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Enhancing the potential of
phenomic and genomic
prediction in winter wheat
breeding using high-throughput
phenotyping and deep learning
Swas Kaushal1, Harsimardeep S. Gill 1, Mohammad Maruf Billah2,
Shahid Nawaz Khan2, Jyotirmoy Halder1, Amy Bernardo3,
Paul St. Amand3, Guihua Bai3, Karl Glover1,
Maitiniyazi Maimaitijiang2* and Sunish K. Sehgal1*

1Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings,
SD, United States, 2Department of Geography and Geospatial Sciences, Geospatial Sciences Center of
Excellence, South Dakota State University, Brookings, SD, United States, 3Hard Winter Wheat Genetics
Research Unit, USDA-ARS, Manhattan, KS, United States
Integrating high-throughput phenotyping (HTP) based traits into phenomic and

genomic selection (GS) can accelerate the breeding of high-yielding and

climate-resilient wheat cultivars. In this study, we explored the applicability of

Unmanned Aerial Vehicles (UAV)-assisted HTP combined with deep learning (DL)

for the phenomic or multi-trait (MT) genomic prediction of grain yield (GY), test

weight (TW), and grain protein content (GPC) in winter wheat. Significant

correlations were observed between agronomic traits and HTP-based traits

across different growth stages of winter wheat. Using a deep neural network

(DNN) model, HTP-based phenomic predictions showed robust prediction

accuracies for GY, TW, and GPC for a single location with R2 of 0.71, 0.62, and

0.49, respectively. Further prediction accuracies increased (R2 of 0.76, 0.64, and

0.75) for GY, TW, and GPC, respectively when advanced breeding lines from

multi-locations were used in the DNNmodel. Prediction accuracies for GY varied

across growth stages, with the highest accuracy at the Feekes 11 (Milky ripe)

stage. Furthermore, forward prediction of GY in preliminary breeding lines using

DNN trained on multi-location data from advanced breeding lines improved the

prediction accuracy by 32% compared to single-location data. Next, we

evaluated the potential of incorporating HTP-based traits in multi-trait

genomic selection (MT-GS) models in the prediction of GY, TW, and GPC. MT-

GS, models including UAV data-based anthocyanin reflectance index (ARI), green

chlorophyll index (GCI), and ratio vegetation index 2 (RVI_2) as covariates

demonstrated higher predictive ability (0.40, 0.40, and 0.37, respectively) as

compared to single-trait model (0.23) for GY. Overall, this study demonstrates

the potential of integrating HTP traits into DL-based phenomic or MT-GSmodels

for enhancing breeding efficiency.
KEYWORDS

wheat, high-throughput phenotyping (HTP) based traits, deep learning, phenomic
prediction, deep neural network, multi-trait genomic selection
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1 Introduction

In a world of finite resources, climate variability, and increasing

population, ensuring food security has emerged as a critical

challenge. To meet the rising global food demand, crop

production needs to increase between 59–98% by 2050 compared

to 2005 (Valin et al., 2014), translating to annual yield gains up to

2.4% for grain crops (Ray et al., 2013). However, genetic gains for

yield in wheat (Triticum aestivum L.) are currently estimated to be

less than 1% per year, significantly lower than the 2.4% target

(Reynolds et al., 2012; Ray et al., 2013; Abberton et al., 2016).

Grain yield (GY) in wheat is a complex trait controlled by many

genes and influenced by the interactions between genes and the

environment (Heffner et al., 2011; Narjesi et al., 2015). Phenotyping

plays a crucial role in breeding methods to enhance genetic gain in

crops, however, it is time-consuming and expensive. Accurate

prediction of yield and other complex traits across different

growing cycles, environments, and breeding lines can significantly

enhance the efficiency of the breeding program. However, the

complex interplay between various factors makes such predictions

challenging. Two promising strategies, high-throughput-

phenotyping (HTP)-assisted phenomic selection and genomic

selection (GS) have been explored with each having its unique

advantages and limitations.

During the last decade, several HTP approaches have been

developed to address the high labor and time costs associated with

traditional phenotyping (White and Conley, 2013; Araus and

Cairns, 2014). HTP platforms hold promise in linking the

genotype to phenotype by increasing the data collection capacity

(beyond visual range, repeated measures, and vast data handling),

enhancing measurement precision, and minimizing the time

required to evaluate large plant populations in fields. Further,

HTP-assisted phenomic prediction incorporates field plot

environmental conditions directly, which is not explicitly

explored in standard GS models that rely on adjusted means

estimated from the same plot data (Adak et al., 2022; Togninalli

et al., 2023). Additionally, HTP can be performed across various

growth stages and environments, drastically increasing phenotypic

data to improve the selection accuracy (Lopes and Reynolds, 2012;

Singh et al., 2016). HTP systems using various cameras and sensors

have been implemented to measure simpler traits in wheat breeding

programs, such as vegetation indices (VIs), growth rate, plant

height, and disease resistance (Stewart et al., 2016; Jimenez-Berni

et al., 2018; Khan et al., 2018; Rincent et al., 2018). Recently, HTP

via Unmanned Aerial Vehicles (UAVs) is also becoming popular in

modern breeding programs, generating large datasets of canopy

spectral reflectance information (i.e., VIs). These VIs serve as UAV-

HTP-based traits, providing an integrated measurement of canopy

structure and photosynthetic activity based on the amount of light

reflected off the crop canopy (Huete et al., 2002; Reynolds and

Langridge, 2016; Krause et al., 2020).

Numerous statistical and machine-learning (ML)-based

regression methods, including Multiple Linear Regression (MLR)

(Jin et al., 2017), Partial Least Squares Regression (PLSR)

(Rischbeck et al., 2016), Random Forest Regression (RFR)

(Aghighi et al., 2018), and Support Vector Regression (SVR)
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(Kuwata and Shibasaki, 2015) have been applied to predict crop

yields using HTP-based traits with variable accuracy. Deep

Learning (DL), a subfield of ML, utilizes complex neural network

architectures with multiple hidden layers. This allows DL models to

achieve significantly higher accuracies in various tasks across

different domains as compared to traditional ML methods.

Techniques such as fully connected feedforward Deep Neural

Network (DNN), Convolutional Neural Network (CNN), and

Recurrent Neural Network (RNN) (LeCun et al., 2015;

Schmidhuber, 2015; Ball et al., 2017; Cai et al., 2018; Sidike et al.,

2019) have shown remarkable promise in solving both regression

and classification problems. Recently, several studies have leveraged

DL for prediction of different traits in various crops through the

utilization of high-throughput plant phenotyping images as input.

These studies utilized DL models to extract spectral features from

leaf reflectance for disease scoring (Nagasubramanian et al., 2019;

Picon et al., 2019), wheat spike segmentation and counting (Misra

et al., 2020), and identification of Quantitative Trait Loci (QTLs)

associated with root architecture traits (Pound et al., 2017).

Although DNN has demonstrated promising results in other

areas of plant phenotyping (Fieuzal et al., 2017; Pound et al.,

2017; Misra et al., 2020), their potential in yield prediction in

winter wheat remains unexplored. This presents a significant

opportunity to leverage the power of DL for accurate and robust

crop yield predictions across trials, breeding generations, and

environments, potentially surpassing the capabilities of traditional

statistical methods.

On the other hand, GS offers a promising approach for

predicting the genomic estimated breeding value (GEBV) of lines

utilizing genome-wide marker information (Meuwissen et al., 2001;

Jannink et al., 2010). It has the potential to accelerate genetic gain by

increasing selection intensity, accuracy and shortening the breeding

cycle time. GS coupling with next-generation sequencing

technology has been applied to several quantitative traits in

wheat, including GY (Heffner et al., 2011; Poland et al., 2012; Sun

et al., 2019; Gill et al., 2021), disease resistance (Rutkoski et al., 2012,

2014; Juliana et al., 2019; Zhang et al., 2022), and nutritional quality

(Heffner et al., 2011; Manickavelu et al., 2017; Gill et al., 2023).

Traditionally, most of the commonly used GS models have been

single-trait (ST) models, which include phenotypic information

about primary traits only, such as GY, test weight (TW), grain

protein content (GPC), end-use quality attributes, or disease

resistance, which are of main interest to the plant breeder. These

single-trait genomic selection (ST-GS) models do not take

advantage of the correlation between the primary trait of interest

and secondary traits. Recently, multi-trait genomic selection (MT-

GS) models that utilize the power of correlated HTP-based traits

(Anche et al., 2020) have shown encouraging results. Improvement

in prediction accuracies for traits with lower heritability has been

observed by including correlated traits in the MT-GS model (Jia and

Jannink, 2012). The incorporation of HTP-based traits and canopy

temperature in the MT-GS models improved the prediction

accuracy (PA) for GY in wheat by as much as 50% compared to

the ST-GS model (Crain et al., 2018). These findings show that the

incorporation of HTP traits improves the performance of GS

models. These indirect estimates for selection are of great value in
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early generations of a breeding cycle when there’s insufficient seed

for measuring quantitative traits or conducting multi-environment

trials. Therefore, the prediction of quantitative traits at an early

stage using HTP and genome-wide markers may improve

selection accuracy.

In the present study, we aim to (1) evaluate the efficacy of a

DNN model for phenomic prediction of GY, TW, and GPC using

UAV assisted HTP-based traits while determining the optimal

growth stage for collecting these traits in winter wheat, (2)

evaluate the potential of forward GY prediction using HTP-based

traits, and (3) evaluate the potential of HTP-based traits as

covariates in the MT-GS models in prediction of complex

agronomic traits, including GY in winter wheat breeding program.
2 Materials and methods

2.1 Experimental design and
trait measurement

The experiment was conducted at two sites located in Brookings

(Brookings, County) and Dakota Lakes Research Farm (Huges

County) in South Dakota (Figures 1A, B) during the 2021–2022

growing season using a total of 752 winter wheat genotypes

(Table 1). The genotypes included 162 breeding lines from Elite

Yield Trials (ELITE) and Advanced Yield Trials (AYT) from the

South Dakota State University (SDSU) winter wheat breeding

program, along with well-adapted check cultivars. In addition to

ELITE and AYT, 597 lines from Preliminary Yield Trials (PYT)

comprising 590 breeding lines and 7 elite check varieties were used

as a validation population for GY prediction (independent

validation) using the optimized training population (Table 1).

The ELITE and AYT trials were planted using a randomized

complete block design with three and two replicates, respectively

whereas PYT was evaluated in augmented design with repeated

checks across 22 blocks. The experimental plots were planted under

a no-till system and each test site consists of 1.5 meters wide and 4

meters long plots with seven rows spaced 20 cm apart with a seeding

rate of 300 seeds m−2. Locally recommended field management

practices were followed for proper growth and yield. GY (kg/ha)

was determined for each individual plots after harvesting at

maturity using a plot combine (Zurn, Westernhausen Germany).

TW and GPC were measured using Infratec™ 1241 Grain Analyzer

(FOSS North America, Eden Prairie, MN, United States). GY and

GPC were adjusted to 13% moisture content equivalence.
2.2 UAV system and flight missions

This study utilized a UAV system consisting of a Matrice 210

RTK V2 platform equipped with a five-band multispectral camera,

Micasense Altum-PT (Micasense, Seattle, USA) (Figures 1D, E).

The camera captures multispectral images with 3.2 Megapixel

resolution (2064 x 1544). The multispectral camera comes with a

standard calibration panel for radiometric calibration, which was

imaged on the ground immediately before or after each flight. Four
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UAV flights were conducted between April and June 2022,

corresponding to the growth stages of Jointing (Feekes 6/Zadoks

31), Flag leaf (Feekes 8/Zadoks 37), Booting (Feekes 10/Zadoks 45),

and Milky Ripe (Feekes 11/Zadoks 75). The corresponding ground

sampling distance (GSD) is 1.35 cm/pixel for the multispectral

images. The flight altitude for the UAV was set at 45.0 m with a

forward overlap of 75% and a side overlap of 75%. Each flight was

conducted with a speed of 4 m/s between 10:00 am and 2:00 pm

under windless and clear-sky conditions to ensure optimal

image quality.

The second-generation Downwelling Light Sensor (DLS) was

mounted on top of the drone and connected to the camera. This

sensor data is used for radiometric calibration during image

processing, which corrects for fluctuations in light conditions

during the drone’s flight. To enable accurate georeferencing along

with geometric calibration, ground control points (GCPs) were set

up in each field. These GCPs consisted of black and white cross-

centered wooden boards (2x2 feet) placed evenly over the field

(Figure 1C). The Global Positioning System (GPS) location of these

GCPs was measured by a survey grade GNSS RTK GPS receiver

(DJI), with centimeter accuracy in the X, Y, and Z directions.
2.3 UAV remote sensing data processing

Raw multispectral images were orthorectified and mosaicked

using Pix4Dmapper software (Pix4D, Lausanne, Switzerland)

(Maimaitijiang et al., 2019). The geometric correction was

performed during the orthomosaicking process in Pix4Dmapper

using the GCPs established at the data collection sites.

Pix4Dmapper conducted automatic radiometric calibration

during the orthomosaicking process, utilizing calibration data

gathered from the calibration panel. Additionally, ambient light

variations were captured using the MicaSense DLS mounted atop

the UAV platform. The UAV orthomosaiced image dataset was

layer-stacked using ENVI software. Then, the layer-stacked images

were co-registered in the ArcMap software (Ormsby, 2004) using

GCPs (Figure 2). This ensures a common georeferenced extent for

images of each acquisition date with WGS 1984 datum UTM Zone

14 N.
2.4 Feature extraction from imagery

Spectral features such as VIs were derived from the

orthorectified multispectral images, utilizing average canopy

reflectance values for each of the five bands of multispectral

imagery at the plot level using Python programming. All these

spectral features are illustrated in Supplementary Table 1.
2.5 Deep neural networks

The DNN with multiple hidden layers apply nonlinear

functions to the output of each hidden layer, enhancing their

capability to learn intricate, nonlinear relationships between input
frontiersin.org
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and response variables (LeCun et al., 2015). These networks model

complex, non-linear relationships between input variables (e.g.,

HTP based traits) and the output (e.g., GY). The DNN model

used in our study is a feedforward fully connected deep neural
Frontiers in Plant Science 04
network with multiple hidden layers (Figure 3). Rectified linear unit

(ReLU) activation function was employed in fully connected layers,

while linear activation function was utilized for regression (Glorot

et al., 2011). Mean Squared Error (MSE) served as the loss function,
TABLE 1 Number of plots and genotypes planted in three nurseries at two locations in 2021–2022 for phenomic prediction and the number of
Unmanned Aerial Vehicle (UAV) flights conducted.

Location Nursery Number of Genotypes Number of
observational plots

Number of Flights

Brookings, SD ELITE 36 108 4

AYT 126 252 4

PYT 590 784 4

Pierre, SD ELITE 36 108 4

AYT 126 252 4
FIGURE 1

Testing site location map and UAV platform and sensor used in this study (A) Aurora Farm, Brookings (Brookings County, SD) and (B) Dakota Lakes
Research Farm, Pierre (Huges County). Orthomosaic images created from drone-captured data are displayed for both sites. Also pictured are the
tools used for data collection: (C) ground control points (GCPs) for image georeferencing, (D) a drone (unmanned aerial vehicle or UAV), and (E) a
multispectral camera. GCPs are reference markers that ensure accurate positioning of the captured images. Drones provide a platform for high-
resolution aerial imaging and carry multispectral camera that capture data across multiple wavelengths of light, allowing for detailed analysis.
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and the Adam Optimizer was employed for weight updates during

training. The DNNmodel was tuned with various hyperparameters,

including learning rate, dropout rate, and batch size. The epoch

parameter was explored across a range, including 50, 100, 150, 200,

and 250, while batch size was varied between 16, 24, 32, and 64. The

total plots were randomly split into training (70%) and testing

(30%) sets. DNN models were trained with gradient-based

optimization methods to minimize the loss function. For our

study, we utilized Python, along with Matplotlib and Seaborn for

visualization, and scikit-learn and TensorFlow for developing and

training/testing prediction models (Hunter, 2007; Van Rossum,

2007; Abadi et al., 2016).

2.5.1 Model evaluation
To evaluate the performance of the prediction model, we used

the coefficient of determination (R2) Equation (1), root mean square

error (RMSE) Equation (2), and relative root mean square error

(RMSE%) Equation (3). yi and ŷi refers to the measured and the

predicted GY/GPC/TW, �y is the mean of measured GY/GPC/TW,

and n is the total number of samples in the testing set.

R2 = 1 −o
n
i=1(yi − ŷ )2

on
i=1(yi − �y)2

(1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ )2

n − 1

s
(2)
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RMSE% =
RMSE

�y *100 (3)

To assess the robustness and transferability of the DNN model,

we further evaluated its performance in predicting GY in 784 early-

generation breeding (PYT) plots using model trained on 360 ELITE

and AYT plots from a single location (Scenario 1) and 720 ELITE

and AYT plots from multi-location (Scenario 2). Thus, determining

how well the model generalizes to unseen data, a crucial aspect for

real-world application in breeding programs.
2.6 Genotyping-by-sequencing

Fresh leaf tissues were obtained from each line to isolate DNA

using a modified cetyl-trimethyl ammonium bromide (CTAB

method) (Maguire et al., 1994). A genotyping-by-sequencing

(GBS) library was constructed using the PstI and MspI restriction

enzymes (Poland et al., 2012). The library was sequenced on

NextSeq2000 sequencer (Illumina, San Diego, 5200 Illumina Way,

USA) at the USDA Central Small Grain Genotyping Lab in

Manhattan, KS, USA. Single-nucleotide polymorphism (SNP)

variants were called using the GBS v2.0 SNP discovery pipeline in

TASSEL v5.0 (Trait Analysis by aSSociation, Evolution, and

Linkage) (Bradbury et al., 2007) and the Chinese Spring (CS)

wheat genome RefSeq v2.1 (IWGSC, 2018; Zhu et al., 2021) as

the reference. For quality control, SNPs with more than 30%
FIGURE 3

A schematic illustration of the Deep Neural Network (DNN) model architecture used for phenomic prediction in this study. The input consists of
Unmanned Aerial Vehicle (UAV)-High Throughput Phenotyping (HTP)-based traits followed by five dense hidden layers, each containing 64, 128,
256, 512, and 1024 neurons, respectively. The activation function utilized is linear, and dropout with a rate of 0.3 is applied. The output of the model
includes GY, GPC, and TW predictions. Batch normalization denoted as “BN”.
BA

FIGURE 2

Schematic illustration of (A) Phenomic Selection (PS) for grain yield (GY), test weight (TW) and grain protein (GPC) and (B) Genomic Selection (GS)
utilizing UAV-assisted High-Throughput Phenotyping (HTP)-based traits.
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missing genotypes, minor allele frequencies (MAF) below 5%, and

those not mapped on any chromosome were excluded before

imputation using BEAGLE v4.1 using default parameters except

setting ‘ne = 12000’ (Browning and Browning, 2007), which

generated 10,009 high-quality SNPs for further analysis.
2.7 Genomic prediction models and
cross-validation

2.7.1 Statistical analysis of the phenotype data
All the statistical analyses were performed using various

libraries in R (R Core Team, R, 2021). For the experimental

design, best linear unbiased estimates (BLUEs) for various traits

were estimated using the model given in Equation 4:

yij = m + Ri + Gj + eij (4)

where yij is the trait of interest, μ refers to the overall mean, Ri
denotes the random effect of the ith replicate, Gj is the fixed effect of

the jth genotype, and eij refers to the residual error effect of the ith

replication and jth genotype. The broad-sense heritability (H2) for

agronomic and HTP-based traits was estimated by fitting the

genotypic effect from the above equation as random, using the

following formula given in Equation 5:

H2 =
 s 2

g

 
s 2
g +s 2

e

nRep

(5)

where s 2
g and s 2

e , are the genotype and error variance

components, and nRep refers to the number of replicates. The

above analysis was performed in ‘lme4’ package (Bates et al., 2015).

The correlations among traits were estimated and visualized based

on the BLUEs for each trait.
2.7.2 Single-trait model
Standard genomic best linear unbiased prediction (GBLUP) was

used as a baseline for comparison with MT-GS model. GBLUP

employs a genomic relationship (G) matrix and the model for wheat

lines (i = 1, 2, …, n) is given in Equation 6:

 y = 1 μ   +  Zg  +  e (6)

where y is the vector (n × 1) of BLUE values for each trait; μ is

the overall mean; 1 is the vector of ones; g represents the genomic

estimated breeding values with g  ∼   N(0,  Gs 2
g ), where G is the

genomic relationship matrix (VanRaden, 2008), s 2
g is the additive

genetic variance and e is the vector of residual errors with e  ∼   N

(0,  s 2
e ). The p biallelic centered and standardized markers (SNPs)

are represented in incidence marker Z of order n x p (where n =

162) such that G =   XX
0

p . The ST models were implemented with

5,000 burn-ins and 25,000 iterations of the Gibbs sampler in the R

package BGLR (Pérez and de los Campos, 2014).
2.7.3 Multi-trait model
A multivariate model was used to predict GY, GPC, and TW by

including HTP-based traits (i.e., VIs) as secondary traits in the
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model. The MT model predicts primary traits using the secondary

traits as shown in the Equation 7:

y1

⋮

yn

2
664

3
775 =

I 0

⋮ ⋮

0 In

2
664

3
775

m1

⋮

mn

2
664

3
775 +

Z 0

⋮ ⋮

0 Zn

2
664

3
775

g1

⋮

gn

2
664

3
775 +

e1

⋮

en

2
664

3
775 (7)

where y is the n-dimensional vector of BLUEs for n traits, I and

Z are the design matrices, mt, t = 1… n, refers to trait intercepts of n

traits, ½ ⋮
g1

gn
�   are the predicted genetic values assumed to be

distributed as ~MVN(0, ∑ ⊗ G) with G representing the genomic

relationship matrix obtained following (VanRaden, 2008) and ⊗
refers to the Kronecker product of two matrices. The residuals of the

MT model were assumed to be distributed as ½ ⋮
e1

en
�  ~MVN(0,R ⊗ I).

The matrices ∑ and R are the variance-covariance matrices for the

genetic and residual effects between traits, respectively, where ∑ was

estimated as an unstructured variance-covariance matrix and R as a

diagonal variance-covariance matrix. The MT GBLUP was

implemented in the MTM package in R (Campos and Grüneberg,

2016) using the Gibbs sample algorithm with 5000 burn-ins and

15,000 iterations.

2.7.4 Assessment of predictive ability
The predictive ability of GS models was estimated as Pearson

correlation coefficient between GEBVs and observed phenotypes for

the testing set of breeding lines. The ST GBLUP model with cross-

validation scheme 1 (ST-CV1) was implemented for one trait at a

time (Supplementary Figure 1). ST-CV1 assessed the ST model,

random 80% lines for training (including both genotypic and

phenotypic data) and the remaining 20% lines for validation

(genotypic data only). The cross-validation process was repeated

100 times, and each iteration included different lines in the training

and testing sets. The PA of the MT model was estimated to be used

with cross-validation scheme 2 (MT-CV2) (Lado et al., 2018)

(Supplementary Figure 1). In MT-CV2, lines were divided into

sets of 80% for training and 20% for testing, and the procedure was

repeated 50 times using random sets. The model was trained using

the genotypic data and the phenotypic data of the primary trait for

the training set, including the HTP traits for both the training and

testing sets, to predict the primary trait in the testing set.
3 Results

3.1 Heritability and correlations analysis of
HTP-based traits with agronomic traits

Broad-sense heritability for GY and GPC was lower as

compared to TW (Supplementary Table 2), while heritability

varied for various HTP-based traits (Supplementary Figure 2).

Notably, HTP-based traits showed higher heritability during the

later stages of crop growth, particularly at Feekes 10 and 11

(Supplementary Figure 2). Significant correlations were observed

between primary traits (GY, TW, and GPC) and HTP-based traits,

with these correlations varying across different growth stages or

flights (Figure 4). This variation in correlations across growth stages
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allows us to leverage HTP-based traits for predicting primary traits.

GY exhibited a stronger correlation with HTP-based traits during

the Feekes 8 (Flag leaf) and Feekes 10 (Booting) stage, while TW

showed a higher correlation during the Feekes 11 (Milky Ripe) stage

(Figure 4). However, correlations were sparse or zero for GPC at

Feekes 6 (Jointing stage) and for TW at the Feekes 10 and 11 stages.

Examining the correlation of HTP-based traits with GY across

different growth stages revealed significant associations. Notably,

most HTP-based traits from later stages (Feekes 8, 10 and 11)

displayed significant positive correlations with GY, while specific

HTP-based traits like Plant Senescence Reflectance Index (PSRI),

Kawashima index (IKAW), and Normalized Difference Water

Index (NDWI) exhibited notable negative correlations across all

growth stages.
3.2 Phenomic prediction using HTP-based
traits and deep learning models

The complete set of plots from the ELITE and AYT were

randomly split into a training set (70% of the ELITE and AYT

plots), and the remaining 30% were used as a testing set (prediction

set) to assess the performance of the DNN model developed using

individual location (Brookings) and multi-locations (Brookings and

Pierre). The DNN model was employed to predict GY, TW, and

GPC using multitemporal HTP-based traits from all growth stages/

flights in ELITE and AYT at one location. PA was assessed based on

the RMSE% and R2 values. In the training set, the PA of the DNN

model achieved R² values of 0.90 for GY, 0.85 for TW, and 0.79 for
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GPC (Supplementary Figure 3). Remarkably, in the testing set

(prediction set), the highest R2 value achieved was 0.71 for GY

prediction using all growth stages HTP-based traits, signifying the

model’s robust performance in GY prediction (Figure 5A).

However, for predicting TW and GPC, R2 values were slightly

lower at 0.62 and 0.49, respectively, indicating varying prediction

accuracies across these traits (Figures 5B, C). Additionally, RMSE%

ranged from 2.69 to 6.98, underscoring the variance in PAs

observed for these traits. The performance of DNN models was

improved significantly when trained on a larger dataset. By

combining HTP-based traits from ELITE and AYT trials of two

locations (Brookings and Pierre) to train the DNN model, PA for

the testing set further increased to 0.76 for GY, 0.64 for TW, and

0.75 for GPC (Supplementary Figure 4).

The DNN model exhibited varied predictive performance

depending on the growth stages (Feekes 6, 8, 10, and 11) at which

HTP-based traits were collected. For GY prediction in the testing set

for ELITE and AYT at Brookings, the model achieved PA values

with R2 ranging from 0.42 to 0.47. Notably, the Feekes 6 (Jointing)

stage had the lowest PA (R2 = 0.42), while the Feekes 11 (Milky

Ripe) stage highlighted the most robust performance, attaining the

highest R2 value of 0.47 (Figure 5D). For TW predictions, the

highest accuracy was attained during the Feekes 10 stage (R2 =

0.36), whereas the Feekes 11 stage showed the lowest PA (R2 = 0.13)

(Figure 5D). Regarding GPC predictions, the highest accuracy was

obtained at the Feekes 8 stage (R2 = 0.35), whereas the lowest PA

was observed at the Feekes 6 stage (R2 = 0.13) (Figure 5D). These

results highlight the differential predictive accuracies across growth

stages for distinct traits, emphasizing the varying predictive
FIGURE 4

Correlation among High Throughput Phenotyping (HTP)-based traits from various growth stages (Feekes 6: Jointing, Feekes 8: Flag leaf, Feekes 10:
Booting, Feekes 11: Milky ripe) and grain yield (GY), grain protein content (GPC), and test weight (TW) in hard winter wheat.
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capacities of the model at different developmental phases.

Furthermore, they underscore the importance of selecting critical

developmental stages to conduct HTP for optimal prediction.
3.3 Application of DNN models in forward
prediction in a breeding pipeline

Next, we explored the potential of DNN models for forward

prediction of GY in preliminary breeding nurseries. This approach

involves training a DNNmodel on data from advanced breeding lines

and then using it to predict GY in earlier breeding stages. We explored

two distinct scenarios. In the first scenario (scenario 1), the DNN

model was trained using HTP-based traits derived from four growth

stages and GY of advanced breeding lines (ELITE and AYT) from a

single location (Brookings). Subsequently, the model’s ability in

forward prediction was evaluated by predicting the GY of 784 plots

of PYT lines, also evaluated at Brookings. The model achieved an R2 of

0.31 and RMSE% = 10.08 for GY in PYT at Brookings (Figure 6A).

This suggests that the model canmake reasonably accurate predictions

for lines in earlier breeding stages, even with HTP-based traits from

limited samples from advanced breeding generations. In the second

scenario (scenario 2) we investigated the impact of incorporating
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HTP-based trait samples from four growth stages from multiple

locations. The DNN model was trained using HTP-based traits

derived from four flights from the same ELITE and AYT but

collected from two locations: Brookings and Pierre. A total of 720

plots were used for training. The model’s predictive capability was

assessed by evaluating its ability to predict GY for 784 plots of PYT

nursery at Brookings. The model achieved an R2 of 0.41 and an RMSE

% of 9.35 for GY in PYT at Brookings (Figure 6B).
3.4 Genomic prediction

3.4.1 Predictive ability of ST model
We used ST-GBLUP to assess the predictive ability of GY, TW,

and GPC using the ST-CV1 scheme (Supplementary Figure 1). ST-

GBLUP was selected as a baseline to compare with the MT-GBLUP

models. We observed a PA of 0.23 for GY, 0.38 for TW, and 0.07 for

GPC using ST-GBLUP (Figure 7; Supplementary Figures 5, 6).

3.4.2 Predictive ability of multi-trait model using
HTP traits

We also employed the MT-model to evaluate the predictive

results of GY, TW, and GPC using the MT-CV2 scheme
B

C D

A

FIGURE 5

Phenomic predictions on the testing set/prediction set, using the DNN model developed using combined high throughput phenotyping traits (HTP)-
based traits for (A) grain yield (GY), (B) test weight (TW), (C) grain protein content (GPC), and (D) prediction accuracy at a specific growth stage at
Brookings location.
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(Supplementary Figure 1). First, all HTP-based traits (20 VIs) at

specific growth stages were utilized as covariates in the MTmodel to

predict the primary traits (GY, TW, and GPC). Significant

improvement in PA were observed at specific growth stages for

different traits, with Feekes 10 for GY (0.37), Feekes 6 for TW

(0.40), and Feekes 8 for GPC (0.18) showing the highest PAs

(Figure 7; Supplementary Figures 5, 6). Additionally, individual

assessments of each HTP-based trait within the MT model revealed

a range of PA for GY, spanning from 0.14 to 0.40 (Figure 8). Feekes

8 (Flag leaf) exhibited the highest accuracy (0.40) in predicting GY

when employing the Green Chlorophyll Index (GCI), while the

lowest accuracy (0.14) was observed at Feekes 8 using Soil Adjusted
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Vegetation Index 2 (SAVI_2). Interestingly, among all HTP-based

traits, certain VIs like GCI, Ratio Vegetation Index 2 (RVI_2), and

Anthocyanin Reflectance Index 2 (ARI_2) displayed comparable or

even better PAs compared to using all HTP-based traits together in

the MT-GS model for GY.

For TW, the MT-model PA ranged from 0.34 to 0.40

(Supplementary Figure 6). The Feekes 11 (Milky ripe) stage

demonstrated the highest accuracy (0.49) with RVI_2, whereas the

Feekes 8 owed the lowest (0.40) when utilizing SAVI_2. Similar to GY

predictions, specific HTP-based traits such as ARI_2, RVI_2, and

Enhanced Normalized Difference Vegetation Index (ENDVI) achieved

similar or even better PAs for TW in contrast to employing all HTP-

based traits together in the MT-GS model (Supplementary Figure 7).

Regarding GPC, the MT-GS model PAs varied from 0.06 to 0.18

(Supplementary Figure 5). The Feekes 8 stage presented the highest

accuracy (R2 = 0.14) using RVI_2, while the lowest accuracy (0.01) was

observed at the Feekes 8 stage with Modified Chlorophyll Absorption

in Reflectance Index (MCARI) (Supplementary Figure 8). Analogous

to GY and TW findings, certain HTP-based traits like EVI_2,

Normalized Difference Vegetation Index (NDVI), and Transformed

Chlorophyll Absorption in Reflectance Index - Optimized Soil-

Adjusted Vegetation Index (TCARI_OSAVI) demonstrated

comparable or superior PAs for GPC compared to the collective use

of all HTP-based traits in the MT-GS model. Distribution of PA for

GY, TW, andGPC varied across replicates for ST-GS with ST-CV1 and

MT-GS with MT-CV2 incorporating HTP traits across each flight

(Supplementary Figures 9, 10, and 11). This highlights the influence of

cross-validation scheme and model choice on the PA of primary traits.
4 Discussion

In the present work, we evaluated the effectiveness of the DL-

based DNN model for phenomic prediction of wheat agronomic

traits (GY, TW, and GPC) using UAV-HTP-based traits under

various scenarios. We also assessed the efficacy of incorporating
BA

FIGURE 6

Model testing results of forward prediction for grain yield (GY) in preliminary yield trials (PYT) using DNN trained on high throughput phenotyping
traits (HTP)-based traits from advanced breeding lines (A) Scenario 1: DNN model trained on (ELITE and AYT) at Brookings to predict GY in PYT at
Brookings; (B) Scenario 2: DNN model trained on (ELITE and AYT) at Brookings and Pierre to predict GY in PYT at Brookings.
FIGURE 7

Comparison of prediction accuracy for grain yield (GY) using Single-
Trait GBLUP (ST-GBLUP) with cross-validation scheme ST-CV1 and
Multi-Trait GBLUP (MT-GBLUP) incorporating High-Throughput
Phenotyping (HTP)-based traits with cross-validation scheme MT-
CV2 across different growth stages (Feekes 6: Jointing, Feekes 8:
Flag leaf, Feekes 10: Booting, Feekes 11: Milky ripe).
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HTP-based traits as covariates into MT genomic prediction models.

The DNN method was chosen for its ability to manage high-

dimensional data, such as multitemporal HTP-based traits collected

across various growth stages. These HTP-based traits encompass a

vast number of features, and the DNNmethod excels at automatically

extracting complex relationships between these input features and the

target traits, eliminating the need for manual feature engineering

(Mishra et al., 2021). Additionally, the DNN method has shown

superior PA compared to traditional ML methods for complex tasks

like crop yield prediction (Khaki andWang, 2019). Overall, the DNN

model exhibited a wide range of performance in phenomic prediction

of GY, TW, and GPC in advanced breeding lines. An impressive R2

value of 0.71 was achieved for GY, with acceptable accuracies for TW

(R2 = 0.62) and GPC (R2 = 0.49) (Figure 5). These findings highlight

the model’s varying effectiveness across different traits, potentially

due to the complex genetic and environmental factors influencing

each trait. The performance of the DNN model improved

significantly when trained on a larger dataset. Combining HTP

data from two locations boosted testing set PA for all traits: GY by

7%, TW by 3%, and GPC by a remarkable 53%. Overall, these

findings highlight the importance of utilizing substantial and varied

datasets when training DL methods for enhanced predictions. These

results align with recent observations that found a prediction
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accuracy (PA) of 0.64 for grain yield (GY) prediction using multi-

sensor data fusion in wheat (Fei et al., 2023). The observed variations

in RMSE% further highlighted differences in PAs across the traits

suggesting that spectral reflectance captures the endophenotypes of

organisms, thereby influencing the accuracy of phenomic predictions

(Rincent et al., 2018; Robert et al., 2022). Additionally, spectral

reflectance can also provide estimates of plant health, disease

pressure, and environmental stress (Du and Noguchi, 2017;

Montesinos-López et al., 2017; Francesconi et al., 2021).

Additionally, the assessment of the DNN model across different

growth stages revealed diverse accuracies, emphasizing the

influence of the developmental phase of the wheat crop. Though

Feekes 8 and 10 showed a higher correlation to GY, the Feekes 11

(Milky Ripe) stage exhibited the highest accuracy for GY prediction

suggesting that predictive performance is not directly related to

correlation. Similarly, optimal prediction stages were also observed

for TW and GPC (Supplementary Figures 3 and 4). This highlights

the need for tailored models that account for trait-specific responses

during plant development. Our observation aligns with previous

findings indicating varied predictive abilities of HTP-based traits

like GNDVI for GY at different growth stages (Sun et al., 2019) and

higher predictive power of spectral data collected near grain filling

(Jackson et al., 2023). Furthermore, the observed differences in PAs
FIGURE 8

Prediction accuracy for grain Yield (GY) using Single-Trait GBLUP (ST-GBLUP) with cross-validation scheme ST-CV1 and Multi-Trait GBLUP (MT-
GBLUP) incorporating High-Throughput Phenotyping (HTP)-based traits with cross-validation scheme MT-CV2 across different growth stages
(Feekes 6: Jointing, Feekes 8: Flag leaf, Feekes 10: Booting, Feekes 11: Milky ripe). The x-axis presents respective prediction accuracy, and the y-axis
presents MT models with different combinations of HTP-based traits as covariates and ST-GBLUP at the bottom as baseline for comparison.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1410249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kaushal et al. 10.3389/fpls.2024.1410249
across growth stages emphasize the necessity of incorporating

temporal dynamics and stage-specific trait measurements into

predictive models. Capturing these temporal changes can

potentially improve the accuracy and robustness of DNN models

for phenomic prediction in wheat breeding programs.

DNN models showed the potential in forward prediction of GY

using HTP-based traits from earlier generation breeding material

(PYT) evaluated at the same location (Brookings, SD) with PA of

R2 = 0.31 (Scenario 1). However, the inclusion of multi-location data

from advanced nurseries in the DNN model (Scenario 2, R² = 0.41),

enhanced the PA for GY estimation in PYT by 32%. The substantial

(i.e.,32%) increase in prediction accuracy highlights the value of

incorporating multi-location datasets for refining GY prediction

models by improving the generalizability of prediction models to

predict yield across different growing conditions. This scenario also

emphasizes the inherent complexities in predicting GY across diverse

nurseries within a location. Robert et al. (2022) also suggested

combining several spectra from different environments to increase

the PA for HD, but not necessarily for GY. These results underscore

the complexities involved in forward prediction modeling, especially

when consideringmultiple nurseries within a single location or across

diverse locations. However, further exploration is needed to optimize

forward prediction models for various breeding scenarios.

We further evaluated the potential of using HTP-based traits in

MT-GBLUPmodels for prediction of GY, TW, and GPC. Using ST-

GBLUP as a baseline, a PA of 0.23 was achieved for GY. In contrast,

the MT-GBLUP model incorporating HTP-based traits across

various growth stages revealed a spectrum of improvements in

PA. Notably, a 60% increase in PA for GY was observed during the

booting stage (Feekes 10) as compared to ST-GBLUP (Figure 6).

These findings align with GS investigations in animals and various

crops, demonstrating improved predictive performance upon

integrating correlated secondary traits (Tsuruta et al., 2011; Okeke

et al., 2017). Similar improvements in GS accuracy for wheat yield

prediction have been achieved using NDVI and canopy temperature

as secondary traits (Crain et al., 2018; Sun et al., 2019; Sandhu et al.,

2021). High heritability of secondary correlated traits, particularly

when primary traits have lower heritability, contributes to the

enhancement of the prediction of primary traits with the

inclusion of secondary correlated HTP-based traits into

multivariate GS models (Jia and Jannink, 2012; Gill et al., 2021).

Therefore, optimizing the collection time for HTP-based traits may

enable the breeders to maximize the selection accuracy in GS, while

collecting HTP-based traits at early stages allows breeders to

eliminate low-performing lines before harvest. This translates to

significant savings in time and labor costs associated with managing

these lines throughout the growing season.

Though we focused on evaluating the multi-trait GP for individual

growth stages in the current study, another approach could use a joint

analysis including the effect of growth stage in the GP using

autoregressive modeling to better capture the temporal dependence

of the repeated measurements over time. However, fitting a joint model

with an autoregressive structure for the genetic effects matrix can be

computationally challenging, especially considering the number of

HTP traits involved in this study. Nevertheless, the primary objective

of this study was to understand how genomic prediction performs at
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each growth stage for the targeted traits, and our results provided

important information regarding the optimization of MT models at

each growth stage. This can be particularly informative when designing

breeding strategies tailored to different growth stages. However, there

remains an opportunity to exploit the potential of joint models that

consider temporal dependence to further improve predictive abilities

for important traits.

It is worth noting that specific HTP-derived VIs such as ARI_2,

GCI, and RVI_2 performed equally well or even better than all

HTP-based traits combined in the MT model. This is due to the

information redundancy and collinearity issues among the HTP-

based traits, potentially resulting in poorer performance when using

all HTP-based traits (Maimaitijiang et al., 2020). Notably, GCI and

RVI_2 emerged as robust predictors for GY, while ARI_2 offered

context-dependent performance enhancements. For TW

prediction, ARI_2, ENDVI, and RVI_2 consistently outperformed

other VIs, indicating their potential for reliable predictions with

lower variability. These results emphasize the potential for

exploring a wider range of HTP-derived features and VIs. By

developing novel indices tailored to specific traits, researchers can

leverage the rich information from HTP data to further improve

accuracy and efficiency in plant breeding programs. Further

research can delve deeper into the biological basis of these indices

(ARI_2, GCI, RVI_2) to understand the specific plant physiological

traits they represent. Additionally, investigating the generalizability

of these findings across diverse environments and breeding

populations will be crucial for their widespread adoption in

breeding programs. Similar to our observations, several studies

also found that the PA of models using Near-Infrared (NIR)

spectral information was similar to or higher than models using

molecular markers (Rincent et al., 2018; Krause et al., 2019; Galán

et al., 2020; Zhu et al., 2021; Robert et al., 2022). Our study

highlights the potential of integration of HTP-based traits in both

phenomic and genomic prediction approaches, however, the choice

of phenomic or genomic selection approaches will depend on

specific situations in the breeding program.
5 Conclusion

We explored the incorporation of UAV-HTP-based traits in

phenomic and genomic prediction models in predicting GY, TW,

and GPC in SDSU hard winter wheat breeding. The integration of

UAV multispectral remote sensing and deep learning models

emerges as a promising approach for phenomic prediction of

primary traits like GY, TW, and GPC. We observed superior

predictive power of multitemporal multispectral data from

multiple growth stages, over single-stage data. Moreover,

including multilocation data over single location significantly

enhanced the generalizability and robustness of the models

enhancing phenotypic PA. Alternatively, the incorporation of

secondary HTP-based traits in GS models demonstrates a

substantial improvement in PA. Overall, this study highlights the

immense potential of UAV-based phenotyping to streamline

breeding programs. By providing breeders with early,

comprehensive trait assessments and improved PA across
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environments, this approach can significantly accelerate

breeding progress.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further, the data supporting

the conclusions of this article will be made available by the authors,

without undue reservation.
Author contributions

SK: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft. HG: Data curation, Formal analysis,

Software, Writing – review & editing, Visualization. MB: Data

curation, Software, Visualization, Writing – review & editing.

SNK: Data curation, Software, Writing – review & editing. JH:

Writing – review & editing, Investigation, Methodology. AB:

Writing – review & editing, Investigation. PS: Writing – review &

editing, Investigation, Software. GB: Resources, Writing – review &

editing, Investigation. KG: Writing – review & editing. MM:

Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Visualization, Writing – review & editing.

SS: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This project

was collectively funded by the Agriculture and Food Research

Initiative Competitive Grants 2022–68013-36439 (Wheat-CAP)

from the USDA National Institute of Food and Agriculture, and

South Dakota Wheat Commission grant 3X3079 USDA hatch

projects SD00H695–20 and SD00H757–22. The funders had no

role in the study design, data collection, analysis, decision to

publish, or manuscript preparation.
Frontiers in Plant Science 12
Acknowledgments

The authors would like to thank the South Dakota Agriculture

Experimental Station (Brookings, SD, USA) and South Dakota State

University High-Performance Computing (HPC) team for

providing the resources to conduct and analyze the experiments.

The authors are also grateful to Cody Hall for excellent technical

assistance in field trials.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Author disclaimer

The mention of trade names or commercial products in this

publication is solely for the purpose of providing specific

information and does not imply recommendation or endorsement

by the United States Department of Agriculture. The USDA is an

equal opportunity provider and employer.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1410249/

full#supplementary-material
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2016).
Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv.
preprint. arXiv:1603.04467. doi: 10.48550/arXiv.1603.04467

Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., et al. (2016).
Global agricultural intensification during climate change: a role for genomics. Plant
Biotechnol. J. 14, 1095–1098. doi: 10.1111/pbi.12467

Adak, A., Murray, S. C., and Anderson, S. L. (2022). Temporal phenomic predictions
from unoccupied aerial systems can outperform genomic predictions. G3 Genes|
Genomes|Genetics. 13. doi: 10.1093/g3journal/jkac294

Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H. S., and Radiom, S. (2018).
Machine learning regression techniques for the silage maize yield prediction using
time-series images of Landsat 8 OLI. IEEE J. Selected. Topics. Appl. Earth Observations.
Remote Sens. 11, 4563–4577. doi: 10.1109/JSTARS.4609443

Anche, M. T., Kaczmar, N. S., Morales, N., Clohessy, J. W., Ilut, D. C., Gore, M. A.,
et al. (2020). Temporal covariance structure of multi-spectral phenotypes and their
predictive ability for end-of-season traits in maize. Theor. Appl. Genet. 133, 2853–2868.
doi: 10.1007/s00122-020-03637-6

Araus, J. L., and Cairns, J. E. (2014). Field high-throughput phenotyping: the new
crop breeding frontier. Trends Plant Sci. 19, 52–61. doi: 10.1016/j.tplants.2013.09.008

Ball, J. E., Anderson, D. T., and Chan, C. S. (2017). Comprehensive survey of deep
learning in remote sensing: theories, tools, and challenges for the community. J. Appl.
Remote Sens. 11, 042609–042609. doi: 10.1117/1.JRS.11.042609
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1410249/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1410249/full#supplementary-material
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1111/pbi.12467
https://doi.org/10.1093/g3journal/jkac294
https://doi.org/10.1109/JSTARS.4609443
https://doi.org/10.1007/s00122-020-03637-6
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1117/1.JRS.11.042609
https://doi.org/10.3389/fpls.2024.1410249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kaushal et al. 10.3389/fpls.2024.1410249
Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects
models using lme4. J. Stat. Software. 67, 1–48. doi: 10.18637/jss.v067.i01

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler,
E. S. (2007). TASSEL: software for association mapping of complex traits in diverse
samples. Bioinformatics 23 (19), 2633–2635. doi: 10.1093/bioinformatics/btm308

Browning, S. R., and Browning, B. L. (2007). Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by use of localized
haplotype clustering. The American Journal of Human Genetics 81 (5), 1084–1097.
doi: 10.1086/521987

Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., et al. (2018). A high-
performance and in-season classification system of field-level crop types using time-
series Landsat data and a machine learning approach. Remote Sens. Environ. 210, 35–
47. doi: 10.1016/j.rse.2018.02.045

Campos,, and Grüneberg, (2016). MTM package (github). Available at: https://
github.com/QuantGen/MTM/.

Crain, J., Mondal, S., Rutkoski, J., Singh, R. P., and Poland, J. (2018). Combining
high-throughput phenotyping and genomic information to increase prediction and
selection accuracy in wheat breeding. Plant Genome 11, 170043. doi: 10.3835/
plantgenome2017.05.0043

Du, M., and Noguchi, N. (2017). Monitoring of wheat growth status and mapping of
wheat yield’s within-field spatial variations using color images acquired from UAV-
camera system. Remote Sens. 9, 289. doi: 10.3390/rs9030289

Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., et al. (2023). UAV-based
multi-sensor data fusion and machine learning algorithm for yield prediction in wheat.
Precis. Agric. 24, 187–212. doi: 10.1007/s11119-022-09938-8

Fieuzal, R., Sicre, C. M., and Baup, F. (2017). Estimation of corn yield using multi-
temporal optical and radar satellite data and artificial neural networks. Int. J. Appl.
Earth Observation. Geoinformation. 57, 14–23. doi: 10.1016/j.jag.2016.12.011

Francesconi, S., Harfouche, A., Maesano, M., and Balestra, G. M. (2021). UAV-based
thermal, RGB imaging and gene expression analysis allowed detection of Fusarium
head blight and gave new insights into the physiological responses to the disease in
durum wheat. Front. Plant Sci. 12, 628575. doi: 10.3389/fpls.2021.628575

Galán, R. J., Bernal-Vasquez, A.-M., Jebsen, C., Piepho, H.-P., Thorwarth, P., Steffan,
P., et al. (2020). Integration of genotypic, hyperspectral, and phenotypic data to
improve biomass yield prediction in hybrid rye. Theor. Appl. Genet. 133, 3001–3015.
doi: 10.1007/s00122-020-03651-8

Gill, H. S., Brar, N., Halder, J., Hall, C., Seabourn, B. W., Chen, Y. R., et al. (2023).
Multi-trait genomic selection improves the prediction accuracy of end-use quality traits
in hard winter wheat. Plant Genome 16 (4), e20331. doi: 10.1002/tpg2.20331

Gill, H. S., Halder, J., Brar, N. K., Rai, T. S., Bai, G., Olson, E., et al. (2021). Multi-trait
multi-environment genomic prediction of agronomic traits in advanced breeding lines
of winter wheat. Front. Plant Sci. 12, 709545. doi: 10.3389/fpls.2021.709545

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural networks,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, in Proceedings of Machine Learning Research. 15, 315–323. Available at:
https://proceedings.mlr.press/v15/glorot11a.html.

Heffner, E. L., Jannink, J. L., and Sorrells, M. E. (2011). Genomic selection accuracy
using multifamily prediction models in a wheat breeding program. Plant Genome 4.
doi: 10.3835/plantgenome.2010.12.0029

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002).
Overview of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sens. Environ. 83, 195–213. doi: 10.1016/S0034-4257(02)00096-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

International Wheat Genome Sequencing Consortium (IWGSC), Appels, R.,
Eversole, K., Stein, N., Feuillet, C., Keller, B., et al. (2018). Shifting the limits in
wheat research and breeding using a fully annotated reference genome. Science 361
(6403), eaar7191. doi: 10.1126/science.aar719

Jackson, R., Buntjer, J. B., Bentley, A. R., Lage, J., Byrne, E., Burt, C., et al. (2023).
Phenomic and genomic prediction of yield on multiple locations in winter wheat
[Original Research]. Front. Genet. 14. doi: 10.3389/fgene.2023.1164935

Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant
breeding: from theory to practice. Briefings Funct. Genomics 9, 166–177. doi: 10.1093/
bfgp/elq001

Jia, Y., and Jannink, J.-L. (2012). Multiple-trait genomic selection methods increase genetic
value prediction accuracy. genetics 192, 1513–1522. doi: 10.1534/genetics.112.144246

Jimenez-Berni, J. A., Deery, D. M., Rozas-Larraondo, P., Condon, A. G., Rebetzke, G.
J., James, R. A., et al. (2018). High throughput determination of plant height, ground
cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 9, 237.
doi: 10.3389/fpls.2018.00237

Jin, Z., Azzari, G., and Lobell, D. B. (2017). Improving the accuracy of satellite-based
high-resolution yield estimation: A test of multiple scalable approaches. Agric. For.
Meteorol. 247, 207–220. doi: 10.1016/j.agrformet.2017.08.001
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