid overfitting. It is

easy to overfit when training a single decision tree on the entire

training set. Random forest regression (RFR) is an ensemble learning

method. RFR is widely used in the GS field, and its prediction

accuracy and generalization are competitive (Blondel et al., 2015).

2.3.3 SVR model
SVR is a machine-learning technique for regression tasks. It is a

variant of SVM designed to predict continuous values, making it

suitable for quantitative trait prediction. SVR identifies the “margin”

around the predicted regression line. Its goal is to fit a straight line

within this margin while minimizing the prediction error. SVR is

robust to outliers because it focuses primarily on data points near the

edges instead of relying heavily on all data points (Üstün et al., 2005).

It is beneficial in dealing with nonlinear relationships and can be

adapted to various problem domains by selecting kernel functions

(Wu et al., 2009). In wheat GS, a nonlinear RBF kernel is an optimal

choice for SVR (Long et al., 2011).

2.3.4 DNNGP model
DNNGP is a recent deep-learning algorithm for GS. It clarifies

that BN, early stopping, and Relu are three effective techniques for

GS. The architecture of DNNGP is simple yet effective, as it balances

sample size and network depth well. It is the first deep-learning

algorithm that clearly outperforms LightGBM and SVR in the GS

domain. DNNGP contains three CNN layers, one BN layer, and two

dropout layers. It is serial and has no branches. Compared with
Frontiers in Plant Science 06
DNNGP, PNNGS chooses to increase the width of the network

instead of the depth. Since the sample size is only a few hundred,

neural networks with more than five layers are prone to overfitting

(Zou et al., 2019).
2.4 Evaluation criteria

The Pearson correlation coefficient is applied as the evaluation

criterion for the GS model. The Pearson correlation coefficient

ranges from -1 to 1. In most cases, its value ranges from 0 to 1 in the

GS model. The GS model makes a perfect prediction when the

Pearson correlation coefficient is 1. When the Pearson correlation

coefficient is 0, the phenotype predicted by the GS model is linearly

independent of the observed phenotype. Since the value range of the

Pearson correlation coefficient is fixed, it is easy to compare the

performance of the GS model on different phenotypes. Compared

with MAE and MSE, the Pearson correlation coefficient is a more

appropriate GS evaluation criterion. When the GS model predicts

the phenotype of all plants as an average, MAE andMSE still give an

excellent score for this predictive measure. In this case, the Pearson

correlation coefficient is 0, indicating that the GS model for

predicting the phenotypic mean is the worst. The Pearson

correlation coefficient is the most popular evaluation criterion in

the GS field (Akdemir et al., 2015).

The normalized root mean square error (NRMSE) is calculated

as the root mean square error divided by the range of the

observations, expressed as a percentage. The range of the

observations is the difference between the maximum and

minimum values of the observed data. The value range of

NRMSE is [0, +inf). NRMSE is our secondary evaluation criterion.
2.5 Phenotype distribution pattern

To predict phenotypes more accurately, we need to analyze

phenotypic distributions. The correlations among the six rice

phenotypes are relatively weak. The Pearson correlation coefficients

between most phenotypes are less than 0.3, meaning they are linearly

independent (Figure 2A). The Pearson correlation coefficient between

PH and PL is 0.594. PH and PL increase with increasing mid-season

temperature, which results in a strong correlation between them

(Kovi et al., 2011). The prediction accuracy of GS for highly

correlated phenotypes is similar. The Pearson correlation coefficient

between FLL and PL is 0.55, indicating a positive correlation. Flag leaf

plays a vital role in providing photosynthetic products to grains.

Plants with long FLL elongate PL, resulting in increased grain

number per ear (Rahman et al., 2013). When PL increases, PH and

FLL increase with considerable probability.

The Pearson correlation coefficients between most sunflower

phenotypes are less than 0.3 (Figure 2B). There is a strong positive

correlation between PB and SDF, as ethrel can increase both PB and

SDF (Kumar et al., 2010). TR is a unique phenotype because it is

negatively correlated with other phenotypes. TR is defined as the

sum of RGB values of leaf color. TR increases significantly when the

red channel signal of leaves is enhanced (Chen et al., 2020).
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FIGURE 2

Correlations between different phenotypes. The value in the grid is the Pearson correlation coefficient of the two phenotypes. The correlations
between different phenotypes are small. The correlation coefficient of the same phenotype under different environments is large. The distribution of
PB is scattered, and the distribution of TR is relatively concentrated. (A) the Pearson correlation coefficient between different rice phenotypes; (B)
the Pearson correlation coefficient between different sunflower phenotypes; (C) the Pearson correlation coefficient between different wheat
phenotypes; (D) the Pearson correlation coefficient of maize days to silk under different environments; (E) the Distribution of sunflower PB and TR.
In rice, FLL, flag leaf length; LP, leaf pubescence; PL, panicle length; PH, plant height; SNPP, seed number per panicle; SSA, seed surface area. In
sunflower, FDD, flower head diameter; LPE, leaf perimeter; PB, primary branches; SC, stem color; SDF, stem diameter at flowering; TR, total RGB. In
wheat, GH, grain hardness; GL, grain length; GP, grain protein; GW, grain width; TKW, thousand-kernel weight; TW, test weight. 06PR, 07A, 07CL1,
26M3, 065, and 06CL1 are the codes for the six maize environments.
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Therefore, a significant TR indicates yellow leaves and a small TR

means green leaves. If TR is significant, the photosynthesis

efficiency of the leaves will be low, and the plant growth will be

poor. TR has the strongest negative correlation with PB.

The Pearson correlation coefficients between wheat phenotypes

are mostly less than 0, indicating that most phenotypes are

negatively correlated (Figure 2C). Wide grains reduce grain

hardness, which is consistent with the mechanical properties of

the material. Therefore, the Pearson correlation coefficient between

GH and GW (-0.407) is much less than 0. GL and TKW are

significantly positively correlated, and their Pearson correlation

coefficient is 0.568. GP is negatively correlated with GW, TKW,

and TW, indicating that there is a contradiction between wheat

yield and grain protein content. The bad news is that it is difficult to

obtain wheat varieties that are both high in yield and high in

protein. The Pearson correlation coefficient between GW and TKW

is 0.762, which indicates that the key to increasing wheat yield is to

increase grain width.

Different from rice, sunflower, and wheat, we calculate the

Pearson correlation coefficient of the same phenotype in maize

under different environments. The correlation coefficients between

phenotypes are all greater than 0.7 (Figure 2D). The Pearson

correlation coefficient between 06CL1 and 07CL1 reaches 0.96,

which means that we can predict the DS in 07CL1 through the

DS in 06CL1. The difference between 06CL1 and 07CL1 is minimal,

and their difference is one year in planting date. The correlation

coefficients between the DS in 06PR and the DS in other

environments range from 0.7 to 0.8. 06PR is the only winter

environment among the six environments, and the other five are

all summer. The above analysis results show that the correlation

between the same phenotype in different environments is much

more significant than the correlation between different phenotypes

in the same environment. Since the correlation coefficients between

different phenotypes are small, genomic prediction is required for

each phenotype.

There are 570 sunflowers with both PB and TR. Their

distribution is shown in Figure 2E. PB has a long-tailed, right-

skewed distribution. The maximum, minimum, mean, and standard

deviation of PB is 85, 6, 23.1, and 11.4, respectively. TR

approximately satisfies the normal distribution, and its maximum,

minimum, mean, and standard deviation values are 218.7, 106.7,

174.2, and 15.9, respectively. Compared with PB, TR has a larger

span. However, TR is more concentrated. The coefficient of

variation is the ratio of the standard deviation to the mean and is

a measure of the dispersion of a data set. The variation coefficients

of PB and TR are 0.49 (= 11.4/23.1) and 0.09 (= 15.9/174.2)

respectively. A small coefficient of variation means that the data

are compact. Therefore, PB is more dispersed than TR.
3 Results

3.1 Selection of the number of parallelism

The computing platform is Intel(R) i7-8700 CPU, RTX 3090

GPU, 32 GB RAM, and Windows 10. PNNGS and DNNGP are
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implemented through torch 1.7. RRBLUP, RF, and SVR are

implemented based on scikit-learn 1.3. All calculations are

performed in Python, and the source code is open.

For PNNGS, determining the number of parallelism is the

primary task. The number of parallelism is a hyperparameter, and

its specific value is not presented in the PNNGS architecture. We

need to do a grid search experiment to determine the number of

parallelism, and the experimental results are presented in Table 1.

The number of parallels could be 2, 3, 4, 5, 6, 7, and 8. The

experimental phenotypes are SNPP in rice, FHD in sunflower, GH

in wheat, and DS_065 in maize. For SNPP, the prediction accuracy

first increases and then decreases with the increase of parallelism.

When the parallel number is 4, the prediction accuracy of SNPP is

the highest, which is 0.664. If the parallel number is inappropriate,

the phenotype prediction accuracy will drop by 0.014. FHD, GH,

and DS_065 show similar change patterns. The optimal parallel

numbers for FHD, GH, and DS_065 are 6, 4, and 3, respectively.

In the following phenotypic predictions, the parallel numbers of

rice, sunflower, wheat, and maize phenotypes are 4, 6, 4, and 3,

respectively. We did not perform a grid search for each phenotype.

Due to the stochastic nature of neural networks, the calculation

results of PNNGS may fluctuate slightly. In repeated calculations,

the optimal parallel number of PNNGS may be slightly different

from Table 1. However, it has little impact on the prediction results.
3.2 PNNGS prediction accuracy
for phenotypes

We utilized PNNGS to predict previously analyzed phenotypes.

The rice, sunflower, and wheat phenotypes were designed to test the

predictive ability of PNNGS for different phenotypes. Six

environmental phenotypes of maize were predicted to obtain the

performance of PNNGS under different environments. To reduce

the impact of dataset partitioning, we introduce ten-fold cross-

validation in this study. The average of the ten Pearson correlation

coefficients for the phenotype is regarded as the final prediction

accuracy of PNNGS for the phenotype. Through NRMSE, we know

the difference between the predicted value and the true value.

Therefore, NRMSE also evaluates the effect of model prediction.

We simultaneously applied RRBLUP, RF, SVR, and DNNGP to

predict these phenotypes and compare their prediction ability

with PNNGS.
TABLE 1 Phenotype prediction accuracy with different numbers
of parallelism.

Parallel
number

2 3 4 5 6 7 8

SNPP 0.651 0.656 0.664 0.652 0.657 0.655 0.650

FHD 0.675 0.665 0.673 0.669 0.675 0.674 0.671

GH 0.690 0.691 0.702 0.700 0.699 0.695 0.698

DS_065 0.817 0.829 0.828 0.821 0.804 0.810 0.813
frontier
The calculation model is PNNGS. SNPP, FHD, GH, and DS_065 represent the phenotypes of
rice, sunflower, wheat, and maize, respectively. The best predictions are in bold.
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In FLL, LP, PL, PH, SNPP, and SSA predictions, RRBLUP, RF,

and SVR are competitive (Figure 3A). The prediction accuracy of

DNNGP is greater than or equal to that of RRBLUP, RF, and SVR.

DNNGP can obtain robust phenotype predictions on different

datasets. Compared with serial DNNGP, parallel PNNGS achieves
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higher prediction accuracy. Among the six phenotypes, the

prediction accuracy of PNNGS was higher than that of DNNGP

by 0.04, 0.02, 0.04, 0.03, 0.04, and 0.02. As the prediction accuracy of

DNNGP increases, the prediction accuracy improvement of

PNNGS decreases. PNNGS can significantly improve the
FIGURE 3

Prediction accuracy of plant phenotypes by different algorithms. DNNGP outperforms RRBLUP, RF, and SVR. PNNGS is 0.01 to 0.05 more accurate
than DNNGP in prediction. (A) rice; (B) sunflower; (C) wheat; (D) maize; (E) the relationship between heritability and prediction accuracy. RRBLUP,
the ridge-regression best linear unbiased prediction; RF, random forests; SVR, support vector regression; DNNGP, deep neural network
genomic prediction.
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prediction accuracy of complex phenotypes, which is of great

significance in practical applications.

The prediction accuracy of the six sunflower phenotypes is

presented in Figure 3B. The prediction accuracies of the five

algorithms in LPE, SC, and TR do not exceed 0.6, indicating that

these three phenotypes are difficult to predict. PB is an easy-to-

predict phenotype because the prediction accuracy of RRBLUP,

DNNGP, and PNNGS for it is all over 0.8. The prediction difficulty

of PB and TR is consistent with the analysis results in Section 2.5.

Among the six sunflower phenotype predictions, DNNGP and

PNNGS are in the leading position. The average prediction

accuracy of PNNGS is 0.033 higher than that of DNNGP.

Among all phenotypic predictions for wheat, PNNGS is the

best-performing algorithm (Figure 3C). The wheat case is

significantly different from the other three cases. Rice, sunflower,

and maize are diploid, while common wheat is an allohexaploid.

Wheat has the largest sample size, reaching two thousand. PNNGS

has the greatest improvement in GP prediction accuracy and the

least improvement in GL prediction accuracy. Meanwhile, GP has

the lowest average prediction accuracy, while GL has the opposite.

In the prediction of six wheat phenotypes, the average prediction

accuracy of PNNGS was 0.02 higher than that of DNNGP. Among

the four crops, PNNGS provided the smallest improvement in

wheat phenotypic prediction. The performance of PNNGS does

not improve as the sample size increases. Each SNP in diploid crops

has three types: homozygous dominant, heterozygous, and

homozygous recessive. However, each SNP in wheat has only two

types: present and absent. With the same number of SNPs, wheat

genotypes contain less information, which may make wheat

phenotype more difficult to predict. Increasing the sample size

can improve the prediction accuracy of all algorithms. However,

2,000 samples do not make PNNGS significantly ahead of

other algorithms.

Different algorithms have similar DS prediction accuracy for the six

environments (Figure 3D). The algorithm rankings according to

prediction accuracy are PNNGS, DNNGP, RRBLUP, RF, and SVR.

The algorithmic ranking order does not change with the environment.

The difference in phenotypic prediction accuracy of 06CL1 and 07CL1

by the same algorithm is approximately 0.01 because the correlation

coefficient between 06CL1 and 07CL1 reaches 0.96. The prediction

accuracy of DS is the lowest in the 06PR environment, and winter has a

significant impact on maize growth. The algorithms in this paper only

consider biological genome information and do not consider

environmental factors. Strong interactions between genes and the

environment can reduce the prediction accuracy of the GS

algorithm. We can first predict the phenotype in an environment

through GS. The calculated phenotypes are then used to predict

phenotypes in other environments.

The average phenotypic prediction accuracies of RRBLUP, RF,

SVR, DNNGP, and PNNGS in 24 calculation cases are 0.663, 0.632,

0.595, 0.687, and 0.718, respectively. RRBLUP outperforms two

traditional machine learning algorithms, RF and SVR, indicating

that the linear model is highly competitive in GS. DNNGP is an

emerging deep-learning algorithm that exceeds the previous three

models in phenotypic prediction accuracy and stability. PNNGS

proposes a parallel architecture based on DNNGP, improving the
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prediction accuracy by 0.031 (= 0.718-0.687). The phenotypic

calculation results verify the effectiveness of the parallel

neural network.

The NRMSE of phenotype prediction for rice, sunflower, wheat,

and maize is shown in Figure 4. NRMSE is normalized and has no

units. The NRMSE of RF and SVR is large, which indicates that the

prediction errors of RF and SVR are the largest. DNNGP performs

very well in sunflower and wheat. However, it performs poorly in

maize. DNNGP does not perform as well on NRMSE as on the

Pearson correlation coefficient. In the vast majority of phenotype

predictions, RRBLUP ranks second or third. PNNGS ranks first in

all phenotype predictions. In some phenotype predictions, DNNGP

is very close to PNNGS. The greatest advantage of PNNGS is its

stable performance. In all scenarios, PNNGS ranks first for both

evaluation indicators, although sometimes the lead is not large.

The heritability of wheat phenotypes is presented in Section

2.1.3. Here, we plot the relationship between heritability and

prediction accuracy (Figure 3E). There is a significant positive

correlation between prediction accuracy and heritability. The

fitting straight line is y=0.10233 + 0.73138x. x and y are

heritability and prediction accuracy, respectively. R2 (0.88285) is

greater than 0.8, indicating that the linear fit is very appropriate. In

general, traits with high heritability are easier to select in breeding,

while traits with low heritability are more difficult to select in

breeding. The conclusion about heritability can also be extended to:

traits with high heritability have higher prediction accuracy, while

traits with low heritability have lower prediction accuracy.
3.3 PNNGS prediction stability

The purpose of ten-fold cross-validation is to evaluate the

predictive ability of the model more stably. However, the average

prediction accuracy loses the prediction information of each fold. We

plotted the prediction accuracy of PNNGS for each fold of GL

(Figure 5A). The maximum and minimum prediction accuracy

values of these ten folds are 0.795 and 0.688, respectively. The

standard deviation of prediction accuracy is 0.032. The prediction

accuracy fluctuates significantly at different folds. The difference in

GL prediction accuracy (= 0.795-0.688) under different folds is more

significant than the difference between different models (= 0.76-0.73),

which means that there are some flaws in the current calculation.

Machine learning requires that the data in the training set and

test set are independent and identically distributed. Since different

varieties of plants do not affect each other, the data independence

condition is generally met. If the sample size is large, the training

and test sets obtained by random sampling are generally identically

distributed. When the sample size is insufficient, random sampling

may result in different distributions for the training and test sets. If

the identical distribution cannot be satisfied, the prediction

accuracy of machine learning in the test set will generally be

lower than the prediction accuracy of the training set.

Unfortunately, the sample size is only a few hundred or a few

thousand in GS, and the above situation often occurs.

We performed principal component analysis (PCA) on the

genomic data (Figure 5B). The component is set to 2, which
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makes it convenient to display the results. Intuitively, the data forms

three clusters. K-means clustering is introduced, and its n-clusters

are set to 3. Each plant can be classified into Cluster 1, Cluster 2, and

Cluster 3 (Supplementary Table S2). The number of plants in

Cluster 1, Cluster 2, and Cluster 3 are 251, 1025, and 724,

respectively. There are a total of 2000 (= 251 + 1025 + 724)

wheat plants with GL. The centroid coordinates of Cluster1,

Cluster2, and Cluster3 are (16.8, 23.1), (-18.0, -0.8), and (19.5,

-6.9), respectively. For the same dataset, we divided the dataset into

100 clusters through the same method (Supplementary Table S3).

On average, each cluster has 20 samples. Since there are too many

categories, it is not convenient to display them in figures.

The previous calculations are all based on random sampling.

Along with clustering, stratified sampling is introduced. We again

predict GL through stratified sampling and ten-fold cross-

validation (Figure 5C). According to the results in Figure 5A and

Figure 5C, the fitted normal distribution becomes more peaked as

the number of clusters increases. It indicates that the standard

deviation of the prediction results is gradually decreasing. When the

number of clusters is 3 and 100, the standard deviations of the

prediction results are 0.029 and 0.024, respectively. The standard

deviations decrease by 0.003 (= 0.032-0.029) and 0.008 (= 0.032-
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0.024) respectively. The prediction stability of PNNGS is

significantly improved at different folds. Another notable

improvement is the increase in GL prediction accuracy. When the

number of clusters is 1, 3, and 100, the GL prediction accuracy is

0.759, 0.760, and 0.768, respectively.

In Figure 5B, we marked a tiny cluster of closely spaced samples

with dashed lines. We can only accurately predict the samples in

this tiny cluster based on other samples in this tiny cluster. In

random sampling, there is no guarantee that samples in tiny clusters

will appear in the training set. In this case, the prediction accuracy is

low, and the fluctuation is large. If we divide the data into 100

clusters and perform stratified sampling, some samples in the

dashed line will definitely be in the training set. The quality of the

training set data is improved. The phenotypic prediction accuracy

became stable among different folds.

Since the training set is randomly sampled rather than stratified,

it causes large fluctuations in prediction accuracy at different folds.

Stratified sampling should not be performed based on phenotype.

We need to perform PCA on the genomic data first. Plants are

clustered through a clustering algorithm. Stratified sampling

according to categories can reduce fluctuations in prediction

accuracy, allowing us to evaluate the model more objectively.
FIGURE 4

NRMSE of plant phenotypes by different algorithms. PNNGS ranks first in all phenotype predictions. (A) rice; (B) sunflower; (C) wheat; (D) maize.
NRMSE, normalized root mean square error.
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4 Discussion

The main factor currently plaguing the application of GS is its

low prediction accuracy. The introduction of deep learning

improves the GS prediction accuracy. However, the prediction

accuracy of complex traits still cannot meet the needs of practical

agricultural applications. Insufficient sample size is the most

important factor restricting the further improvement of deep

learning for GS. Insufficient samples destroy the identical

distribution of the training and test sets. High-quality samples are

the key to solving all the above problems.

We designed four schemes to establish PNNGS (Figure 6A).

The prediction object is wheat GL. In Scheme A, all data were

subjected to stratified sampling and ten-fold cross-validation. In

scheme B, we randomly select 200 samples from Cluster 1 as an

additional test set. Stratified sampling and ten-fold cross-validation

were performed on the remaining samples. These additional test

sets are also used to test the prediction accuracy of the algorithm.

The specific calculation details are in our code. In Schemes C and D,

200 samples are randomly selected from Cluster 2 and Cluster 3,
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respectively, as additional test sets. The purpose of this experiment

is to detect the importance of samples in different clusters for

phenotype prediction.

The calculation results are presented in Figure 6B. The

phenotypic prediction accuracies of Scheme A, B, C, and D are

0.760, 0.661, 0.754, and 0.751, respectively. Their standard

deviations are 0.029, 0.033, 0.023, and 0.017 respectively.

Undoubtedly, the phenotypic prediction accuracy in Scheme A is

the highest. The calculation results of Schemes C and D are close.

Scheme B is the worst in terms of both prediction accuracy and

prediction stability. If Cluster 1 is reduced by 200 samples, its

sample size will only be 51. PNNGS cannot adequately train on

Cluster 1 samples. Therefore, the phenotype prediction accuracy in

Scheme B drops significantly. Samples in small clusters are more

important for phenotype prediction.

To verify the universality of the above conclusions, we

performed similar calculations on rice FLL. The rice genomic data

was reduced to two dimensions based on PCA. Rice samples were

divided into three clusters by K-means (Figure 7A). The number of

samples in Clusters 1, 2, and 3 are 84, 234, and 59, respectively
FIGURE 5

Ten-fold cross-validation calculation results of PNNGS. The calculated phenotype is the GL of wheat. The prediction accuracy of ten-fold cross-
validation fluctuates widely. Phenotypic prediction accuracy has little correlation with the phenotypic difference between the training and the test
sets. PCA is performed on genomic data. The data set is divided into three clusters through K- means. Stratified sampling analysis is performed
based on clustering results. (A) prediction accuracy obtained by ten-fold cross-validation and its distribution; (B) PCA and K-means clustering;
(C) calculation results for 3 clusters and 100 clusters. PCA, Principal component analysis.
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FIGURE 7

The impact of sample reduction on rice phenotype prediction accuracy. The prediction target is rice FLL. (A) PCA and K-means clustering; (B) four
schemes to divide the FLL training set and test set; (C) FLL prediction results of four schemes.
FIGURE 6

The impact of reducing samples in different clusters on prediction results. The predicted phenotype is wheat GL. Cluster 1 has the least samples. The
phenotype prediction accuracy decreased the most when reducing the samples in cluster 1. (A) four schemes to divide the training set and test set;
(B) Prediction results of four schemes.
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(Supplementary Table S4). Their centroid coordinates are (123.6,

-56.5), (-73.0, -1.2), and (113.6, 85.2), respectively. The four

schemes in Figure 7B are used for FLL prediction. Due to the

small total sample size, 40 samples were selected as an additional

test set. In Schemes A, B, C, and D, the prediction accuracy of FLL is

0.614, 0.478, 0.580, and 0.441, respectively (Figure 7C). When the

sample size of Cluster 3 is reduced by 40, the FLL prediction

accuracy decreases significantly (= 0.614-0.441). When the same

situation occurs in Cluster 2, the FLL prediction accuracy is only

slightly reduced (= 0.614-0.580). The decrease in prediction

accuracy is negatively related to the cluster sample size. The FLL

standard deviation in Scheme A is 0.106. The standard deviation of

FLL is significantly larger than that of GL because the sample size of

rice (= 377) is much smaller than that of wheat (= 2000).

In summary, different varieties of plants can be divided into

clusters through PCA. Sample sizes can vary widely between

clusters. Therefore, our gene files are unbalanced data. Stratified

sampling can improve the stability and accuracy of phenotypic

prediction. The sample size of small clusters is crucial for

phenotypic prediction. If the phenotypic prediction accuracy does

not meet the application requirements, increasing the sample size of

small clusters is a very effective method. Meanwhile, it can also

improve prediction stability.

Compared with the existing GS models, PNNGS shows

significant advantages. However, to maximize the prediction

accuracy, we recommend training PNNGS in the following way.

PNNGS requires a grid search to obtain the optimal number of

parallelism. Stratified sampling can improve both the prediction

stability and accuracy of PNNGS. We must perform PCA and

clustering on the genomic data for stratified sampling. In addition,

the more clusters there are, the better the PNNGS prediction is. If

the prediction accuracy of PNNGS still cannot meet the application

requirements, we need to collect more small cluster samples. The

prediction accuracy of PNNGS increases with the increase of

phenotypic heritability. We ideally apply PNNGS to phenotypes

with high heritability. Current GS models cannot achieve high

prediction accuracy for phenotypes with low heritability. Through

the above steps, compared with the existing GS model, the

prediction accuracy of PNNGS is improved by 0.031, and the

prediction standard deviation is reduced by 25%.
5 Conclusion

Previous deep learning for GS is serial. Our study introduces

parallel structure into GS for the first time. The convolution kernel

size of each branch is different. At the same time, residual

connections are also added to each branch. Since the Pearson

correlation coefficient cannot be a loss function, we train PNGS

through four Lp functions. Through grid search, the optimal

parallel numbers for rice, sunflower, wheat, and maize are 4, 6, 4,

and 3, respectively. In 24 phenotypic prediction cases of rice,

sunflower, wheat, and maize, PNNGS outperformed RRBLUP,

RF, SVR, and DNNGP, which shows that PNNGS is highly

robust. Compared with DNNGP, the average phenotype
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prediction accuracy of PNNGS increased by 0.031. From the

perspective of NRMSE, PNNGS ranked first in all phenotype

predictions. It makes sense for GS to introduce a parallel

structure. Random sampling makes phenotypic predictions

unstable. Through PCA and K-means, plants can be divided into

different clusters. The standard deviations of PL are 0.032, 0.029,

and 0.024 through random sampling, 3-cluster stratified sampling,

and 100-cluster stratified sampling, respectively. The prediction

stability of PNNGS with stratified sampling is significantly

improved. PNNGS is trained to predict GL after reducing 200

training samples in each cluster. When reducing samples in small

clusters, the prediction accuracy of GL drops significantly. As the

number of samples in large clusters decreases, the prediction

accuracy of GL decreases slightly. A similar phenomenon occurs

with rice. The small cluster sample size is critical for phenotypic

prediction. We should collect more plants located in small clusters.

If the attention mechanism is added, the prediction accuracy of

PNNGS is expected to be further improved. Meanwhile, the

artificially set parameters in PNNGS should be reduced as much

as possible. PNNGS is a deep integration of biological technology

and information technology in the seed industry. It can breed new

varieties of plants and animals faster, better, and more efficiently.

With the advancement of deep learning architecture and the

increase of plant gene/phenotype data, GS is increasingly showing

its superiority.
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