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Revolutionizing tomato
disease detection in
complex environments
Diye Xin1*† and Tianqi Li2†

1East China University of Science and Technology, School of Information Science and Engineering,
Shanghai, China, 2East China University of Science and Technology, School of Biotechnology,
Shanghai, China
In the current agricultural landscape, a significant portion of tomato plants suffer

from leaf diseases, posing a major challenge to manual detection due to the

task’s extensive scope. Existing detection algorithms struggle to balance speed

with accuracy, especially when identifying small-scale leaf diseases across

diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-

Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an

innovative, high-precision, and lightweight detection algorithm based on RT-

DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was

developed using a carefully curated dataset of 3147 RGB images, showcasing

tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces

ResNet18 in the algorithm’s backbone network, aimed at reducing the model’s

size and improving memory efficiency. Additionally, replacing the conventional

AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded

Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion

Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid

Networks) in the Efficient Hybrid Encoder significantly enhanced detection

accuracy without greatly affecting efficiency. To tackle the challenge of

identifying challenging samples, the Focaler-CIoU loss function was

incorporated, refining the model’s performance throughout the dataset.

Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7%

Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the

test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M

in parameters. These findings clearly demonstrate that the proposed method

improves detection accuracy and reduces computational complexity, addressing

the dual challenges of precision and efficiency in tomato leaf disease detection.
KEYWORDS

tomato leaf disease, Cascaded Group Attention, Real-Time-Detection-Transformer,

lightweight backbone, feature fusion, Focaler-CIoU loss function
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1 Introduction

Tomatoes, rich in nutritional and medicinal value, are among

the most significant crops cultivated globally. China ranks as a

leading tomato producer globally (Coelho et al., 2023). In 2023,

China, leveraging its vast agricultural landscape and favorable

climate, solidified its status as the top tomato producer

worldwide, contributing 67 million tons to the global total of

approximately 190 million tons. This substantial output

underscores China’s dominance in the global tomato market

(Min, 2023). Moreover, China’s 2023 tomato production (Lu

et al., 2023) exceeded initial forecasts, reaching 8 million tons, up

from the predicted 7.3 million tons.

However, tomatoes face threats from various leaf diseases,

including spot disease and leaf mold (Lee, 2022), caused by fungi,

bacteria, and environmental stressors (Hernandez et al., 2021).

Untimely detection and prevention can drastically reduce tomato

yield and quality, resulting in significant economic losses

for farmers.

Traditionally, tomato leaf disease detection has been manual,

presenting numerous limitations and challenges. First, it depends

on professional inspectors, leading to significant human resource

constraints (Geisseler and Horwath, 2014). Second, factors like

visual fatigue compromise the method’s accuracy. In large-scale

settings like tomato plantations, manual detection becomes labor-

intensive, increasing the risk of missed detections and false alarms

(Lambooij et al., 2009). Consequently, automating tomato leaf

detection has emerged as a key research focus to enhance

efficiency and accuracy (Azim et al., 2014).

Advancements in computer technology have facilitated the

incorporation of machine learning into agricultural research

(Pallathadka et al., 2022)’s study preprocesses images with

histogram equalization, followed by principal component analysis

for feature extraction. Support vector machines and naive Bayesian

classifiers are then employed for rice leaf disease classification.

However (Sujatha et al., 2021), notes that machine learning’s

extensive computational demands in preprocessing and feature

extraction limit its practical application. Comparative studies have

shown deep learning’s superior efficacy in plant leaf disease

recognition, with convolutional neural networks (LeCun et al.,

1998) and residual structures (He et al., 2016) leading to

significant advancements in object detection algorithms, including

the evolution to one-stage approaches like DETR with transformers.

DETR (Detection Transformer) is an innovative object detection

approach that utilizes transformers, which are originally designed

for natural language processing tasks. By leveraging transformers,

DETR simplifies the object detection pipeline, eliminating the need

for hand-crafted components such as anchor generation and non-

maximum suppression, and allows for direct end-to-end object

detection with improved accuracy and efficiency.

Notably, two-stage models such as Faster RCNN (Region-based

Convolutional Neural Network) (Ren et al., 2016) and Mask RCNN

(He et al., 2017) have been typical (Teng et al., 2022). enhances pest

detection with super-resolution modules (Dong et al., 2015) and

Soft IoU (Rahman and Wang, 2016) mechanisms, achieving 67.4%

accuracy on a pest dataset (Saleem et al., 2022). optimizes weed
Frontiers in Plant Science 02
detection using Faster RCNN ResNet-101, with an enhanced

anchor box method (Redmon and Farhadi, 2018) that refines

region proposals and improves accuracy. RCNN3’s Mask RCNN-

based algorithm (Wang et al., 2021) for crop images introduces path

aggregation and feature enhancements (Liu et al., 2018), increasing

edge accuracy with a micro fully connected layer (Lin et al., 2013).

Despite these improvements, the large size, numerous parameters,

and high computational costs challenge the practicality of two-

stage algorithms.

Common one-stage algorithms encompass SSD (Single Shot

MultiBox Detector) (Liu et al., 2016), YOLO v5(You-Only-Look-

Once) (Jocher et al., 2022), YOLOv7 (Wang et al., 2023), and

YOLOv9 (Wang et al., 2024) (Wang et al., 2022)’s YOLOv5

significantly enhances weed detection accuracy and speed via

data augmentation (Simard et al., 2003) and converter encoder

modules (Zhang et al., 2022). Experimental results indicate that

the improved network surpasses the baseline YOLOv5 in F1

score, AP, and mAP@0.5 by 11.8%, 11.3%, and 5.9%,

respectively (Zhang et al. , 2023) ’s study introduced a

lightweight agricultural pest identification method using an

enhanced Yolov5s, merged with MobileNetV3 (Howard et al.,

2019), significantly lowering the network’s parameter count.

Additionally, the study integrated the ECA (Efficient Channel

Attention) attention (Wang et al., 2020) mechanism into

MobileNetV3 ’s shallow network to boost performance.

Experimental results reveal that compared to Yolov5s, their

model cuts parameters by 80.3% with only a 0.8% drop in

mAP, achieving a real-time detection speed of 15.2 FPS on

embedded devices, outperforming the original model by 5.7 FPS.

The aforementioned one-stage algorithms have seen substantial

optimization in speed and scale, yet their accuracy falls short of two-

stage algorithms, rendering them less suited for high-precision

applications in sectors like industry, agriculture, and emerging

technologies (Agarwal et al., 2020). introduces a deep learning

model with three convolutional layers and three max pooling

layers for tomato leaf disease detection and classification.

Outperforming established models like VGG (Visual Geometry

Group)16, InceptionV3, and MobileNet, it achieves a

classification accuracy of 91.2%. The study employs data

augmentation and hyperparameter tuning to aid farmers in

managing tomato diseases, enhancing crop yield and quality.

Additionally, the DETR algorithm has shown significant accuracy

in crop detection. The recent DETR (Carion et al., 2020) algorithm

has also demonstrated notable accuracy in crop detection (Yang

et al., 2023). introduces a DETR-based rice leaf disease detection

algorithm, leveraging an enhanced detection transformer for

diagnosis and recognition. Introducing the Neck structure and the

Dense Higher Level Composition Feature Pyramid Network (Gao

et al., 2019), based on FPN (Feature Pyramid Network), improves

small disease target detection accuracy. However, DETR’s

computational intensity, exacerbated by enhanced feature

extraction, results in less favorable detection speeds and

model parameters.

To facilitate a clearer understanding of the progress in this field,

the methods utilized in the referenced literature are summarized

in Table 1.
frontiersin.org
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The motivation for developing the FCHF-DETR model arises

from the serious economic losses and social impacts resulting from

global crop diseases. Many farmers depend on the yield and quality

of their crops for their livelihoods, and disease outbreaks not only

threaten their food security, but can also inflict serious damage on

the economic structure of entire regions.

In this context, the need for precise and timely disease detection

is critical. The FCHF-DETRmodel employs advanced deep learning

and real-time detection techniques to rapidly and precisely identify

plant diseases in the field. This capability not only enables farmers

to take timely measures to mitigate losses, but also offers a more

stable and reliable management approach for agricultural

production, thus effectively reducing the economic and social

pressures arising from diseases.

Furthermore, the lightweight design of the FCHF-DETR model

allows it to operate efficiently in resource-limited environments, critical

for resource-poor agricultural areas. This design permits unrestricted

model deployment across various hardware platforms, enabling

farmers worldwide to utilize this technology and thereby enhance the

sustainability and resilience of global agricultural production.

In summary, researchers have introduced numerous innovative

methods and technologies in the field of object detection, which

have significantly advanced the progress of plant disease

management technology. To enhance applicability in crop

production environments, this study introduces an accurate and

lightweight tomato leaf disease detection model based on RT-

DETR-R18. This model is characterized by its lightweight design,

high detection accuracy, and rapid processing speed, facilitating
Frontiers in Plant Science 03
easy deployment on farm detection equipment. The main

contributions of this study include:
1. The integration of the lightweight and efficient Fasternet in

lieu of the ResNet18 backbone network enhances the

feature extraction speed by mitigating memory access and

computational redundancy through the use of PConv

(Partial Convolution) in Fasternet. This modification not

only optimizes memory efficiency but also reduces the

overall size of the model.

2. The substitution of the Attention-based Intra-scale Feature

Interaction (AIFI) module with Cascaded Group Attention

(CGA) within the Efficient Hybrid Encoder not only

curtails computational expenditure but also enriches

attention diversity. This is achieved by layering attention

maps from different heads, facilitating a dual enhancement

in both efficiency and accuracy.

3. The replacement of the High-Level Screening-feature Fusion

Pyramid Networks (HSFPN) module with the CNN-based

Cross-scale Feature-fusion Module (CCFM) module for

inter-scale feature fusion within the Efficient Hybrid

Encoder incorporates a channel attention mechanism.

Given the dataset’s variety in terms of the types and sizes

of diseased leaves, HSFPN adeptly assimilates global features

across varying scales, synergizing with the decoder to

accurately pinpoint locations.

4. Acknowledging the dataset’s heterogeneity and the varying

levels of detection difficulty presented by diseased leaves,
TABLE 1 Summary of detection methods for tomato leaf disease.

Method Dataset Train & Test mAP50 FPS

Manual detection
(Geisseler and Horwath, 2014)

Automated detection technology
(Azim et al., 2014)

Support vector machines and Naive Bayesian classifiers
(Pallathadka et al., 2022)

Rice Leaf Disease Not mentioned

Inception V3
(Sujatha et al., 2021)

Citrus leaf disease dataset 9:1 89.2

Multi-Scale Super-Resolution RCNN
(Teng et al., 2022)

Capured by Chinese Intelligent
Machines Institute

8:2 67.4

Enhanced Anchor Box-RCNN
(Saleem et al., 2022)

DeepWeeds dataset 9:1 96.2

Segmentation and Extraction Algorithm Based on Mask
RCNN
(Wang et al., 2021)

Fruit 360 dataset 9:1 94.9

Real-time detection YOLOv5
(Wang et al., 2022)

Sugarbeet image dataset 9:1 90.0 20.8

Lightweight detection YOLOv5
(Zhang et al., 2023)

Large-scale open-source dataset IP102 9:1 98.6 15.2

CNN disease detection
(Agarwal et al., 2020)

Tomato leaves dataset from plantvillage 20:1 91.2

Dense Higher-Level Composition DETR
(Yang et al., 2023)

IDADP dataset Not mentioned 93.5 24.4
frontiersin.org

https://doi.org/10.3389/fpls.2024.1409544
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xin and Li 10.3389/fpls.2024.1409544

Fron
the model adopts the Focaler-IoU loss function in place of

the conventional IoU loss. This strategic alteration aims at

honing the focus on more challenging samples without

amplifying the parameter count or computational

complexity, thereby enhancing accuracy.
In the second section, we will delve into the dataset and the

overarching architecture of FCHF-DETR. Moving on to the third

section, we will undertake a series of ablation studies to dissect the

impact of different modules on FCHF-DETR’s performance,

complemented by visual illustrations. The fourth section is

dedicated to a comparative analysis, highlighting the merits of

our model vis-à-vis the prevalent RT-DETR-R18, and discussing

prospective avenues for refinement. We will conclude by

encapsulating the essence of our model and exploring its potential

implications for practical applications.
2 Materials and methods

2.1 Data collection

To improve the model’s generalization, the dataset includes

tomato leaves photographed from multiple perspectives,

backgrounds, lighting conditions, and featuring different disease

types. A large collection of images was curated to enable accurate

detection of minor diseases. However, due to the scarcity of public

tomato leaf disease datasets, this study utilized the Tomato Leaf

Diseases Detection Computer Vision dataset (Figure 1A) and the

Tomato Disease Multiple Sources dataset (Figure 1B) from Kaggle.

Despite their usefulness, these datasets have limitations, especially

the oversimplified backgrounds with isolated leaves, which differ

from real-world scenarios.

To overcome this and enhance the model’s ability to detect

small-scale diseases, we augmented these datasets with 512

additional tomato leaf photos we collected (Figure 1C), creating a

comprehensive dataset of 3147 images for this experiment. This

carefully curated image collection features specimens of various

resolutions and sizes, taken from many angles to ensure data
tiers in Plant Science 04
diversity (Figure 1). The detailed presentation of tomato leaves

closely mirrors actual detection settings, including the effects of

natural elements like lighting and shadows. To simulate rainy-day

detection conditions, we deliberately reduced the clarity of some

images, emulating real-world challenges and enhancing the model’s

robustness and applicability.

Images in the dataset were classified into five categories using

LabelMe software: ‘Late blight leaf’, ‘Early blight leaf’, ‘Septoria leaf

spot’, ‘Mold leaf’, and ‘Yellow virus leaf’. In the experimental setup,

the dataset was divided into training, validation, and testing sets in

an 8:1:1 ratio.
2.2 Date preprocessing

During data preprocessing, we utilized the Mosaic data

augmentation technique (Bochkovskiy et al., 2020) to combine four

unique images into one composite image. This composite image

undergoes random scaling, flipping, shifting, and color adjustments

to enhance the model’s generalization ability. This technique enriches

the dataset with extensive contextual details and various object

instances in each synthesized image, as shown in Figure 2.

In tomato leaf disease detection, the uneven distribution of

smaller target samples could hinder the model’s training efficiency.

Using the Mosaic augmentation not only increases the sample

volume but also balances the distribution of smaller targets,

improving the model’s ability to detect them. Visualizing the

disease targets and bounding boxes clarifies the spatial

distribution of label centroids, with ‘x’ and ‘y’ axes representing

the centroids’ coordinates and color intensity indicating proximity

to the image center.

The visualization (Figure 3) highlights the distribution of target

box sizes in the dataset, showing a relatively uniform color gradient

across the image. This uniform color gradient suggests a balanced

mix of large and small targets, achieved by careful preprocessing of

the defect bounding boxes. This processing ensures fair

representation of all target sizes in the dataset, counteracting any

original bias towards larger defects. Aiming for a uniform

distribution of defect sizes enhances the model’s ability to detect
FIGURE 1

Samples of dataset, where (A) is the data from Tomato Leaf Diseases Detection Computer Vision dataset, (B) comes from Tomato Disease Multiple
Sources dataset, (C) is the data collected for this paper’s research.
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anomalies at various scales. This approach reduces size-related bias

during training, enabling the model to accurately identify defects of

different sizes in real scenarios. Ultimately, this preprocessing effort

boosts the model’s generalization and balances its detection ability,

leading to enhanced overall performance.
2.3 Overall structure of FCHF-DETR

This study presents the FCHF-DETR model (Figure 4), a

streamlined yet precise detection network for various tomato leaf

diseases, based on the RT-DETR-R18 (Lv et al., 2024) framework.

The detailed structure of the proposed FCHF-DETR model is

outlined below.

RT-DETR-R18 and the newly introduced FCHF-DETR are

based on three main components: the Backbone, the Hybrid

Encoder, and the Transformer Decoder. The Backbone acts as a

feature extraction unit, effectively distilling multi-level features from

input images, especially from the last three stages, S3, S4, and S5.

These features are then fed into the Hybrid Encoder for further

processing, which includes the AIFI module focusing on S5 feature

maps to enhance precision and reduce complexity, and the CCFM
Frontiers in Plant Science 05
module working with S3 and S4 features, using fusion blocks for

feature amalgamation, refined by 1x1 convolutions.

RT-DETR-R18’s original backbone, based on ResNet18,

contained numerous convolutional modules, hindering real-time

detection and mobile deployment. Additionally, early versions of

the AIFI module did not significantly improve accuracy. To

address these challenges, this study introduces the FCHF-DETR

approach, carefully crafted for efficient and accurate tomato leaf

disease detection. Key improvements include integrating

FasterNet instead of ResNet18 and adding PConv layers to

enhance feature extraction speed and reduce model size;

replacing the AIFI module with Cascaded Group Attention for

increased efficiency; substituting the CCFM module with HSFPN

for better feature fusion; and adopting the Focaler-IoU loss

function to improve accuracy for difficult samples without

increasing complexity.

2.3.1 Lightweight network establishment
RT-DETR-R18 ’ s ResNet-18 backbone , fi l l ed wi th

convolutional modules, results in high computational needs and

a large parameter count. Targeting mobile device deployment, this

study prioritizes precise detection, faster inference, fewer
FIGURE 2

Mosaic data augmentation, randomly combining four pictures together.
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parameters, and improved device compatibility. FCHF-DETR

features a streamlined Backbone with FasterNet (Chen et al.,

2023), balancing quick processing and accuracy, as depicted in

Figure 5. FasterNet’s core includes FasterNet Blocks and PConv

layers, dynamically adjusting convolution ranges based on data

relevance for efficient processing.
Frontiers in Plant Science 06
2.3.1.1 Partial convolution

Partial convolution, or PConv, uses a unique binary masking

technique to accurately distinguish valid from invalid data points. It

dynamically adjusts the convolution kernel’s reach according to this

distinction, focusing the convolution process on valid data. This

method greatly enhances the model’s resilience in data

incompleteness scenarios, preserving maximum information and

minimizing data gap impacts. Compared to traditional

convolutions (Figure 6A), PConv provides greater flexibility,

efficiency, and precision in processing datasets with missing

entries. Unlike Depth-Wise (Figure 6B) separable convolution

(Chollet, 2017), known for fewer parameters and efficiency,

PConv excels in managing complex imaging tasks with missing

areas (Figure 6C). This suitability makes PConv ideal for

applications like image restoration and content filling, where it

effectively addresses image voids.

Given the similarity across feature maps of different channels,

PConv efficiently performs convolution on a subset of input

channels to extract spatial features, as shown in the Figure 6C.

This method leaves the other channels unchanged. Assuming equal

channel counts for input and output feature maps, PConv’s

computational complexity, in terms of FLOPs, is significantly

reduced:

FLOPsPConv = h� w � k2 � c2p

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

cp is the number of channels for conventional convolution.
FIGURE 4

The overall architecture of FCHF-DETR, which contains Backbone, Cascaded group attention (CGA), High-level screening feature-fusion pyramid
network (HSFPN), Focaler-CIoU loss function and Detection head.
FIGURE 3

Tomato leaf disease size quantification framework based on
target detection.
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In practical implementation, there is generally r = cp=c = 1=4,

so the FLOPs of PConv are only 1/16 of those of conventional

convolutions.

Memory access status of PConv:

MEMPConv = h� w � 2cp + k2 � c2p ≈ h� w � 2cp

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

cp is the number of channels for conventional convolution.

The memory access count of PConv is only 1/4 of that of regular

convolution, and the remaining (c − cp) channels do not participate

in the calculation, so there is no need for memory access.

RT-DETR-R18’s backbone network focuses on improving

detection accuracy with a complex structure and more parameters
Frontiers in Plant Science 07
for slightly enhanced capabilities. However, this approach may

impact computational and memory efficiency. In fast-processing

and resource-limited scenarios, like tomato leaf disease detection,

FasterNet’s streamlined architecture could provide a better balance

of accuracy and efficiency.
2.3.2 Cascaded group attention
The attention mechanism is pivotal in tomato leaf disease

recognition, with its primary capability being the substantial

enhancement of recognition accuracy and processing efficiency

through the focus on and emphasis of key features related to

diseases in images. In environments characterized by complex

backgrounds or varied disease manifestations, traditional image

recognition techniques can overlook important details or result in

misjudgments due to information overload. In contrast, the
FIGURE 5

Fasternet’s backbone leverages deep learning for efficient feature extraction and accelerated neural network computations.
FIGURE 6

(A) Standard convolution applies filters across the entire input. (B) Depth-Wise convolution separates channels for independent processing.
(C) Partial convolution dynamically adapts to missing data areas.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1409544
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xin and Li 10.3389/fpls.2024.1409544
attention mechanism significantly improves the model ’s

effectiveness in distinguishing between healthy and diseased

leaves through the construction of rich feature interactions and

the optimization of importance allocation. This mechanism

guarantees that the model maintains high recognition accuracy

even amidst complex backgrounds or in cases of unclear symptoms.

We’ve incorporated the Cascaded Group Attention (CGA)

(Chen et al., 2023) mechanism, shown in Figure 7, to effectively

address the computational efficiency challenges often found with

the SE attention (Hu et al., 2018) approach. Traditional

mechanisms such as SimAM (Yang et al., 2021) falter in complex

scenes, and CBAM’s (Woo et al., 2018) complexity may overload

the model, slowing down inference. Unlike SE, CA, and CBAM,

CGA excels in nuanced feature processing via systematic grading

and grouping, enhancing feature differentiation. CGA highlights

inter-channel and spatial relationships and uses a cascaded

framework to enrich layers with informative attention outputs.

This progressive approach makes CGA highly adaptable and

effective in managing complex features, providing a balanced

depth and breadth in analysis.

~xij = Attn(XijW
Q
ij ,XijW

K
ij ,XijW

V
ij )

~xi+1 = Concat½~xi,j�j=1 : hWp
i

Where:

j-th head computes the self-attention over Xij represents the j-th

split of the input feature Xi,   i : e :,

Xi = ½Xi1,  Xi2,……,Xih� and 1 ≤ j ≤ h, h represents the total

number of heads,

WQ
ij , W

K
ij , W

V
ij represent projection layers mapping the input

feature split into different subspaces,
Frontiers in Plant Science 08
WP
i represents a linear layer that projects the concatenated

output features back to the dimension consistent with the input.

Using feature segmentation instead of the full feature set for each

attention head is more efficient and reduces computational cost. While

effective, this approach can be improved by enabling the Q, K, and V

layers to project richer features, thus enhancing their capabilities. A

cascading strategy for attention maps, as shown in the Figure 7,

involves incrementally adding each head’s output to the next,

enhancing feature refinement. This systematic accumulation enables

progressive refinement of feature representation:

X
0
ij = Xij + ~Xi(j−1),   1 < j ≤ h

Where:

X
0
ij represents the addition of the j − th input split Xij and the

(j − 1)-th head output ~Xi(j−1).

In the self-attention computation, we redefine Xij as the novel

input feature for the j − th attention head. Furthermore, we’ve

introduced an additional Token Interaction layer post Q-

projection, enriching the self-attention mechanism’s capability to

concurrently apprehend local and global relationships, thereby

amplifying the feature representation.

In our work, we replaced RT-DETR-R18’s original AIFI module

with the CGA approach, yielding two key advantages. Firstly, varied

feature segmentation for each head enhances attention map

diversity. This is similar to group convolution, where cascaded

group attention can save Flops and parameters by a factor of h.

Secondly, layering the attention heads deepens the network,

enhancing capacity without additional parameters. With reduced

channel dimensions for Q and K in attention map computations,

the resulting latency overhead is minimal. This refined approach

enables precise disease localization across sizes in tomato leaf

disease detection, significantly improving detection accuracy.
FIGURE 7

Cascaded Group Attention employs sequential attention layers, grouping features to focus progressively, enhancing representation by refining
attention at multiple scales for improved contextual learning.
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2.3.3 High-Level Screening-feature Fusion
Pyramid Networks

The High-Level Screening-feature Fusion Pyramid Network

(HSFPN) (Chen et al., 2024) is crafted to build hierarchical

feature pyramids attuned to scale variations, as shown in

Figure 8. This design allows HSFPN to precisely detect disease

features on tomato leaves, varying in size and shape, thus improving

detection accuracy and robustness. Furthermore, HSFPN’s layered

approach to feature fusion preserves detailed information, crucial

for identifying early-stage or subtle leaf disease indicators.

Consequently, HSFPN outperforms CCFM, particularly in

complex agricultural sett ings and in detect ing finely

detailed objects.
2.3.3.1 Selective Feature Fusion

Selective Feature Fusion (SFF), key to HSFPN, shown in

Figure 9, crucially combines feature maps from various scales.

The SFF module uses higher-level features as weights to filter

through and selectively extract relevant information from low-

level features. This involves scaling higher-level features to match

low-level feature dimensions, using methods like transposed

convolution and bilinear interpolation. Then, these scaled

higher-level features act as attention weights to highlight

valuable insights from low-level features. This fusion strategy

effectively combines the semantic depth of high-level features

with the detailed nuances of low-level features, greatly

improving the model ’s abi l i ty to handle mult i -sca le

data challenges.

Given a high-level feature fhigh ∈ RC*H*W and a low-level

feature flow ∈ RC*H1*W1 , the process begins by expanding fhigh
through a transposed convolution operation. This operation

utilizes a stride of 2 and a kernel size of 3� 3, enlarging fhigh to a

new dimension RC*2H*2W .
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Following this, to reconcile the dimensions of the high-level and

low-level features, bilinear interpolation is employed to either

upscale or downscale the high-level features. This adjustment

results in a feature fatt that matches the low-level feature

dimensions in RC*H1*W1 , thus facilitating their subsequent

integration:

fatt = BL(T − Conv(fhigh))

fatt = flow*CA(fatt) + fatt

Next, use the CA module to convert advanced features into

corresponding attention weights to filter out low-level features, after

obtaining features with the same dimension. Finally, the filtered

low-level features are fused with high-level features to enhance the

feature representation of the model and obtain fout ∈ RC*H1*W1 .

Integrating HSFPN with CCFM significantly enhances disease

detection precision in tomato leaf images, especially for size-varying

disease manifestations. HSFPN’s layered feature pyramid

architecture skillfully captures and defines features across scales,

greatly improving the model’s sensitivity and accuracy in

identifying disease stages, from small lesions to widespread areas.

HSFPN’s strategic use of multi-scale features not only strengthens

the model’s ability to detect small targets but also maintains accuracy

for larger ones. This dual strength effectively addresses traditional

challenges in detecting varying disease sizes, offering robust support for

precision agriculture’s complex requirements.

2.3.4 Focaler-CIoU
Sample imbalance is a common issue in object detection,

typically appearing as simple and difficult samples, categorized by

target size. Simple samples involve easier-to-detect targets, while

difficult samples include very small targets, challenging

accurate localization.
FIGURE 8

High-Level Screening-Feature Fusion Pyramid Networks (HSFPN) integrate multi-scale features with high-level screening for enhanced object
detection, achieving superior performance through hierarchical feature fusion.
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In tasks with mainly simple samples, focusing on bounding box

regression for these targets can significantly improve detection.

Conversely, in scenarios with prevalent difficult samples, refining

regression for these targets becomes essential. To address this

variance, the IoU loss function can be adapted using a linear

interval mapping method (Zhang and Zhang, 2024). This method

enables flexible adjustment between simple and difficult samples,

fine-tuning bounding box regression accuracy and improving

detection performance. The modified IoU loss function, designed

to address sample imbalance, is mathematically defined as follows:

IoU =
B ∩  Bgtj j
B ∪  Bgtj j

IoUfocaler =

0,   IoU < d

IoU−d
u−d ,   d ≪ IoU ≪ u                                

1,   IoU > u

8>><
>>:

Where:

B represents the predicted box

Bgt represents the GT (goal target) box

IoUfocaler is the reconstructed Focaler-IoU

IoU is the original IoU value

½d, u� ∈ ½0, 1�
Applying Focaler-IoU loss to existing IoU based bounding box

regression loss function CIoU:

CIoU = IoU −
r2(b, bgt)

c2
− aυ

a =
υ

(1 − IoU) + υ

υ =
4
p2 (arctan

wgt

hgt
− arctan

w
h
)2

LFocaler−CIoU = LCIoU + IoU − IoUFocaler

Where:
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b represents the center points of anchor box

bgt represents the center points of GT box

r( � ) represents the Euclidean distance

c represents the diagonal minimum distance enclosing

bounding box between b and bgt

wgt represents the width of GT box

hgt represents the height of GT box

w represents the width of anchor box

h represents the height of anchor box

In the field of tomato leaf disease detection, the Focaler-CIoU

loss function offers significant advantages over the loss function

originally used in RTDETR. Focaler-CIoU enhances the model’s

ability to recognize challenging samples by adjusting the loss

function to focus on samples of varying difficulty levels,

particularly for disease samples that are challenging to distinguish

or have indistinct boundaries, by assigning higher weights. This is

particularly important when dealing with lesions of varied sizes and

shapes on tomato leaves, as accurately identifying these diseases in

their early stages is often challenging. The characteristic of Focaler-

CIoU can significantly enhance the sensitivity in detecting early or

minor lesions, lower the rate of missed detections, and thus boost

the overall detection efficiency while maintaining high accuracy. It

holds considerable importance in enhancing the early prevention

and control of tomato leaf diseases.
3 Results

This section details the experimental, hyperparameter settings,

and training strategies in Section 3.1. Section 3.2 describes the

indicators and calculation formulas employed to evaluate model

performance. Sections 3.3 and 3.4 discuss the study’s results,

utilizing ablation experiments and visual displays, respectively.
3.1 Experimental setup

The experiment utilized an OpenBayes cloud server equipped

with an Nvidia A100 80GB MIG 1g.10g graphics card, boasting
FIGURE 9

Selective feature fusion in High-Level Screening-Feature Fusion Pyramid Networks intelligently merges critical high-level features, enhancing object
detection by optimizing feature representation.
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16GB of graphics memory, and ran on a Linux operating system.

This experiment was implemented using Python 3.10

and Cuda11.8.

The model training strategy entailed: For IoU-aware query

selection, the first 300 encoder features were selected to initialize

the decoder’s object query. Training employed the AdamW

optimizer, with a base learning rate of 0.0001, weight decay of

0.0001, global gradient clipping norm of 0.0001, 2000 linear warm-

up steps, and spanned 100 epochs.
3.2 Evaluation indicators

In the field of object detection, performance is primarily

evaluated by Precision (P), Recall (R), and Mean Average Precision

(mAP). Precision represents the ratio of correctly predicted positive

samples to all samples labeled as positive by the model. Recall

measures the proportion of correctly identified positive samples

among all actual positive samples. mAP denotes the mean of the

average precisions across all categories. The corresponding formulas

for Recall, Precision, and mAP are provided below:

P =
TP

TP + FP

R =
TP

TP + FN

AP =
Z 1

0
P(R)dR

mAP = o
n
i=1APi
n

TP (True Positive) refers to correctly identified positives, FN

(False Negative) to positives incorrectly labeled as negatives, and FP

(False Positive) to negatives incorrectly labeled as positives.

Precision (P) is the ratio of correctly predicted positive

observations to the total predicted positives, while Recall (R) is

the ratio of correctly predicted positive observations to all actual

positives. The area under the curve drawn through Precision (P)

and Recall (R) values on the PR graph represents the Average

Precision (AP), and the mean of AP values across all categories

yields the Mean Average Precision (mAP).

Beyond the aforementioned performance metrics, model size

and computational cost are assessed using the number of

parameters and FLOPs, to facilitate the selection of a lightweight

network for deployment on mobile devices. A reduction in

parameters and FLOPs enhances model efficiency under identical

computational resources, concurrently minimizing memory

consumption and boosting computational speed.
3.3 Ablation experiment

Each module within FCHF-DETR was evaluated through

ablation experiments to discern which modules enhance detection
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performance and which reduce computational and parameter costs.

RT-DETR-R18 served as the benchmark model, with the

introduction of the lightweight network structure, FasterNet, as

FCHF-DETR’s backbone to assess its capacity to reduce model

parameters and enhance inference speed effectively. Subsequently,

the AIFI module in the Efficient Hybrid Encoder was replaced with

Cascaded Group Attention to extract finer features. Additionally,

the CCFM module was substituted with HSFPN, capable of

capturing and expressing multi-scale features, thereby enhancing

network accuracy. Ultimately, the model’s original loss function was

optimized to the Focaler-CIoU loss function, adept at efficiently

capturing edge information of tomato leaf diseases.

Initially, we evaluated the impact of integrating lightweight

backbone networks versus not integrating them on the test set.

Comparison of the benchmark model RT-DETR-R18 with RT-

DETR FasterNet (Experiments 1 and 2) was performed. The

introduction of lightweight backbone networks led to decreases of

1.9% and 0.5% in Precision and Recall, respectively. The mAP50-95

and mAP50 values decreased by 0.6% and 0.3%, respectively, while

the number of Parameters decreased by 21%, the FPS increased by

1.8, and the FLOP decreased by 13.6%. These results suggest that

FasterNet, as the backbone network of RT-DETR-R18, effectively

reduces computational complexity and parameter count, and

significantly enhances inference speed. Although the accuracy has

marginally decreased, the improvement in efficiency renders this

loss acceptable.

A lightweight network structure significantly trims model size

and elevates detection speed, albeit at the expense of detection

accuracy. Consequently, methods that enhance accuracy without

incurring substantial computational costs are crucial.

Subsequently, employing the lightweight RT-DETR model with

FasterNet as the backbone, we examined the performance

alterations resulting from the integration of various modules.

Experiments 3, 4, and 5 involved the replacement of the AIFI

module in the original Efficient Hybrid Encoder with the SimAM,

SE, and CGA attention mechanisms, respectively, each contributing

to an improvement in accuracy. However, given the focus on

lightweight networks in this study, the CGA attention mechanism

was selected for further investigation. In Experiments 6 and 7, the

CCFM module in the Efficient Hybrid Encoder was replaced by

HSFPN without the SFF module and HSFPN with the SFF module,

respectively. Upon comparison, the HSFPN with the SFF module,

which offered greater accuracy improvements, was chosen. Building

on Experiment 7, the loss function of the benchmark RT-DETR-

R18 model was optimized, with both CIoU and Focaler-CIoU loss

functions being employed for training. Table 2 illustrates the

enhancement in detection performance attributable to the

lightweight DETR model.
• Experiments 3, 4, and 5 evaluated the integration of

SimAM, SE, and CGA attention mechanisms, respectively,

into the RT-DETR-R18 model with FasterNet as the

backbone network. Compared to Experiment 2, the

additions of SimAM, SE, and CGA resulted in increases

of 0.9%, 1.8%, and 2.3% in the mAP50-95 index,

respectively, and changes of -0.1%, 0.4%, and 0.7% in the
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Fron
mAP50 index for SimAM, SE, and CGA, respectively. The

performance metrics suggest that SimAM, likely a non-

parametric attention mechanism, notably improved the

model’s size and inference speed. However, given that

SimAM only slightly improved, or even reduced,

accuracy, despite a comprehensive comparison, the CGA

attention mechanism was ultimately selected due to its

significant accuracy improvements, despite a slight

increase in model parameters. Additionally, substituting

the AIFI module with the selected attention mechanism

enhanced the accuracy of tomato leaf disease detection,

albeit with a minor reduction in inference speed and a slight

increase in model parameters, aligning with the initial

objective of replacing the AIFI module.

• Experiments 6 and 7 demonstrate that replacing the CCFM

module in the RT-DETR model with HSFPN and

HSFPN_SFF leads to significant improvements in the

detection accuracy of the model. In the test set, HSFPN

and HSFPN_SFF increased the parameter count by 0.3M

and 0.5M, respectively, and reduced inference speed by 0.3

and 0.4, respectively. In Experiment 6, incorporating the

HSFPN module yielded a 7% increase in Precision, a 1%

increase in mAP50-95, and a 0.5G reduction in FLOPs.

However, considering the increase in model parameters and

the decrease in inference speed, the improvement in

detection accuracy is deemed insufficient. In Experiment

7, the integration of the SFF module into feature fusion

resulted in increases of 1% in P, 1.3% in Recall, 2.6% in

mAP50-95, and 0.3% in mAP50. Although the model

parameters have increased slightly and the inference

speed is slower compared to FasterNet+CGA in

Experiment 5, the significant improvement in detection

accuracy relative to the benchmark network satisfies the

lightweight standard.

• In Experiments 8 and 9, the loss functions of the benchmark

network were substituted with CIoU and Focaler CIoU,

respectively. Although the impact on inference speed,

parameter count, and computational complexity is
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minimal, the CIoU loss function fails to yield a significant

improvement in detection accuracy. However, optimization

of the Focaler CIoU loss function led to increases of 0.3% in

Precision and Recall, and 1.7% and 0.3% in mAP50-95 and

mAP50, respectively. The uneven distribution of tomato

leaf disease and the presence of small or edge targets in the

images pose challenges to the detection capabilities of the

model, which is expected. The introduction of the Focaler

CIoU loss function significantly enhances the localization

and detection of challenging targets, thereby enhancing the

accuracy and robustness of the model for small,

overlapping, and edge targets.
In conclusion, compared to RT-DETR-R18, the proposed

FCHF-DETR demonstrates a 1.7% increase in Precision, a 3.1%

increase in Recall, a 6% increase in mAP50-95, and a 1% increase in

mAP50. The number of parameters decreased by 3.6M, FPS

increased by 2.2, FLOP decreased by 9.2G, thereby significantly

improving the speed and accuracy of tomato leaf disease detection.

Therefore, FCHF-DETR is highly suitable for deployment on

terminal devices in agricultural environments, such as cameras,

offering the high detection performance necessary for real-

world applications.
3.4 Visual display

Across a test set comprising 3147 images, FCHF-DETR

precisely identified eight types of tomato leaf diseases, alongside

healthy leaves, attaining an overall mAP50-95 of 89.1% and an

mAP50 of 97.2%.

To illustrate the detection performance benefits of the proposed

method, a visual representation of the detection results for tomato

leaf diseases under various conditions is provided. Figure 10 depicts

the model’s detection capability in straightforward settings,

characterized by favorable shooting conditions, a simple

background, clearly visible affected areas on the tomato leaves,

and a minimal number of leaves in the image. Figures 10A–H
TABLE 2 Ablation experiment results: comparative analysis of all modules used in FCHF-DETR.

Model P R mAP50-95 mAP50 Parameters FPS GFLOPs

1 RTDETR-R18 94.7 93.6 83.1 96.2 19,880,748 21.9 57.0

2 RTDETR-FasterNet 92.8 93.1 82.5 95.9 15,792,928 23.7 49.5

3 RTDETR-FasterNet-SimAM 94.1 93.7 83.4 95.8 15,621,884 24.8 47.3

4 RTDETR-FasterNet-SE 94.9 95.2 84.3 96.3 16,882,972 21.7 54.5

5 RTDETR-FasterNet-CGA 95.1 95.1 84.8 96.6 15,812,212 24.5 48.3

6 RTDETR-FasterNet-CGA-HSFPN 95.8 95.2 85.8 96.7 16,101,128 24.2 47.8

7 RTDETR-FasterNet-CGA-HSFPN_SFF 96.1 96.4 87.4 96.9 16,314,816 24.1 47.9

8 RTDETR-FasterNet-CGA-HSFPN_SFF-CIoU 95.8 96.1 87.3 97.0 16,307,482 24.1 47.8

9 RTDETR-FasterNet-CGA-HSFPN_SFF-
Focaler-CIoU

96.4 96.7 89.1 97.2 16,265,580 24.1 47.8
fr
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demonstrate the model’s ability to concurrently and accurately

detect four distinct tomato leaf diseases in uncomplicated

environments: late blight, early blight, Septoria spot, and mold

leaf. Given that yellow viruses typically cluster and are found in

complex settings, their detection results were not showcased in the

depiction of simple environments.

The integration of the CGA attention mechanism and HSFPN

feature fusion module endows the model with a robust capability to

extract pivotal information from images, ensuring high detection

accuracy across various tomato leaf diseases. Figure 11 illustrates

the model’s detection performance in complex scenarios, including

situations where leaves are at the image’s edge or partially obscured.

Figures 11A–D reveal that the FCHF-DETR model precisely

identifies occluded diseased leaves. Figures 11I–L demonstrate

that, with the Focaler-CIoU loss function integrated, the model

enhances the detection accuracy of challenging edge targets,

mitigating the original model’s limitation in identifying partially

visible diseased leaves. In the other images, the enhanced model is

shown to effectively identify edge targets, even those obscured by

surrounding foliage.

To underscore the strengths of the proposed model in complex

scenarios, Figure 12 illustrates its detection capabilities in densely

populated environments. Given the dense distribution and potential

for small spots on tomato leaves in real-world settings, detecting

diseased leaves in such environments is paramount. Despite these

challenges, the model maintains robust performance. Figure 12

demonstrates the model’s efficacy in identifying diseased tomato leaf

areas within dense foliage, under varied conditions such as intense

illumination area A, D, shadow area B, E, or high-dense area C, F.

Acknowledging weather-related challenges at tomato

cultivation sites, pixel reduction was applied to part of the test set

data to simulate the effects of rain or dense fog on camera imagery.

Figure 13 reveals that, even with reduced pixel quality, the FCHF-

DETR model reliably detects most tomato leaf diseases, with only a
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minor impact on detection accuracy. The sustained performance in

simulated rainy and foggy conditions is credited to the Cascaded

Group Attention and HSFPN feature fusion mechanisms within the

Efficient Hybrid Encoder, capable of extracting key features from

blurred images. Additionally, the incorporation of the Focaler-

CIoU loss function enables the detection of leaf diseases that pose

challenges for the RT-DETR-R18 model, significantly aiding

practical deployment.

The visual evidence from Figures 10–13 confirms that FCHF-

DETR adeptly addresses a range of challenges typical in real

agricultural settings for tomato leaf disease detection, effectively

resolving longstanding issues in the sector.
4 Discussion

In contemporary agricultural practices, numerous tomato

plants are afflicted by leaf diseases, making manual detection

excessively time-consuming and labor-intensive. Current

technologies frequently fail to balance processing speed with

detection accuracy, particularly when identifying small disease

spots, presenting clear drawbacks. To address this challenge, this

study introduced FCHF-DETR, a high-precision, lightweight

detection algorithm derived from the RT-DETR-R18 framework.

A dataset comprising 3147 images of tomato leaf diseases was

compiled, encompassing diverse scenes and levels of image clarity.

To streamline the model and enhance memory efficiency, the

traditional ResNet18 was substituted with FasterNet in the

backbone network. Concurrently, within efficient hybrid encoders,

replacing the AIFI module with a cascaded group attention

mechanism and the CCFM module with HSFPN notably boosted

detection accuracy with minimal impact on speed.

Furthermore, to better identify challenging samples, the Focaler-

CIoU loss function was introduced, enhancing the model’s
FIGURE 10

(A–H) demonstrate the detection of four distinct types of plant leaf diseases under controlled conditions. The bounding box within the figure
highlights the location and specific types of tomato leaf diseases.
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FIGURE 11

(A–D) illustrate the detection performance of the targeted leaf disease in scenarios where it is obscured by other leaves. (E–H) demonstrate the detection
performance of the targeted leaf disease when situated at the periphery of the image and simultaneously obscured by other foliage. (I–L) reveal the
detection performance of the targeted leaf disease at the image’s edge.
FIGURE 12

(A, D) present the detection results of leaf disease under conditions of intense illumination. (B, E) depict the detection results of leaf disease within shaded
environments. (C, F) illustrate the detection effectiveness of leaf disease in highly dense settings.
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performance across the dataset. Experimental results indicated that

FCHF-DETR achieved an mAP50-95 of 89.1% on the test set, marking

a 6% improvement, and an mAP50 of 97.2%, a 1% increase.

Concurrently, FLOPs decreased by 9.2G, and the model’s parameter

count was reduced by 3.6M. These achievements showcase the

method’s enhancement of detection accuracy and successful

reduction in the model’s computational load, illustrating an effective

balance between accuracy and efficiency.

In practical agricultural settings, particularly on diverse

farmlands, a common challenge arises: the overlapping or

obstruction of leaves from different crops, markedly impacting

tomato leaf disease detection. For instance, in fields where

tomatoes coexist with taller crops like corn or legumes, the foliage

of these crops can obscure tomato leaves, masking critical disease
Frontiers in Plant Science 15
features. Under these conditions, the effectiveness of even high-

precision detection algorithms like FCHF-DETR may be markedly

limited. Leaf occlusion not only diminishes the available feature

information for algorithmic recognition but can also lead to errors,

like mistaking occluded edges or shadows for disease spots.

This issue underscores the limitations of current visual-based

object detection algorithms in navigating complex agricultural

scenes. Addressing this challenge necessitates a deeper

comprehension of crop interactions and growth patterns to

develop algorithms capable of adapting to such diversity and

complexity. Furthermore, employing multiperspective or

multimodal data acquisition techniques, like integrating aerial and

lateral imagery or additional sensor data, could mitigate these issues

and enhance lesion detection in occluded conditions.
FIGURE 13

(A–D) and (I–L) demonstrate the detection efficacy of tomato leaf disease in standard conditions, while (E–H) and (M–P) exhibit the comparative
detection efficacy of the model on the test set following pixel reduction processing and the simulation of rainy conditions within an authentic
plantation setting.
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Meanwhile, we also investigated that the manifestation of

tomato leaf disease may vary in different natural environments

due to various factors such as climate, soil type, and humidity,

resulting in certain types of leaf diseases being more common in

specific environments. For example, in high humidity and warm

environments, the incidence of downy mildew may be much higher

than that of early or late blight in arid environments. The impact of

these environmental factors on disease occurrence requires the

detection system to adjust the weight of various leaf disease

detection according to different natural conditions, in order to

improve the detection accuracy and efficiency in specific

environments. However, even the high-precision and high-

efficiency detection algorithm FCHF-DETR invented in this

article adopts the same detection strategy for all types of leaf

diseases, failing to fully consider the diversity of natural

environmental factors. This may lead to insufficient sensitivity of

algorithms to detecting high-risk diseases in certain specific

environments, thereby reducing overall detection efficiency

and accuracy.

In order to solve this problem, future detection algorithms

need to introduce environmental awareness mechanisms, analyze

and learn the occurrence patterns of diseases under different

natural environmental conditions, and dynamically adjust the

detection weights for different leaf diseases. This may involve

complex data collection and analysis, such as combining

meteorological data, soil conditions, and crop growth data,

using machine learning algorithms to predict the probability of

disease occurrence under different environmental conditions, and

optimizing the parameters of the detection model accordingly.

Through this approach, the detection system can adapt more

intelligently to different natural environments, improve the

detection accuracy of key diseases, and provide more reliable

technical support for agricultural production.
5 Conclusion

This study introduces FCHF-DETR, a lightweight model for

detecting tomato leaf diseases, effectively balancing accuracy and

speed. It employs data augmentation and reduction techniques to

adapt to real-world environments for detecting tomato leaf

diseases. FCHF-DETR enhances the RT-DETR-R18 framework

by integrating the lightweight FasterNet backbone, boosting

detection speed and reducing model parameters without

compromising accuracy. Additionally, it introduces the

Cascaded Group Attention mechanism, replacing the AIFI

module, and substitutes the CCFM module with HSFPN in the

original network. Despite a minor increase in computational

speed and model parameters, there’s a significant enhancement

in detection accuracy. The adoption of the Focaler-CIOU loss

function, replacing the original, further refines the accuracy for

cha l lenging samples wi thout a l ter ing parameters or

computational complexity. Experimental results reveal that
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FCHF-DETR surpasses RT-DETR-R18 with a 1.7% increase in

precision, 3.1% in recall, 1% in mAP50 and 6% in mAP50-95, and

reductions in parameters, FPS, and FLOPs. This signifies not just a

notable boost in accuracy but also a substantial decrease in the

model’s parameter count, thus offering robust support for

contemporary tomato leaf disease detection.

Future research will aim to refine detection accuracy in

diverse farmlands affected by overlapping leaf occlusion. We

plan to leverage multiperspective or multimodal data to

develop more adaptive detection algorithms. Additionally, to

accommodate varying tomato leaf disease patterns across

different environments, future algorithms will incorporate

environmental awareness mechanisms. Dynamic adjustments to

the detection priorities of different diseases will enhance the

accuracy and efficiency in specific environments, broadening

the algorithm’s applicability in complex real-world scenarios.
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