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Introduction: Cotton yield estimation is crucial in the agricultural process, where

the accuracy of boll detection during the flocculation period significantly

influences yield estimations in cotton fields. Unmanned Aerial Vehicles (UAVs)

are frequently employed for plant detection and counting due to their cost-

effectiveness and adaptability.

Methods: Addressing the challenges of small target cotton bolls and low

resolution of UAVs, this paper introduces a method based on the YOLO v8

framework for transfer learning, named YOLO small-scale pyramid depth-aware

detection (SSPD). The method combines space-to-depth and non-strided

convolution (SPD-Conv) and a small target detector head, and also integrates a

simple, parameter-free attentional mechanism (SimAM) that significantly

improves target boll detection accuracy.

Results: The YOLO SSPD achieved a boll detection accuracy of 0.874 on UAV-

scale imagery. It also recorded a coefficient of determination (R2) of 0.86, with a

root mean square error (RMSE) of 12.38 and a relative root mean square error

(RRMSE) of 11.19% for boll counts.

Discussion: The findings indicate that YOLO SSPD can significantly improve the

accuracy of cotton boll detection on UAV imagery, thereby supporting the

cotton production process. This method offers a robust solution for high-

precision cotton monitoring, enhancing the reliability of cotton yield estimates.
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1 Introduction

Cotton yield estimation is essential for the cotton production

process and can influence the price trend in the cotton market

(Sarkar et al., 2023). Cotton yield estimation can be carried out by

boll detection during the cotton fluffing period (Pokhrel et al.,

2023; Torgbor et al., 2023). The quantity of cotton bolls directly

affects the cotton harvest and is also a key indicator for assessing

the quality of cotton (Shi et al., 2022). A high precision boll

number detection model can quickly and accurately model yield

estimation before harvesting and make planting management

related decisions, which is economically vital for cotton

production (Thorp et al., 2020; Naderi Mahdei et al., 2023).

Traditional cotton production information detection methods

require sampling and frequent manual observation of cotton fields

(Tian et al., 2022; Kurihara et al., 2023). With the continuous

improvement of land transfer rate, large-scale planting rate and

technological content, driven by the whole mechanization, many

new technologies have been applied to the field of cotton

production, improving the development of cotton production

process intelligence (Muruganantham et al., 2022; Yan et al.,

2022). Although high-resolution, ground-shot images are not

suitable for cotton boll detection in field environments due to

their high acquisition costs. As remote sensing technology

develops, satellite positioning system and geographic information

system (GIS), unmanned aerial vehicle (UAV) remote sensing

technology has found broad applications (Dhaliwal and Williams,

2023; Hu et al., 2023; Kumar et al., 2023; Priyatikanto et al., 2023).

Due to the small scale of cotton bolls and the complexity of the field

background, large-scale monitoring methods such as satellite

remote sensing cannot describe the detailed changes of cotton

bolls in a small-scale range. Low-altitude UAV remote sensing

acquires the benefit of short cycle time and fast speed, so it provides

technical support for small- and medium-scale crop growth

monitoring (Eskandari et al., 2020; Fernandez-Gallego et al., 2020;

Hassanzadeh et al., 2021; Palacios et al., 2023).

UAVs provide excellent image acquisition flexibility at flight

altitude, flight area and various weather conditions for fast and

accurate crop monitoring (Bouras et al., 2023; X. Wang, Lei, et al.,

2023). UAV remote sensing combined with machine learning

algorithms is an essential area of re-search in target detection

studies based on UAV remote sensing images. In the study of

automated agave detection, the utilization of UAV image data has

demonstrated remarkable accuracy (Flores et al., 2021). Moreover,

red, green, blue (RGB) aerial imagery from UAV, coupled with the

faster regions with convolutional neural network (Faster R-CNN)

object detection model, prove effective in estimating plant density

(Velumani et al., 2021). The application of UAV image data for

training convolutional neural networks (CNNs) shows superior

performance compared to traditional machine learning methods

(Impollonia et al., 2022; Amarasingam et al., 2024; Skobalski et al.,

2024; Zou et al., 2024). High-resolution images significantly

enhance the accuracy of target detection. Collection of high-

resolution UAV RGB images provides a methodology for

counting plants at different growth stages of sunflowers and

corn seedlings (Bai et al., 2022). High-resolution UAV images,
Frontiers in Plant Science 02
when combined with suitable image segmentation algorithms,

serve as a basis for detection counting and analysis. In a study

focused on the detection and counting of citrus trees using high-

resolution UAV images, the connected component labelling

(CCL) algorithm was employed to segment and label individual

citrus trees in images (Donmez et al., 2021). The relationship

between image based manual counting and algorithmic counting

demonstrates high precision and efficiency through the utilization

of frequency filters, segmentation, and feature extraction

techniques (Azizi et al., 2024; Liu et al., 2024). Given sufficient

data, pre-trained deep learning models offer enhanced

generalization performance in target detection tasks. The pre-

trained ResNet 17 model, when applied to UAV-captured RGB

images of cotton seedlings, enables real-time estimation of the

quantity and canopy size of the seedlings in each frame (Feng

et al., 2020). Building on the success of this method, researchers

have further integrated transfer learning techniques into a new

framework that combines remote sensing and deep learning to

enhance processing efficiency. This integrated framework has

proven particularly effective in sparse counting tasks for

different plant species, such as potatoes and lettuce (Machefer

et al., 2020). Estimating crop density using vegetation indices is

applicable in the early and middle stages of crop growth, but its

performance is limited at maturity due to the gradual onset of

plant senescence, wilting leaves, and the impact of crop fruits

(Huang et al., 2018).

Following the analysis of various multispectral and RGB

vegetation indices, a neural network model can integrate the

analytical results to estimate vegetation coverage and crop density

(Garcıá-Martıńez et al., 2020). Remote sensing imagery has been

widely employed for crop segmentation in the later stages of crop

growth, yielding significant results. UAV images are also utilized in

computing the elevation difference between the crop canopy and

exposed soil surface, extracting cotton height during the boll

spitting period, and using it as a basis for estimating cotton yield.

The specific process involves validating UAV-based height

measurements using known ground reference points, segmenting

crop rows, and obtaining a plant height map based on global

positioning system (GPS) and image features (Feng et al., 2019).

Remote sensing image segmentation can be employed to detect the

quantity of target cotton bolls since cotton often exhibits distinct

optical features (such as color and morphology) from branches and

leaves in the later stages of growth. A cotton boll threshold

segmentation detection algorithm based on UAV remote sensing

images is proposed. Initially, spectral thresholds are derived from

input images through adaptive applications, automatically

distinguishing cotton bolls from other non-target items.

Subsequently, the derived thresholds and other morphological

filters are utilized for binary cotton boll classification to reduce

result noise (Yeom et al., 2018). Combining UAV remote sensing

data with multispectral images and cotton boll pixel coverage

enables the construction of a high precision cotton boll detection

model. This model primarily utilizes a Bayesian regularized back

propagation (BP) neural network to predict cotton yield from the

quantity of cotton bolls and spectral indices(R. Xu et al., 2018; W.

Xu et al., 2021).
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Due to the extension and interlacing of cotton leaves in the

background of the cotton field and the complex changes in the

external environment, the morphological characteristics of cotton

bolls in the field are variable and overlapping. Therefore, for cotton

boll detection in a field environment, the boll-spitting period is

considered the ideal phase. However, due to the large number and

small size of cotton bolls, a specific detection model is required to

achieve accurate applications (Fue et al., 2018). The YOLO series has

undergone multiple updates and iterations, making it suitable for

detection and segmentation in agriculture. This model builds upon

the YOLOv8 architecture with added modules for feature processing,

significantly improving the detection accuracy of small objects in UAV

images (G. Wang, Chen, et al., 2023). The real-time YOLOv8 model

has been effectively applied for detecting kiwifruit diseases, providing

real-time disease estimates (Xiang et al., 2023). Additionally, to address

the challenge of strawberry ripeness detection, the YOLOv8smodel and

the LW-Swin Transformer module have been employed to support the

strawberry picking process in orchard management (Yang et al., 2023).
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This study introduces an enhanced detection model, YOLO small-

scale pyramid depth-aware detection (SSPD), based on YOLOv8 to

improve the accuracy of UAV-based cotton boll detection during the

boll spitting period. High-resolution ground cotton boll images were

initially captured and utilized to train data on network models such as

YOLO SSPD. The trained model was subsequently transferred to

UAV remote sensing images for the detection and counting of cotton

bolls. The Detailed Process Overview is Shown in Figure 1.
2 Materials and methods

2.1 Dataset acquisition and preprocessing

This research was carried out fromAugust to October 2021 in the

Second Company of Experimental Field of Xinjiang Shihezi

University (latitude 44°18′N, longitude 85°58′E, average altitude

443 m), as shown in Figure 2. The experimental area was planted
FIGURE 1

The abstract process framework of this study.
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with “Xinlu Early No. 53” and “Xinlu Early No. 74”, utilizing the

planting pattern “one film, three cylinders and six rows” with the

design of a comprehensive and cramped row. The chosen cotton

variety was “Xinlu Early No. 53”, and the planting density is 20 plants

per squaremeter. The image data collection activities were carried out

in three stages of the cotton fluffing period. The three stages of

filming were 5 days after the first defoliant spraying (T1, September

8th), 3 days after the second defoliant spraying (T2, September 15th)

and 7 days before cotton picking (T3, September 25th).
2.2 UAV image data acquisition
and processing

This study uses a DJI M Atrice M600 PRO UAV (Shenzhen,

China) with third-party hardware and software extensions, a global

positioning system (GPS) positioning system, a flight imaging

receiver, an a3 Pro flight controller, a Lightbridge 2 high

definition (HD) digital mapper, and a remote control, with a load

capacity of 6.0 kg and an Isuzu Optics real-time camera (Hsinchu

County, Taiwan, China). The UAV captured datasets were all RGB

images, and the real-time camera parameters are shown in Table 1.

Each time the images were taken, three altitudes were flown, 60

meters, 40 meters and 20 meters from the ground. The UAV flight

speed was 2.8 m/s, the camera was oriented parallel to the main

flight path, the heading overlap rate was 70%, the side overlap rate

was 60%, the gimbal pitch angle was -80°, and the camera mode was

set to isometric intervals to increase the efficiency of the shooting as

well as to obtain a clear image of the UAV. The camera configured

and carried by the UAV is shown in Figure 3.
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Pictures taken by UAVs are characterized by small image size,

large data volume, and rich spatial information. Still, environmental

factors also directly affect, such as sunshine, wind direction, etc.

Therefore, even if multiple pictures are acquired in the same

environment, there will be differences in sensitivity and color,

which will directly affect the accuracy of the subsequent detection

of feature points, thus directly affecting the final use of remote

sensing data from UAVs for target detection using UAV remote

sensing data. In this paper, the steps of UAV remote sensing image

processing include UAV flight parameter setting, raw image

acquisition, remote sensing imaging stitching, region of interest

(ROI) selection and datasets cropping, and the remote sensing

image processing steps are shown in Figure 4.
A B

CD

FIGURE 2

Overview of study area: (A) illustrates the graph of Xinjiang, (B) represents the area of Shihezi, (C) represents the testing region, Cotton boll image
acquisition experimental area, the photos in (D) are the RGB images taken by a drone.
TABLE 1 Configuration of the hyperspectral camera carried by
the drone.

Parameter Value

Spectral bandwidth <15nm,collimated

Base imager type CMOS1 imager, CMOSIS
CMV2 2000based

Spatial resolution 408*216 per band

Frame rate Up to 340 hyperspectral cubes/second

Pixel pitch 5.5mm

Bit depth 7or10bit

RGB pixel 4 million
1CMOS-complementary metal-oxide semiconductor. 2CMV-CMOSIS machine vision.
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2.3 Datasets enhancement
and construction

The image annotation tool LabelImg (free and open source,

Taiwan, China) was installed, and each cotton bolls were

annotated. An extensible markup language (XML) record file

was generated for the training images output from each boll for

better image data management and analysis in subsequent studies.

In this study, the entirety of six training datasets was prepared,

including 600 images of each of T1, T2 and T3 randomly selected

from the ground data set and 50 segmented images of each of T1,

T2 and T3 irrelevantly chosen from the UAV images. The training

images were randomly cropped from the UAV RGB composite

images, each with a size of 640 x 640 pixels. Ground images of

7,000, 7,500, and 6,000 were acquired for the three periods, and

UAV cropped images of 250, 450, and 800 were acquired for the

three flight altitudes. The above two different scales of images were

randomly assigned in the proportion of 3:1:1 for the training,

validation and testing of the cotton bolls detection model.
Frontiers in Plant Science 05
During the construction of the cotton bolls datasets, due to the

direct influence of various reasons such as shooting time, climate,

flight speed, camera viewpoint, etc. The cotton boll image data

varied greatly, resulting in data imbalance, so it is necessary to carry

out data enhancement on the cotton bolls image datasets. To further

enhance the quality of the datasets, methods, for example, image

rotation, image panning, image mirroring and adding image noise,

are used to perform data enhancement on the existing datasets. The

way the UAV enhanced the RGB image data is shown in Figure 5.
2.4 Cotton boll detection models

The models were trained on a platform equipped with an

NVIDIA GeForce RTX 3060 laptop graphics processing unit

(GPU) with 16GB of random-access memory (RAM). This setup

provides powerful graphics processing, which is critical for handling

complex computations in deep learning models. The system

runs on Windows 10 x64 with a 12th generation Intel® Core™
A B

FIGURE 3

The DJI drone that collected the data, where (A) is the configuration of the DJI M600pro drone and (B) the RGB camera carried by the drone.
A B

F E D

C

FIGURE 4

Remote sensing image processing flow: (A) UAV commissioning, (B) UAV flight parameter setting, (C) raw image acquisition, (D) remote sensing
imaging stitching, (E) ROI selection and (F) datasets cropping.
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i5–12500H central processing unit (CPU), which supports efficient

multitasking and fast data processing. In addition, the device

features 1.0TB of storage capacity, allowing for extensive data

processing and model training without storage limitations. The

Pytorch framework version used is 1.7.1, which is known for its

flexibility and efficiency in model development. Optimized

computational performance with compute unified device

architecture (CUDA) 11.0 and CUDA deep neural network

(cuDNN) 8.0.5 ensures faster training times and enhanced

reproducibility of results.

2.4.1 Faster R-CNN
Faster R-CNN (https://github.com/jwyang/faster-rcnn.pytorch)

(Mai et al., 2020) is an improved version of fast regions with

convolutional neural network (Fast R-CNN) that draws features

straight from the original input image. It then uses ROI Pooling to

extract feature vectors of a specific length for each ROI on the

feature map of the whole image. It regresses the feature vectors

directly on them using multiple full convolution (FC) layers. Two

FC branches are then used to predict the ROI-related categories and

boxes separately, which significantly improving speed and

prediction. The first part of the network architecture uses

convolution layer stacking to extract the feature map from the

image, then fixes the data dimensions using region pooling. The

Region Proposal Network (RPN) network is the second part, which

mainly serves to generate alternate regions. The third part of ROI

Pooling is primarily responsible for the feature maps of the

convolutional network inputs, and the exact proposals generated

by the RPN training (Duan et al., 2019; Chen et al., 2020; Zhang
Frontiers in Plant Science 06
et al., 2021), and the pooling process is used to implement edge

regression and region classification. In this study, the image input

size is set to 640 × 640, the learning rate is configured to 0.001, the

step size is adjusted to 5, the batch size is fixed at 16, and the

number of iteration rounds is 500.

2.4.2 YOLOv5
On the input side of YOLOv5 (https://github.com/ultralytics/

yolov5), the mosaic data information boost technique replaces the

traditional single-cut mix data information enhancement method

of the previous generations. It employs the self-fitting stroke

frame method and self-fitting image compression (Ghiasi et al.,

2021). Cross stage partial (CSP) and focus structures are

introduced in the Backbone part of the network to expand the

input channels for subsequent slicing operations. The neck part of

the network greatly improves the deep learning capability of the

network by combining feature pyramid networks (FPN) and path

aggregation network (PAN), and applies PAN to the three

effective feature layers for better fusion of features from

different layers. In addition, in order to obtain more accurate

output results, the neck also adopts generalized intersection over

union (GIOU) loss as the loss function for edge regression to

achieve more efficient model analysis. In this study, the image

input size is 640×640, because it is cotton boll single target

detection, the output category of the network, nb_classes, is

changed to 1, the training weights are yolov5s, the optimizer

chosen is stochastic gradient descent (SGD), the batch size is 16,

the iteration rounds epoch is 500, and the learning rate is set as

0.001, and the rest are default settings.
A B D

H G F E

C

FIGURE 5

UAV expanded RGB image datasets methods: (A) original image, (B) horizontal mirroring, (C) increasing brightness, (D) rotating 90° to the right,
(E) vertical mirroring, (F)image panning, (G) increasing noise, and (H) rotating 90 to the left.
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2.4.3 YOLOv7
YOLOv7 (https://github.com/WongKinYiu/yolov7) inherits the

architecture of YOLOv5, including the configuration information

settings, training process, inference and testing procedures.

Additionally, YOLOv7 adopts the structure and methods of

hyperparameter tuning and implicit knowledge learning from

YOLOR. It also incorporates YOLOX’s Optimal Transport

Assignment (OTA) strategy for positive sample matching

strategy. YOLOv7 itself also features an efficient aggregation

network, reparametrized convolution, extra training module and

model scaling (C.-Y. Wang, Bochkovskiy, and Liao 2023). Among

these, the efficient aggregation network enhances the learning

efficiency and aggregation ability of the network system by

controlling the shortest and longest gradient paths (Zhao et al.,

2023). The auxiliary training method and deep supervision in the

YOLOv7 model add additional neurons to the network system to

enhance the model’s accuracy. Notably, the auxiliary training

method is only employed during the training process and does

not degrade the accuracy of the model validation and testing (Jiang

et al., 2022). In this study, the parameters are set as follows, the pre-

training weight is YOLOv7-tiny, the optimizer is Adam, the batch

size is 8, and the epoch is 500.

2.4.4 YOLOv8
YOLOv8 (https://github.com/ultralytics/ultralytics) represents

the latest advancement in the YOLO series of object detection

models, showcasing superior performance in terms of both speed

and accuracy compared to its predecessors. Building upon the

foundation of earlier versions, YOLOv8 introduces notable

enhancements. In the backbone architecture, YOLOv8 refines the

C3 structure of YOLOv5 to the C2f structure. The C2f modification

not only preserves the lightweight nature but also facilitates the

acquisition of more informative features during the gradient

descent process. Within the head component, YOLOv8

transitions from a coupled head to a decoupled head, departing

from the anchor box structure employed in prior iterations in favor
Frontiers in Plant Science 07
of an Anchor-Free approach. Moreover, YOLOv8 incorporates an

outstanding dynamic allocation strategy in the design of its loss

function. This strategic approach enhances the adaptability of the

model during training. Notably, YOLOv8 demonstrates versatility

by extending its applicability to earlier versions of the YOLO series,

delivering commendable performance across image detection,

segmentation, and classification tasks. The structure of Yolov8 is

shown in Figure 6.
2.4.5 YOLO SSPD
YOLO SSPD is designed based on the YOLOv8 architecture to

address the challenges of small and dense cotton boll targets and

complex field backgrounds in UAV-scale scenarios. SPD-Conv

(https://github.com/LabSAINT/SPD-Conv) is a combination of

space-to-depth layer and non-strided convolution. To mitigate

the loss of image information during network propagation, the

SPD-Conv structure is introduced (Sunkara and Luo, 2022).

Equations 1–3 elucidate the principles of SPD convolution. The

input feature map X with dimensions S×S× C1. The SPD

transformation downsamples X using a scale parameter scale. For

each position (i, j) in X, X is sliced into scale2sub-feature maps fx,y ,

where x, y∈ {0, 1, …, scale−1}. The sub-feature maps are extracted

as follows:

fx,y = X½x : S : scale, y : S : scale� (1)

Each sub-feature map fx,y downsamples X by extracting pixels at

intervals of scale, and the dimensions of each fx,y are (
S

scale ,
S

scale ,C1) :

These sub-feature maps are then concatenated along the channel

dimension to form a new feature map X′:

​X 0   =   concatenate fx,y ∣ x, y ∈ 0, 1,…, scale − 1f g� �
, axis = channel

� �
(2)

The main purpose of this transformation is to increase the

channel dimension while reducing the spatial dimensions of the

feature map. The dimensions of the new feature map X′ are ( S
scale ,

S
scale , scale

2 � C1). A non-strided (stride=1) convolution operation
FIGURE 6

YOLOv8 model structure.
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is applied to X′ using C2 filters. This convolution transforms X′ into
X′′ as follows:

X = Convolution(X 0, filters = C2, stride = 1) (3)

This convolution operation aims to retain as much

discriminative feature information as possible, preventing the loss

of information. The dimensions of the output feature map X′′ are:
( S
scale ,

S
scale ,C2). By scaling the image proportion before inputting it

into the detection network, the space-to-depth layer preserves

channel dimension information throughout the feature mapping

process, effectively preventing information loss (Wan et al., 2024).

Additionally, non-strided convolutions are added after the space-

to-depth layer to expedite image processing. The simple parameter-

free attention mechanism (SimAM), while not increasing

computational parameters, serves as a versatile attention

mechanism, enhancing model performance. When dealing with

UAV images, this not only accelerates computation speed but also

improves overall model efficiency. The small target detection head

finds widespread applications in the industry, addressing challenges

related to inconspicuous features and potential information loss

during training, thereby enhancing detection capabilities.

Integrating the small target detection head into YOLO SSPD

contributes to improved accuracy in identifying small target

cotton bolls. Figure 7 illustrates the network structure of the

YOLO SSPD.
2.5 Transfer learning based cotton boll
detection from UAV RGB images

Transfer learning involves improving performance in a newly

acquired task by leveraging knowledge gained from a closely

related task that has already been mastered. To address the issue

of limited training instances and low resolution of UAV remote

sensing images, we first train the model on ground boll image data.

Then, the trained model is applied to the boll recognition and
Frontiers in Plant Science 08
detection task on UAV RGB images. Image size, quantity and

quality are essential factors affecting the setting of training

parameters, and in order to achieve the best training effect,

these parameters must be refined to improve further the

correctness and credibility of modelling (Tedesco-Oliveira et al.,

2020; Park and Yu, 2021). In this study, the transfer learning

model is configured with a learning rate of 0.0005, a batch size of

8, and a total of 500 iteration rounds.
2.6 Evaluation indicators

In this paper, single target detection of cotton bolls was

investigated, so the model evaluation metrics selected included

precision, recall, F1 score, average precision, average precision

(AP) for a single class, and coefficient of determination (R2),

relative root mean square error (RMSE) and root mean square

error (RRMSE), which were calculated using the formulas shown

below. Equations 4–10 are introduced as metrics for subsequent

model performance evaluation.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1   =   2� Precision� Recall
Precision + recall

(6)

AP =
Z 1

0
P(r)dr (7)

R2 = 1 − o
n
1(pi − ci)

2

on
1(pi − �pi)

2 (8)
FIGURE 7

YOLO SSPD model structure.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

1(pi − ci)
2

n

s
(9)

RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

1(pi − ci)
n

q
on

1pi
� 100% (10)

Where True positive (TP) represents correct prediction of

cotton bolls, False positive (FP) represents misidentification of

background noise as cotton bolls, and False negative (FN)

represents misidentification of cotton bolls as background noise.

The value range of Precision and Recall is between 0 and 1, so the

value range of AP is also in the range of [0,1]. pi, �pi and ci are the

quantity of manually labelled bolls in the i-th image, the mean of the

amount of manually labelled bolls in the i-th image and the count of

bolls obtained by prediction, correspondingly. n is the total of

test images.
3 Results

3.1 Results of ground cotton boll
detection models

Table 2 displays the outcomes of cotton boll recognition and

detection in ground image data at different time intervals utilizing

various object detection networks. When employing models like

Faster R-CNN, a consistent performance trend is observed across

different time periods, with T2 > T1 > T3. This phenomenon is

attributed to the suboptimal effect of defoliant spraying during the

T1 period. In the T3 period, when cotton flowers are fully open,
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distinguishing targets becomes challenging, resulting in instances

where a single cotton boll is identified as multiple ones.

Additionally, due to the proximity of cotton bolls, multiple

instances are detected as a single cotton boll. The second phase,

occurring after the second defoliant spraying, emerges as the

optimal period for cotton boll detection. During this phase, there

is minimal interference from leaves, and the branching of cotton

plants is less pronounced, resulting in relatively independent cotton

bolls. Therefore, it is recommended to select T2 as the golden period

for cotton boll detection in subsequent studies involving transfer

learning. Figure 8 illustrates the detection results of different

networks on ground cotton boll images at time interval T2, with

magenta boxes indicating missed detections. Despite achieving

higher detection recall rates in ground cotton boll image data, the

Faster R-CNN model tends to experience overfitting due to its

robust deep feature extraction capabilities. This results in an

increased false positive rate, significantly impacting the balance

between precision and recall. The YOLO v5 model exhibits some

shortcomings, with less evident features and smaller cotton bolls

going unrecognized. YOLOv7 employs multi-layer modification

techniques in the model, halving aspect ratios, doubling channels,

and reducing downsampling. Consequently, at the same volume,

YOLOv7 outperforms YOLOv5 in efficiently detecting targets with

higher accuracy and faster speed. However, there are still some

shadowed and concealed cotton bolls that go undetected. The

YOLOv8 model provides a scaled-down version based on scaling

factors, catering to the requirements of cotton boll detection scenes.

Nevertheless, further improvements are needed for low-resolution

small target detection. The proposed YOLO SSPD in this study

evidently demonstrates high-precision cotton boll recognition at the

ground scale.
TABLE 2 Model testing results for ground image datasets.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN

T1 80.3 85.2 82.7 83.9

T2 81.6 86.9 84.2 83.0

T3 78.2 82.1 80.1 81.1

YOLOv5

T1 81.1 84.8 81.9 82.2

T2 81.7 83.4 82.5 83.1

T3 79.2 81.6 80.4 81.0

YOLOv7

T1 83.1 85.2 84.1 84.8

T2 83.8 85.8 85.0 85.6

T3 80.2 82.6 81.4 81.3

YOLOv8

T1 81.8 83.8 83.7 82.1

T2 84.6 86.0 84.3 82.6

T3 80.9 81.7 82.6 82.3

YOLO
SSPD

T1 84.1 87.3 85.7 86.5

T2 85.2 88.9 87.0 88.1

T3 81.1 84.6 82.8 83.9
The values are bolded to emphasize that the best-performing models for each period consistently peaked in T2.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1409194
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1409194
3.2 Results of UAV image cotton boll
detection and transfer learning

The images captured by the UAV at flight altitudes of 20 meters,

40 meters, and 60 meters all exhibit distinct features of open cotton

bolls, with the images obtained at a 20-meter flight altitude having

the highest resolution. The contrast between the target cotton bolls

and the background is more pronounced, resulting in the highest

detection accuracy. Subsequent research focuses on the UAV image

dataset obtained at a 20-meter altitude. When evaluating the impact

of transfer learning, Tables 3, 4 present the cotton boll detection

results using the five aforementioned detection models on the UAV

RGB image dataset during the T2 period, along with the results after

transfer learning on the UAV images during the same period. The

detection results of different models on cotton boll images are

depicted in Figure 9. Due to the small scale of detection targets on

the drone, a portion of the region enclosed by red rectangles in the

original image detection results was cropped for comparison.
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Comparative analysis of detection results before and after model

transfer indicates overall improvement in the detection efficiency of

all model’s post-transfer, with the YOLO SSPD model exhibiting

the highest detection efficiency. Before model transfer, the detection

time for each image in the drone RGB image dataset was 51ms,

while after model transfer, the average detection time for each

image in the drone RGB image dataset was reduced to 22ms. These

results signify the effectiveness of model transfer. The optimal

YOLO SSPD model achieves an optimal balance between

detection accuracy and detection rate.
3.3 Validation of cotton boll
detection models

Neural networks are often perceived as black-box models with

limited interpretability. However, employing class activation maps

(CAM) on a trained model allows for a visual understanding of its
TABLE 3 UAV image datasets models testing results.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN T2 77.6 84.3 80.8 83.2

YOLOv5 T2 80.3 84.2 82.2 83.6

YOLOv7 T2 82.1 85.6 83.9 84.1

YOLOv8 T2 82.6 86.1 83.8 84.6

YOLO SSPD T2 85.3 88.0 86.6 86.9
The bolding is used to highlight the superior metrics of the best-performing models.
A B

D E F

C

FIGURE 8

The model detection results (Pinkish-purple boxes show missed bolls): (A) Original image, (B) Faster R-CNN, (C) YOLOv5, (D) YOLOv7, (E) YOLOv8,
(F) YOLO SSPD.
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FIGURE 9

Below is a comprehensive comparison of the five object detection models before and after transfer learning. Purple boxes represent detection
results before transfer learning, while blue boxes represent results after transfer learning. Different colored boxes in the images denote the
effectiveness of different detection models, with yellow indicating Faster R-CNN detection, light purple for YOLOv5, blue for YOLOv7, orange for
YOLOv8, and red for YOLO SSPD detection results.
TABLE 4 Testing results after models transfer.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN T2 79.9 85.6 82.7 83.9

YOLOv5 T2 81.1 86.4 84.8 84.3

YOLOv7 T2 83.8 87.1 85.4 86.0

YOLOv8 T2 84.1 87.2 85.6 86.4

YOLO SSPD T2 87.4 89.3 87.8 88.0
F
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The bolding is used to highlight the superior metrics of the best-performing models.
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principles. CAM (https://github.com/jacobgil/pytorch-grad-cam)

typically operates on the last convolutional layer of the model to

extract class activation maps corresponding to input images (Zhou

et al., 2016). These CAMs, which are the same size as the input

images, facilitate the visualization of predicted class scores and

highlight detected objects. The generation of heatmaps involves

overlaying weighted feature maps obtained from CAM. Within

these heatmaps, the degree of network response in different regions

of the input image can be observed. Larger heatmap ranges indicate

the presence of more predicted class targets in the corresponding

regions, while darker colors signify greater contributions to the

predicted results. To further enhance cotton boll detection, a visual

analysis of the detection results for each model was conducted

through heatmap visualization, providing insights into the neural

network models. As shown in Figure 10, Faster R-CNN focuses on

prominent features of cotton bolls, making it susceptible to

information loss in small target detection, evident in the discrete

distribution of the heatmap. YOLOv5’s feature pyramid structure

exhibits limitations in recognizing obscured and smaller cotton boll

features accurately. While YOLOv7 has a larger model width and

depth compared to YOLOv5, resulting in the extraction of more

features, the heatmap’s predominantly light colors indicate that

these positions contribute less to the network output, indicating
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insufficient feature extraction for practical applications. YOLOv8,

with its ability to adjust the model scale for detection, outperforms

the first three models in small target scenarios. However, the large-

scale field images captured by the UAV exhibit diverse

characteristics of open cotton bolls and suffer from lower

resolution issues. This leads to YOLOv8’s focus on concentrated

open cotton bolls, indicating a need for further attention to the

discrete small cotton boll targets. YOLO SSPD, by introducing SPD

convolution and a small target detection head onto the YOLOv8

model, significantly captures a broader target range in low-

resolution small target images, achieving precise detection in

the images.
3.4 Validation of cotton boll
counting model

This study employed the determination coefficient, RMSE, and

RRMSE as metrics to evaluate the counting effectiveness of the

model. Combining the YOLO SSPD detection model with transfer

learning, counting was performed on UAV RGB image data. The

results demonstrate that the detection model, after being fine-tuned

through a transfer learning approach, achieved an R² of 0.86, RMSE
A B

D E F

C

FIGURE 10

Five object detection models’ heatmaps: (A) Original image, (B) Faster R-CNN, (C) YOLOv5, (D) YOLOv7, (E) YOLOv8, (F) YOLO SSPD.
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of 12.38, RRMSE of 11.19%, and an AP of 88.9%, thus indicating a

robust counting performance. Figure 11 showcases how the

integration of the YOLO SSPD model with transfer learning

techniques enhances its ability to detect and count cotton bolls

accurately in 20m resolution UAV images during the T2 period.
4 Discussion

Boll detection in the pre-harvest stage of cotton can realize the

assessment of cotton yield, so as to provide scientific and effective

resource allocation and management strategies. As cotton bolls are

not obvious in the early growth stage in a complex field background

environment, the stages of cotton flocculation can be selected to

accurately and reliably identify and locate cotton bolls. In this study,

the three stages of cotton flocculation were selected to be captured

by UAV and on the ground. In order to reduce the interference of

cotton leaves and achieve better detection conditions, 5 days after

the first spraying of defoliant (T1), 3 days after the second spraying

of defoliant (T2), and 7 days before the cotton picking (T3) were

selected, and the image of T2 got the best detection accuracy in the

subsequent experimental results. In the process of cotton boll data

acquisition, although the effects of UAV shooting time stage,

weather conditions, UAV flight speed, camera shooting angle and

other factors on the quality of ground image data and remotely

sensed data were taken into account, factors such as different

degrees of shading and background clutter in the cotton field in

the natural environment still have a significant impact on the

detection accuracy (Kang et al., 2022, 2023; Li et al., 2022; Li

et al., 2020). Data enhancement can balance and enrich the

cotton boll image datasets, better realize the acquisition of cotton

boll features, and also reduce the workload of manual labelling.

For the case of boll detection by UAV in small-scale cotton

fields, which is limited in resolution and insufficient in the number

of samples obtained, ground photography was conducted to obtain

sufficient ground open boll data. From the perspective of transfer

learning, many ground images were used to train the deep learning
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model. After reaching a higher accuracy, the model was transferred

so that the model could achieve a good detection accuracy on UAV

images with a smaller dataset. The specific steps were, on the

ground cotton boll image datasets, to investigate the cotton boll

detection effect of different target detection networks in different

periods through comparative experiments. Then, on UAV RGB

image data, the performance of different target detection networks

on cotton boll detection at UAV scale and different periods were

investigated through comparison and transfer learning (Meng et al.,

2019). In terms of model performance, Faster R-CNN based on

Region Proposal Networks could extract target cotton bolls, but the

model was complex, had slow training speed, and was prone to

overfitting. Due to different growth conditions, cotton bolls during

the boll spitting period exhibit varying shapes and color

characteristics. The feature extraction capability of Faster R-CNN

was too strong, leading to failures of recognizing some cotton bolls.

YOLOv5 introduced CSPDarknet53 as the backbone network and

employed the PANet structure to enhance feature fusion,

demonstrating good performance in both accuracy and speed.

However, when applied to cotton boll detection in UAV images,

the YOLOv5 model produces numerous instances of false negatives.

YOLOv7 builds on YOLOv5 by introducing architectures such as

the Efficient Layer Aggregation Network, but it exhibits weak

generalization, with variations in different scenes and poor

performance in small object detection tasks. YOLOv8 was the

latest achievement in the YOLO series at the time, featuring

adjustable scaling coefficients and excellent application in

practical scenarios with small targets. The proposed YOLO SSPD

object detection model further improves the detection accuracy of

small cotton bolls from UAVs by building upon YOLOv8.

Experimental results indicate that YOLO SSPD performs best on

both the ground cotton boll image dataset (T2) and the UAV RGB

image dataset(T2). The accuracy of cotton boll detection in UAV

scale is enhanced through the transfer model, contributing to

improved accuracy in cotton yield prediction (Wang et al., 2021;

Rodriguez-Sanchez et al., 2022). The combination of the YOLO

SSPD detection model and transfer learning methods excels in
A B

FIGURE 11

The model detection results: (A) Real ground boll counts, (B) YOLO SSPD results (UAV imagery).
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detecting cotton bolls in complex environments from UAV RGB

image data, providing a more precise representation of the specific

locations of targets. The counting results accurately reflect the

number of cotton bolls during the boll spitting stage, closely

matching actual counting results (Siegfried et al., 2023). Utilizing

the YOLO SSPD model for counting cotton bolls in UAV-scale

images can be appropriately applied in practical cotton production

processes (Qiu et al., 2022; Lang et al., 2023).

Although some progress has been made in this study, there are

still many issues that need to be explored and solved in depth. (1)

This study is based on cotton boll image datasets collected by ground

and UAV at three altitudes (20 m, 40 m and 60 m). The image

resolution of the images collected at 40 m and 60 m flight altitudes is

not high, which impacts the precision of cotton boll detection and

recognition. The UAV can be upgraded subsequently in terms of the

camera pixels and the frame rate. High-resolution UAV images are

able to achieve higher accuracy using the method proposed in this

paper. (2) In the future, with a focus on enhancing the efficacy of

cotton boll detection, multi-scale image fusion algorithms can be

targeted to expand the detection area while improving the image

resolution. Further, the large-scale cotton field yield estimation

combined with satellite remote sensing images can be practically

applied to a broader range of production research.
5 Conclusions

This study proposes a target detection network, YOLO SSPD,

based on YOLOv8, specifically designed for detecting cotton bolls

during the boll spitting period. In ground-based cotton boll image

detection, the model was trained alongside four other object detection

models until convergence. Subsequently, transfer learning was

employed to apply these models to UAV-based cotton boll image

detection. A comparison with four other models shows that YOLO

SSPD outperforms them all. In the T2 period, the detection accuracy

on UAV cotton boll images reaches 0.874, and the cotton boll count

R² is 0.86. The results indicate that utilizing transfer learning and the

YOLO SSPD detection model significantly improves the accuracy of

cotton boll detection. The outcomes of this study serve as a practical

tool in the cotton production process, enhancing the efficiency of

cotton information detection. They also provide a basis for

agricultural researchers to make timely decisions in cotton

management, ultimately improving cotton yield and quality.
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