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Integrating multi-modal remote
sensing, deep learning, and
attention mechanisms for yield
prediction in plant
breeding experiments
Claudia Aviles Toledo1*, Melba M. Crawford1,2

and Mitchell R. Tuinstra2

1Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States,
2Department of Agronomy, Purdue University, West Lafayette, IN, United States
In both plant breeding and crop management, interpretability plays a crucial role in

instilling trust in AI-driven approaches and enabling the provision of actionable

insights. The primary objective of this research is to explore and evaluate the

potential contributions of deep learning network architectures that employ

stacked LSTM for end-of-season maize grain yield prediction. A secondary aim is

to expand the capabilities of these networks by adapting them to better

accommodate and leverage the multi-modality properties of remote sensing data.

In this study, a multi-modal deep learning architecture that assimilates inputs from

heterogeneous data streams, including high-resolution hyperspectral imagery,

LiDAR point clouds, and environmental data, is proposed to forecast maize crop

yields. The architecture includes attention mechanisms that assign varying levels of

importance to different modalities and temporal features that, reflect the dynamics

of plant growth and environmental interactions. The interpretability of the attention

weights is investigated in multi-modal networks that seek to both improve

predictions and attribute crop yield outcomes to genetic and environmental

variables. This approach also contributes to increased interpretability of the

model's predictions. The temporal attention weight distributions highlighted

relevant factors and critical growth stages that contribute to the predictions. The

results of this study affirm that the attention weights are consistent with recognized

biological growth stages, thereby substantiating the network's capability to learn

biologically interpretable features. Accuracies of the model's predictions of yield

ranged from 0.82-0.93 R2
ref in this genetics-focused study, further highlighting the

potential of attention-based models. Further, this research facilitates understanding

of howmulti-modality remote sensing aligns with the physiological stages of maize.

The proposed architecture shows promise in improving predictions and offering

interpretable insights into the factors affecting maize crop yields, while

demonstrating the impact of data collection by different modalities through the

growing season. By identifying relevant factors and critical growth stages, the

model's attention weights provide valuable information that can be used in both

plant breeding and crop management. The consistency of attention weights with

biological growth stages reinforces the potential of deep learning networks in

agricultural applications, particularly in leveraging remote sensing data for yield
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prediction. To the best of our knowledge, this is the first study that investigates the

use of hyperspectral and LiDAR UAV time series data for explaining/interpreting plant

growth stages within deep learning networks and forecasting plot-level maize grain

yield using late fusion modalities with attention mechanisms.
KEYWORDS

hyperspectral, LiDAR, stacked LSTM, attention mechanisms, multi-modal networks,
yield prediction, precision agriculture
1 Introduction

Plant breeding experiments play a critical role in the

development of future generations of crops that can effectively

respond to the increasing global food demand and the impact of

climate change (Razzaq et al., 2021). Using advanced technologies,

such as remote sensing (RS) and machine learning, plant breeders

and researchers seek to make more informed decisions regarding

their crops (Akhter and Sofi, 2022). By including genetic

information and environmental inputs such as soil properties and

weather patterns, predictive models can now forecast future yields

and rank new hybrids with increased precision. Use of advanced

predictive models has significantly altered the approach of

researchers toward the development of new crop varieties in

maize breeding experiments (Xu et al., 2022). These predictive

tools significantly accelerate the breeding process, allowing

researchers to focus their efforts on the most promising

candidates, thus increasing the rate of development of high-

yielding and resilient varieties. Improved prediction of end-of-

season traits in the field can also allow preliminary selection of

the most promising individuals based on RS plant phenotyping at

early developmental stages (Wang et al., 2023).

Maize is an annual grass species, completing its life cycle within

one growing season (Eckhoff et al., 2003). Using RS, it is possible to

model development of maize through the growing season by

acquiring data during different stages of physiological

development, thereby creating a time series. High-throughput

phenotyping provides capability for monitoring and assessing

crop growth and plant attributes. The accessibility of these

technologies has increased due to recent advances in sensors and

platforms. This provides breeders with the opportunity to explore

larger datasets to examine the relationships between genetics,

environment, and management practices. The Genomes 2 Fields

(G2F) project is a multi-university research initiative aimed at

enhancing the productivity and sustainability of crops by

integrating genomics and field-based breeding efforts (AlKhalifah

et al., 2018). In these experiments, the use of doubled haploids is

intended to serve as an effective means of accelerating the breeding

process, validating genomic discoveries, enhancing specific traits,

and conserving genetic diversity, thus contributing to the

development of resilient and high-yielding crop varieties
02
(AlKhalifah et al., 2018). However, the small number of replicates

of the same doubled haploid hybrids leads to a restricted portrayal

of the phenotypic traits of the variety when training models. This

issue was resolved in this study by utilizing publicly available

genetic data, clustering similar genetic groups of varieties, and

implementing stratified sampling during the training process.

Long-Short-Term Memory (LSTM) networks, a form of

recurrent neural network (RNN), have recently demonstrated

efficacy in handling time series data, including in agronomical

scenarios. Previous studies using this network architecture have

achieved high accuracy in crop yield prediction (Masjedi et al., 2020;

Khaki et al., 2021; Wang et al., 2023). Attention mechanisms have

been investigated to enhance model accuracy, and have also

demonstrated their effect iveness in improving model

interpretability (Gangopadhyay et al., 2020; Danilevicz et al.,

2021; Tian et al., 2021; Toledo and Crawford, 2023). Modeling

based on multi-modal RS data has also been studied, primarily

exploring early fusion (Masjedi et al., 2020; Wang and Crawford,

2021). Early fusion involves combining different modalities at the

beginning of the processing pipeline, i.e., as integrated, normalized

inputs to a model (Wang et al., 2020a). However, drawbacks of

these multi-modal RS-based LSTM prediction models are:

i) simultaneous representation of both internal and external

interactions among the modalities; ii) reduced understanding and

interpretability of the predicted results; iii) less capability to explore

the connection between the physical growth stages and their

relationship with the time series being modeled.

In this study, three LSTM-based architectures (vanilla stacked

LSTM, stacked LSTM with a temporal attention mechanism and

multi-modal attention networks) are investigated in plot-level end-

of-season maize yield prediction experiments using multi-modal RS

data and weather data. Time-step importance is first evaluated

using the time domain attention weights for each modality to

investigate the impact of each sensor-based input during the

growing season. Based on sensitivity analysis of the time-steps

provided by the temporal attention weights, multiple scenarios

are explored, where different growth stages within each modality

are considered. The scenarios are investigated in all three proposed

architectures. Data from a two-year GxE experiment of doubled

haploids using the same tester parent was used to evaluate the

proposed objectives. The paper is organized as follows: Related
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Work provides a review of deep learning prediction models that

have RS data inputs, emphasizing attention mechanisms and multi-

modal networks; Materials and Methods includes a description of

the study sites, datasets, and the methodology; Results are presented

and discussed in Experimental Results; Conclusions and

recommendations for future work are summarized in Conclusions

and Discussion.
2 Related work

2.1 Yield prediction models

Regression models based on inputs, including RS data, weather,

soils, genetics, and management practices, have been widely

investigated in agriculture for yield prediction. Early studies based

on multiple regression were followed by classical machine learning

approaches, including support vector regression (SVR), partial least

squares regression (PLSR), and random forests (RF) to predict grain

yield and biomass, respectively (Sujatha and Isakki, 2016; Masjedi

et al., 2020). (Aghighi et al., 2018) incorporated RS time series data

into classical machine learning models, such as boosted regression

trees (BRT), RF, and SVR. Traditional machine learning-based

models are difficult to generalize to scenarios outside the domain

of the training data. Furthermore, these models lack the ability to

effectively leverage inputs from time series data across multiple

modalities or differentiate between categorical variables and time

series data, such as environmental conditions (soils), management

practices, or genetic inputs. Furthermore, they do not incorporate

time series data into a step-wise framework, which is crucial for

simulating the growing season and comprehending prediction

outcomes. More recently, yield prediction models have been

developed using deep learning architectures, particularly at large-

spatial scales (Maimaitijiang et al., 2020; Khaki et al., 2021; Shook

et al., 2021). These architectures have recently been investigated to

predict yield using RS data as inputs (You et al., 2017; Wang et al.,

2020c). (Jiang et al., 2020) developed an LSTM framework using

MODIS remote sensing products to predict county level yields. At

the research plot scale, (Masjedi et al., 2019; Wan et al., 2020; Wang

and Crawford, 2021) used RS data acquired by UAV platforms to

predict yields in sorghum and maize. (Wang and Crawford, 2021)

extended this work to investigate transfer learning of models to

other locations and time periods. Despite these advances, further

improvement is needed in predictive models to leverage multiple

modality RS and, most importantly, achieve interpretability in the

predicted outcomes.

2.1.1 LSTM-based yield prediction models
The application of recurrent neural networks (RNN) has led to

the emergence of robust learning models, characterized by

interpreting complex or abstract features to derive meaningful

patterns from the inputs (Lipton et al., 2015). As with many

neural network architectures, the relationship between features is

established through multi-level hierarchical representations, which

enables them to extract features and learn from the datasets (LeCun
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et al., 2015). Long-term short-memory (LSTM) based networks

were developed to address the well-known vanishing gradient

problem of RNNs (Gamboa, 2017). The core architecture of these

networks includes memory cells, referred to as LSTM cells, whose

purpose is to store the data and update it through forget, input and

output gates (Kong et al., 2019). LSTM has become popular in long-

term temporal time series predictions, such as crop yields. The

majority of studies concentrate on yield predictions at county or

regional levels. (Tian et al., 2021; Chen et al., 2023) used satellite

time series data based on an LSTMmodel on time accumulated data

for wheat yield predictions. (Sun et al., 2019) examined the

performance of CNN, LSTM, and CNN-LSTM architectures for

predicting soybean yield at the county level. Small-scale

experiments with high resolution data have also demonstrated the

advantages of LSTM models. (Masjedi et al., 2019) studied an

LSTM-based RNN model using multi-temporal RS data to predict

fresh sorghum biomass. (Shen et al., 2022) utilized both LSTM and

LSTM-RF architectures with UAV thermal and multispectral

imagery to forecast wheat yield at the plot level. Although all

these studies produced results with R2 values ranging from 0.60-

0.94, they lack interpretability regarding the growing season.

2.1.2 Attention mechanisms
Attention mechanisms were first introduced to address the

problem of information overload in computer vision (Itti et al.,

1998). In image classification, attention mechanisms were

incorporated in a neural network to extract information from an

image by adaptively selecting a sequence of spatial regions and focusing

on these regions at high resolution (Mnih et al., 2014). The attention

models were introduced in machine-based text translation tasks by

(Bahdanau et al., 2016) to distribute information of the source sentence

across all sequences, rather than encoding all the information into a

fixed-length vector through the encoder. Attention mechanisms have

commonly been categorized as: spectral/channel, spatial, and temporal

attention (Guo et al., 2022). The concept of spectral attention focuses

on recalibration of channel weights and their interrelationships,

thereby enhancing their representation (Hu et al., 2018). Given the

high dimensionality and redundancy in adjacent spectral bands,

spectral attention is commonly employed in hyperspectral image

classification. The concept of temporal attention mechanisms

originated in video processing, providing a dynamic method of

determining “when and where” attention should be directed (Li

et al., 2020). In time series sequences, the decoder can selectively

retrieve the focused sequence at each time-step. Temporal attention

mechanisms seek to localize important parts of the input features in the

time dimension through attention weights from earlier time-steps.

Attention weights represent a distribution over input features,

providing a tool for interpretation (Serrano and Smith, 2019).

Temporal attention enhances the inherit function of LSTM cells of

capturing long time dependencies by identifying the time-steps relevant

to the prediction and extracts the information from these time-steps

(Shih et al., 2019). Some recent studies have investigated yield

prediction attention networks in multiple crops using multispectral

satellite data, focusing on the environmental component of GxE (Khaki

and Wang, 2019; Gangopadhyay et al., 2020; Shook et al., 2021).
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Although integration of medium resolution multispectral data for

county-level yield predictions has been studied (You et al., 2017;

Wan et al., 2020), use of temporal attention mechanisms in

conjunction with LSTM’s with high-resolution UAV inputs for small

plot breeding trials has not been previously explored to the best of

our knowledge.

2.1.3 Multi-modal deep learning
Multi-modal deep learning involves training deep neural

networks to extract and learn features from multiple types of

data. The core concept of multi-modal feature learning is that

including multiple data modalities enables more effective learning

of one modality compared to in-depth feature extraction from a

single modality. (Wang et al., 2020a) investigated voice and text-

based fusion to improve the effect of emotion recognition (Liu et al.,

2021). Recently, in time series predictions (Xian and Liang, 2022)

used holidays, weather data, and quarterly market operation

information reports in multi-modal networks to predict traffic

conditions. Development of maize crops is strongly influenced by

both genetic and environmental factors, motivating their inclusion

in models when the data are available. Several studies have

employed multiple types of RS data as input for DL models to

predict crop yield (Danilevicz et al., 2021; Shook et al., 2021; Wang

and Crawford, 2021; Toledo et al., 2022). Multi-modal deep

learning models characterize and learn from different sources of

input data. For example, LiDAR represents structural attributes of

maize through the growing season, while hyperspectral data are

related to chemistry related responses of the plant. The information

represented by different modalities can potentially be leveraged in a

combined model for a better representation of the task at hand

(Kumar et al., 2022). (Maimaitijiang et al., 2020) integrated canopy

structure, temperature, and texture, training each modality

individually with multiple CNN layers and applied late fusion for

the yield prediction. Furthermore, they also tested an input-level

feature fusion, incorporating multiple CNN layers, but the

approach underperformed in comparison to the late fusion.
2.2 Multi-modal remote sensing

In agriculture, multiple RS technologies, including RGB, multi/

hyperspectral, thermal cameras, and LiDAR (Ali et al., 2022) on

airborne and space-based platforms have been used to assess crop

properties. (Zhang et al., 2020) integrated optical, thermal, and

environmental data to predict county-level maize yield, and focused

on demonstrating that combining multi-modal, multi-source data

explained the variation in yield. Hyperspectral sensors provide high

spectral and spatial resolution data when flown on UAV platforms

(Li et al., 2022). Many bands of the continuous, contiguous spectral

data are highly correlated, motivating feature extraction and feature

selection. In vegetation related studies, spectral indices are

commonly used to represent important chemistry-based

absorption features (Jain et al., 2007). Derivative and integral

characteristics of hyperspectral cubes also represent important

spectral changes in reflectance that can characterize the crop

canopies (Masjedi et al., 2018). Many indices are also highly
Frontiers in Plant Science 04
correlated, resulting in redundancy that may either lead to

overfitting or weaken the predictive capability of deep learning

models (LeCun et al., 2015). LiDAR point clouds provide geometric

characteristics of the plants such as plant height, canopy cover, and

canopy volume. Because of the large number of candidate features

from hyperspectral and LiDAR data, (Toledo et al., 2022)

investigated DeepSHAP, which uses Shapley values to quantify

the contribution of each feature in a prediction made by a deep

learning model.
3 Materials and methods

3.1 Plant breeding field experiments

The experiments reported in this study were conducted in

Indiana, USA. The experiments were planted in different fields in

2020 and 2021 at the Agronomy Center for Research and Education

(ACRE) at Purdue University (40°28’37.18”N, 86°59’22.67”W),

West Lafayette. Both were planted in a randomized incomplete

block design with two replications. The core check hybrids had two

complete replications, and the doubled haploid hybrids based on

the PHK76 tester had an incomplete block design.

The experiments were planted as two row plots with a length of

4.575 m by 1.5 m with ~76 cm row spacing. Standard nutrients,

herbicides, and insecticides were applied according to normal

agronomic management practices at the beginning of the season,

and there was no artificial irrigation. Both fields were planted in an

annual crop rotation with soybeans. They were planted on May 12,

2020, and May 24, 2021, at a population of 74,000 seeds ha-1,

respectively. Anhydrous ammonia (NH3) was applied prior to

planting in 2020 and liquid Urea Ammonium Nitrate solution

(UAN) was applied in 2021. Figure 1 shows the geographic location

and layout of the field experiments. The grain yield was harvested

from both rows on October 1, 2020, and September 28, 2021, using

a Kincaid plot combine (Kincaid 8-XP, Haven, KS, USA) with grain

yields adjusted to 15% moisture.
3.2 Genetics and ground reference data

Because the G2F Initiative covers multiple environments and

geographic locations, local core check hybrids are used as standards

against which the performance of new breeding lines or varieties are

compared. By evaluating the performance of new varieties relative to

local checks, breeders can evaluate traits such as yield potential,

disease resistance, and overall agronomic suitability (Ullah et al.,

2017). Using local checks in multiple environments helps validate the

data collected from experimental trials. The consistent performance

of local checks in different environments instills confidence in the

experimental setup, thus ensuring that the observed performance

differences among the new breeding lines are significant and not

influenced only by variation in environmental conditions. Because

this study focuses on evaluating the performance of genetic variations

of double haploids with the tester, local checks introduce an

imbalance in terms of their genetic variation. The G2F provides a
frontiersin.org
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public genotypic data set in which inbred parents of the hybrids

tested were genotyped using the Practical Haplotype Graph (PHG)

(Genomes To Fields, 2023). Quality control on the initial raw

genotypic dataset of the inbred lines used in this study was

performed as described in (Tolley et al., 2023). The resulting

genetic marker matrix had 142,568 genetic markers from 401

varieties (including local checks). The dimensionality of the genetic

data was reduced via principal components (PCs) from the original

genetic marker data. A scree plot, which displays the explained

variance of the individual principal components, was employed in
Frontiers in Plant Science 05
conjunction with the elbow method to determine the appropriate

number of principal components to utilize (Cattell, 1966). In the

preliminary stage, the contributions of twenty PCs were computed.

As evidenced in Supplementary Figure 1, the elbow test indicates that

6 PCs represent the ideal number for representation of the genetic

variation. Two genetic clusters were identified based on the first 3

PCs, as shown in Figure 2, one associated with the DH hybrids and

the other the core check hybrids. The under-representation of local

checks, which comprise less than ~5% of the hybrids, can contribute

to decreased accuracy in yield prediction because of the limited
A B

FIGURE 2

(A) Genetic variation based on PCA (B) Ground reference data with and without check data.
A B

FIGURE 1

(A) Geographic location of maize experiments at Purdue University’s Agronomy Center for Research and Education. (B) Experimental plot layouts for
GxE plant breeding experiments in 2020 and 2021. Check plots indicated in red.
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dataset for learning. In order to evaluate the performance of genetic

variations in double haploids using the tester, local checks were

excluded from the training and testing datasets. The ground reference

grain yield data serves as additional evidence to support this

observation, as shown in Figure 2.
3.3 Remote sensing data

The RS data were collected throughout the growing season in

each study; each data collection was conducted in cloud-free

conditions with calm winds. Data were acquired using a DJI

multi-rotor Matrice 600 Pro (Figure 3), equipped with an

Applanix APX-15v3 GNSS/IMU for accurate geo-referencing.

An integrated sensor package comprised of three sensors was

installed: (a) Nano-Hyperspec® VNIR camera (Headwall

Photonics Inc., Bolton, MA) with a spectral range of 400-1000

nm, 270 spectral bands at 2.2nm/band from 400 nm to 1000 nm

with 640 spatial channels at 7.4 mm/pixel, flown at 44 m to achieve

4 cm spatial resolution in the final orthorectified cubes, (b)

Velodyne VLP-16 Lite LiDAR sensor and (c) Sony Alpha 7RIII

high resolution RGB camera. Rigorous system calibration was

performed to estimate camera distortion and the relevant rotation

angles and lever arms of the pushbroom sensor (Gharibi and

Habib, 2018; LaForest et al., 2019). The specifications of the

remote sensing data collection and its products are presented in

Table 1.
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3.3.1 Hyperspectral data
A dark current spectral response was collected at the beginning

of each flight to allow conversion of raw DNs (Digital Numbers) to

radiance using the absolute radiometric coefficients provided by the

camera manufacturer. Three calibrated spectral targets (11%, 30%

and 56%) were deployed for each UAV flight and used to convert

radiance to reflectance values using the empirical line method. The

hyperspectral imagery was orthorectified using the DSM derived

from the LiDAR based georeferenced point clouds (Lin and Habib,

2021) and the methodology described in (Gharibi and Habib, 2018).

Non-vegetation pixels were removed using the OSAVI value as a

threshold (Li et al., 2016). The GxE experiment in 2020 is illustrated

in Supplementary Figure 2, which includes the hyperspectral

orthomosaic, OSAVI image, and non-vegetation pixel mask

during flowering time.

3.3.2 LiDAR and RGB data
The LiDAR point clouds were processed using the estimated

mounting parameters aided by the GNSS/INS trajectory (Lin et al.,

2019). For this study, the high resolution RGB orthophotos were

used to extract the row/plots boundaries from each experiment,

using the method described in (Yang et al., 2021). An example of the

reconstructed LiDAR point cloud during flowering time is shown in

Supplementary Figure 3.

3.3.3 Dates for analysis
Data were collected throughout the growing season, with an

effort to collect information every week. In the process of model

development, careful consideration was given to the selection of

dates to capture the essential temporal dynamics that impact crop

yields. These dates and the related physiological stage of the plants

are summarized in Table 2.
3.3.4 Feature extraction and feature selection
In each experiment, 40 cm was trimmed at each end of the rows

to minimize human interactions, light differences, and treatments

from neighboring plots. Both rows were used for the extraction of
A

B

D

C

AB
D

C

FIGURE 3

UAV platform with APX (A), RGB (B), LiDAR (C) and Hyperspectral (D) sensors.
TABLE 1 Data collection specifications.

Specifications

Flying Height and Speed 44 m, 4.1 m/sec

Hyperspectral Ortho mosaic 4 cm (GSD)
4.4 nm (400 – 1000 nm)
(spectral range)

RGB Orthophoto 0.5 cm

LiDAR Point Cloud and DSM 8 cm DSM
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LiDAR and hyperspectral features, and subsequently averaged to

derive the plot-based value. Initial candidate spectral features,

including vegetation indices, integration, and derivative-based

features, were investigated. The candidate LiDAR features were

comprised of different percentiles of height, LiDAR canopy cover,

volume and plot-based height statistical features (Masjedi et al.,

2020). In accordance with Section 2.2, feature selection was

conducted using the DeepSHAP methodology (Toledo et al.,

2022). Nine hyperspectral features and seven LiDAR features

were chosen as the remote sensing inputs for the time series

analysis for both years. The detailed descriptions of these features

are included in Table 3.
3.4 Weather variables

Three weather related variables were included in the analysis:

Cumulative Radiation, Precipitation and Growing Degree Days

(GDD) from the beginning of each of the growing seasons (2020-

2021), shown in Figure 4. The precipitation and the growing degree

days were obtained from the Indiana State Climate Mesonet

weather station located at ACRE. All the data are publicly

available at (Indiana State Climate Office, 2022).
3.5 Deep learning models of maize yield

As noted previously, three RNN network-based architectures

were implemented: a) vanilla stacked LSTM, b) stacked LSTM with

an attention mechanism, and c) multi-modal network for the

different RS modalities. For this study, the temporal attention

mechanism was based on the Bahdanau attention mechanism

(Bahdanau et al., 2016). Figure 5 displays the stacked LSTM

models described in the fol lowing sub-sect ions. The

hyperparameters, including the use of the Adam optimizer

(Kingma and Ba, 2017) for weight updating, were determined

experimentally. The learning rate during training was set at 0.001.

The Mean Squared Error (MSE) served as the loss metric for

terminating model training. The model was developed using 5-

fold cross validation with 80% training/20% testing and a 90/10

training/validation split of the training data for model development

based on the 500 plots in each fold. All the networks were

implemented in TensorFlow on an NVIDIA Quadro P400 GPU

with 68 GB RAM.
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3.5.1 Vanilla stacked LSTM
The stacked network utilizes early fusionmulti-modality, where the

raw data from both modalities, along with weather data, are

concatenated and input into the LSTM-based recursive neural

network. The number of LSTM-cells was determined experimentally.

A dropout layer of 0.2 was added after each LSTM cell to prevent

over-fitting.
3.5.2 Stacked LSTM with attention mechanism
The traditional LSTM network was coupled with an attention

mechanism with a mid-season gate, which enhances performance

and serves as a source of explainability. The attention mechanism

computes a context vector that represents the relationship between

the output of the hidden states of each time-step and each feature of

the input vector (Niu et al., 2021), as depicted in Figure 5B. This

comparison is typically accomplished using a weighted sum of a

similarity score between the decoder state and each time-step’s

hidden representation. The attention weights indicate how much

attention or importance the model assigns to each time-step when

making a prediction. (e.g., higher attention weights suggest that a

particular time-step has a more significant influence on the current

prediction, while lower weights show less relevance). The attention

weights can be visualized to acquire insights into which time-steps the

model considers most important for the forecast. By examining the

weights, patterns, or trends in the input sequence that the model

relies on to make predictions can be identified. A key advantage of

attentionmechanisms is their ability to adaptively adjust the attention

weights for each prediction. Thus, the model can give more weight to

recent or relevant time-steps while reducing the importance of less

relevant ones. Interpreting growth stage importance can be achieved

by considering temporal attention weights in the time domain. The

model was implemented using individual sensing modality inputs

(e.g., hyperspectral features and LiDAR features in isolation), in

addition to early fusion multi-modality, allowing interpretation of

the temporal attention weights on each modality in order to

determine the dates to be used in the different scenarios.
3.5.3 Multi-modal network for the different
RS modalities

The multi-modal network consists of two modules described in

Section 3.5.2, one for each of the RS modalities and a fusion module,

as proposed in (Wang et al., 2020a). Gradient blending is used to

blend the multiple loss functions in each module (Wang et al.,
TABLE 2 Dates of remote sensing data acquisition in 2020 and 2021.

Data Type
Vegetative

Stage

Field 54 2020 Field 42 2021

Experiment
Dates

Growing
Degree Days

Experiment
Dates

Growing
Degree Days

LiDAR &
Hyperspectral

V8
V12

VT-R1
R1
R2
R4
R5

June 17th

July 2nd

July 17th

July 28th

August 6th

August 13th

September 5th

499
857
1222
1494
1660
1803
2288

June 17th

July 3rd

July 19th

July 27th

August 8th

August 16th

September 6th

703
1067
1444
1644
1895
2084
2589
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2020a) and avoid over-fitting by choosing the scaling of the weights,

as the architecture of each module converges at different numbers of

epochs. In the fusion module, as seen in Figure 5C, two dense layers

are added using a sigmoid activation function to generate a single

prediction value.
3.6 Genetic clustering, stratified sampling,
and evaluation metrics

Six principal components derived from the original genetic

marker data explained 35% of the variance from the high

dimensionality genetic marker matrix. They were clustered via k-

means unsupervised classification to develop balanced groupings for

stratified sampling for the training, validation, and testing datasets.

Performance was evaluated using R2
ref calculated as Equation (1)

(relative to the one-to-one reference line) and the root mean squared

error calculated as Equation (2) (RMSE):

R2
ref =

o(yi − byi)2
o(yi − �y)2

(1)
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RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(byi − yi)

2

n

s
(2)

where yi is the observed yield reference value, ŷi is the predicted

yield value, and �y is the mean observed value. The total number of

samples is denoted by n.
4 Experimental results and discussion

4.1 Individual modality growth stages
importance inferred from
attention weights

Plots of the attention weights within each time-step show the

relative importance of the time periods for predicting end-of-year

yields. The visualization also provides a useful connection between

growth stages and RS data inputs. A heatmap plot of the attention

weights was obtained by summing the feature weights within each

time-step. Individual RS attention weights for each plot are shown

in Supplementary Figure 4. Although the values of the attention
TABLE 3 Remote sensing input features for time series analysis in models.

Feature Equation Explanation

Hyperspectral

Integration features of bands in the 670-780 nm bands

Intg(la,lb) =
Z lb

la
S(l)dl = area under the spectral

curve for a given range [la, lb]; where S(l) is the
reflectance l nm.

Related to the increase in the NIR signature in the
early season followed by a reduction after the

maximum value, typically at flowering

Integration features of bands in the 910-1000
nm bands

Integration of the first derivative of the NIR

VOG3 (Vogelmann et al., 1993)
r734 − r747
r715 + r720

Chlorophyll related indicesNDRE (Barnes et al., 2000)
r790 − r720
r790 + r720

MCARI2 (Daughtry, 2000) ½(r750 − r705) − 0:2(r700 − r550)�*(
r750
r705

)

DATT3 (Datt, 1999)
r754
r704

Chlorophyll related with high sensitivity to nitrogen

PSRI (Merzlyak et al., 1999)
r678 − r500

r750
Plant senescence index

RDVI (Roujean and Breon, 1995) r800 − r670ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir800 + r670
p

Similar to NDVI, but less sensitive to the effects of soil
and sun viewing geometry

LiDAR

75th height Percentile
Height of the non-ground points at ith percentile

Represents vertical distribution of the LiDAR points
in each plot

90th height Percentile

Height Quadratic Mean
Square root of the mean of the squared

heights Q =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22 +… + x2n

n

r Represents the average LiDAR height squared at the
plot level

Volume Area of 8 cm x 8 cm resolution Aggregated volume of voxel

Canopy Cover at 20th percentile height

Fraction of points above specified percentile
Proportion of canopy above a specified

height percentile
Canopy Cover at 50th percentile height

Canopy Cover at 75th percentile height
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weights vary across individual plot level predictions, a distinct trend

is clear in the plot of the temporal weights averaged over all the

plots. The relative importance of the LiDAR features during the

early season is clear, while the impact of hyperspectral features on

yield prediction was greater starting mid-season. The merged

representation by the average weights of the testing dataset at

each time-step is plotted in Figure 6. The average flowering date

for the doubled haploid varieties is denoted by the dashed line.

LiDAR attention weights show a peak value around the flowering

time, while the maximum value of the attention weights for

hyperspectral imagery is during the early grain filling stages,

which coincides with the physiological growth characteristics of

maize. In the early stages of growth, the plant prioritizes the

utilization of nutrients for biomass growth. However, as it reaches

the flowering stage, the plant undergoes a process of remobilization,

redirecting its resources towards grain filling. This chemistry related

transition can be observed in the hyperspectral imagery.

Based on the importance indicated by the attention weights,

four scenarios were investigated for yield prediction models:

(a) Using all six dates in both modalities; (b) using only 3 dates

prior to mid-season in each modality; (c) using the first four dates

with LiDAR data and the middle 4 dates for the hyperspectral data;

(d) using three mid-season LiDAR dates and four mid-season

hyperspectral dates. The goal was to investigate the contributions

of the two sources of RS data throughout the growing season,

while reducing the size of the network to include the most

meaningful inputs.
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4.2 Maize grain yield predictions

The yield forecast based on inputs from the individual

modalities indicates that RS data can effectively function as a time

series input to deep learning models during the growing season.

Integrating these modalities, whether through early fusion in the

initial deep learning models or through late fusion in the multi-

modal network, leads to a significant enhancement in the prediction

accuracy of the models. The same hyperparameters described in

Section 2.5 were used to train and test all the scenarios in both years.

Figure 7 displays a comparison of the projected grain yields for

Scenario 1 and the ground reference data. These results represent

the best model from cross-validation; the results shown in Table 4

include the sample mean and standard deviations from all the cross-

validation predictions.

As shown in Figure 7, the original basic vanilla stacked LSTM

model with full season data from both remote sensing modalities

had significantly worse performance in both the RMSE and R2
ref

values compared to other multi-modal LSTMmodels. The accuracy

increased as the model architecture was enhanced by adding

attention mechanisms. Based on the RMSE and R2
ref metrics, the

multi-modal architecture, which was also integrated with attention

mechanisms, successfully established temporal relationships, and

captured inter-modal connections through independent processing

of the RS sources.

Values of the evaluation metrics from all the scenarios are listed

in Table 4. Comparing the results from 2020 to 2021, there was a
FIGURE 4

Accumulated values of weather variables through the growing season.
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slight decrease in model performance from 2020 to 2021 based on

explained variance. One plausible reason for this could be the

difference in GDD days between the RS dates for the two years.

There was a minor misalignment between the dates of the RS
Frontiers in Plant Science 10
datasets and the plants’ growth stages in 2021 due to a heavy

precipitation period during tasseling. Remote sensing data

acquisition was not possible on multiple days because of adverse

weather conditions. This small reduction in model performance
A

B

C

FIGURE 5

Stacked LSTM-based networks explored for prediction of maize yield (ŷ VNIR+LiDAR). (A) Vanilla stacked LSTM with early fusion of both concatenated
features from VNIR, LiDAR and weather data. (B) LSTM with attention mechanism, with early fusion of the modalities. (C) Multi-modal network with
separate networks for each RS modality concatenated with weather, adding a late fusion module.
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occurred across all the architectures. Alternatively, the difference

can be attributed to the variation in grain yield performance

observed in the same hybrids throughout both years, as depicted

in Figure 2B. Despite identical hybrids being grown in both years,

there is a noticeable disparity in the distributions of grain yield

values. The significant discrepancy in precipitation between the two

years, given that 2021 experienced above-average levels of

precipitation, may be the underlying factor contributing to the

difference in grain yield. To provide a more comprehensive

representation of the metrics, Supplementary Figure 5 includes a

plot of the error bars derived from Table 4.

Results of the scenarios based on different dates for remote

sensing data acquisitions shown in Table 4 demonstrate that

inclusion of all the dates in the networks yielded the most
Frontiers in Plant Science 11
accurate predictions for all the model architectures. However, the

prediction accuracies in most networks did not decrease

significantly for the other scenarios that were based on subsets of

time periods. The second scenario, which includes both modalities

until mid-season, had a significant decrease in the value of R2
ref.

While the crop undergoes nutrient redistribution from biomass to

grain filling by mid-season, the final grain yield is still influenced by

key environmental characteristics and plant genetics in its

reproductive stages. These results also illustrate the contribution

of attention mechanisms in the networks, as they enable the model

to learn data patterns and retain crucial features at each time-step.

Among the scenarios based on subsets of the whole season data,

Scenario 3 had the best performance. It used the time-steps

associated with the average attention weights shown in the
A

B

FIGURE 6

Average values of the attention weights in the time domain in (A) LiDAR and (B) hyperspectral modalities.
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visualization. Compared to Scenario 2, the third scenario indicates

that the combination of LiDAR and hyperspectral data acquired

during periods when their individual explanatory capability is

greatest, in combination with the multi-modal network

architecture, can provide accurate predictions of maize grain

yield. The results reinforce the complementary capability of the

two technologies and are consistent with the crop physiology.
Frontiers in Plant Science 12
4.3 Integrative multi-modal RS for
precision phenology: matching maize
growth stages and dynamics

The results in Section 4.2 indicate that using multi-modal RS

time series with either early fusion or late fusion techniques can

effectively mimic the maize growing season by capturing sequential
FIGURE 7

Model performance in deep learning networks developed for maize grain yield using the full season (Table 2) of RS data.
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phenological features of the crop over time, corresponding to the

different stages of growth. However, incorporation of late fusion

resulted in enhanced accuracy and provided flexibility in remote

sensing data collections. This could also improve model

generalization, as all the remote sensing modalities are not

required in each growth stage for future model implementations,

but still yield adequate results.

Results of the study also support the following conclusions

relative to LiDAR and hyperspectral RS data:
Fron
• Planting and emergence: LiDAR can capture the initial

DTM that is important for estimating plant heights based

on point clouds from later dates. Once the plants have

emerged, hyperspectral imagery captures small green

shoots, resulting in changes in the spectral signature of

the field.

• Vegetative growth: As maize enters the vegetative stage, the

increase in chlorophyll content and leaf area leads to a

stronger absorption of energy in the red portion of the

spectrum and greater reflection in the near-infrared, as

shown in the hyperspectral indices. The increase in plant

material during this time is also clearly indicated in the

LiDAR metrics.
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• Reproductive stage: The transition from vegetative to

reproductive stages (tasseling, silking, and pollination)

involves changes in both plant structure and chlorophyll.

These changes can be detected through shifts in the spectral

signatures captured in the time series data.

• Maturity: As maize reaches maturity, the plants undergo

senescence, where the chlorophyll content in the leaves

decreases and they transition from a green color to a more

yellow-brown hue. During this stage, the plant nutrients begin

to break down, and nitrogen, for example, is transferred from

the leaves to support the filling of the grain. These changes are

visible, particularly in hyperspectral imagery.
5 Final discussion and conclusions

This study investigated plot-level maize grain yield predictions

through three LSTM-based RNN deep learning models, over two

years of GxE experiments in Indiana. The models leveraged

genotypic, remote sensing, and weather data in their predictions.

The advantages of integrating multi-modality remote sensing

become evident when comparing the outcomes of single modality to
TABLE 4 Performance comparison of deep learning models for different scenarios.

GxE 2020 Field 54 GxE 2021 Field 42

Independent
Testing Data

Complete Dataset
Independent
Testing Data

Complete Dataset

R2
ref RMSE R2

ref RMSE R2
ref RMSE R2

ref RMSE

Scenario 1: All Dates

Stacked LSTM 0.82 ± 0.13 9.50 ± 4.09 0.91 ± 0.06 6.57 ± 1.09 0.74 ± 0.22 11.88 ± 4.44 0.87± 0.04 8.71 ± 1.31

Attention Network 0.84 ± 0.10 8.36 ± 2.35 0.94 ± 0.05 8.06 ± 1.05 0.80 ± 0.14 11.46 ± 3.87 0.83 ± 0.09 8.42 ± 2.20

Multi-modal Network 0.89 ± 0.16 6.58 ± 3.04 0.96 ± 0.03 3.25 ± 1.25 0.87 ± 0.17 8.97 ± 4.02 0.96 ± 0.06 3.21 ± 1.99

Scenario 2: Predictions Based on Mid-season Data

Stacked LSTM 0.64 ± 0.14 15.51 ± 2.49 0.80 ± 0.10 12.68 ± 1.32 0.63 ± 0.26 13.63 ± 2.78 0.83± 0.04 9.98 ± 1.31

Attention Network 0.79 ± 0.20 11.10 ± 5.94 0.89 ± 0.03 7.09 ± 1.91 0.74 ± 0.20 12.28 ± 5.44 0.78 ± 0.04 10.31 ± 1.32

Multi-modal Network 0.86 ± 0.06 8.02 ± 1.13 0.90 ± 0.04 6.60 ± 1.16 0.81 ± 0.15 10.02 ± 3.64 0.90 ± 0.04 6.94 ± 2.29

Scenario 3: Predictions based on Temporally Shifted LiDAR and Hyperspectral Datasets

Stacked LSTM 0.77 ± 0.15 11.91 ± 4.64 0.88 ± 0.08 8.57 ± 1.59 0.71 ± 0.23 13.88 ± 6.22 0.87± 0.14 7.98 ± 1.31

Attention Network 0.82 ± 0.10 11.36 ± 2.35 0.92 ± 0.06 9.06 ± 2.05 0.78 ± 0.18 10.86 ± 3.87 0.83 ± 0.09 11.02 ± 1.20

Multi-modal Network 0.87 ± 0.16 7.68 ± 3.04 0.94 ± 0.02 5.75 ± 2.25 0.85 ± 0.12 8.01 ± 4.02 0.96 ± 0.06 3.21 ± 1.99

LiDAR {6/17/20, 7/2/20, 7/17/20, 7/28/20}; {7/3/21, 7/19/21, 7/27/21, 8/16/21}
Hyperspectral: {7/2/20, 7/17/20, 7/28/20, 8/13/20}; {7/19/21, 7/27/21, 8/16/21, 9/6/21}

Scenario 4: Predictions based on 3 Midseason LiDAR and 4 Midseason Hyperspectral Datasets

Stacked LSTM 0.76 ± 0.21 12.02 ± 2.04 0.85 ± 0.09 7.64 ± 2.67 0.71 ± 0.05 13.24 ± 3.01 0.85± 0.09 9.05± 2.45

Attention Network 0.83 ± 0.16 10.94 ± 3.05 0.91 ± 0.10 9.65 ± 3.54 0.75 ± 0.02 12.01 ± 3.87 0.84 ± 0.12 10.74 ± 2.45

Multi-modal Network 0.85 ± 0.10 8.87 ± 2.45 0.95 ± 0.16 4.98 ± 3.01 0.84 ± 0.09 8.85 ± 2.74 0.94 ± 0.15 5.01 ± 3.45

LiDAR {6/17/20, 7/2/20, 7/17/20},; {7/3/21, 7/19/21, 7/27/21}
Hyperspectral: {6/17/20, 7/2/20, 7/17/20, 7/28/20}; {7/3/21, 7/19/21, 7/27/21, 8/16/21}
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those achieved by networks utilizing early fusion or late fusion

multi-modality remote sensing data. The R2ref values ranged from

0.6 to 0.95, showcasing their ability to effectively model time series

remote sensing and weather data. The multi-modal network

provided the best results, especially when compared to the

traditional vanilla stacked LSTM. Temporal attention allowed

these models to focus on specific times during the growing

season. By incorporating attention weights to assess the relevance

of each time-step, a more comprehensive understanding of the

model’s prediction mechanism was achieved. This insight can result

in more accurate forecasting and provide valuable information on

experiments of plots where in situ reference data can potentially be

increased, and models can be enhanced. Despite the results from all

scenarios providing predictions that are potentially useful for

breeders in selecting specific varieties, Scenario 3 is notable with

accuracies exceeding 0.8 R2
ref using remote sensing only for dates

that align closely with the physiological stages of maize.

Furthermore, the last date for remote sensing was scheduled for

early August, which could provide additional information for late

season testing (e.g., prioritizing in-depth nutrient studies or a stay-

green study on the most successful hybrid models).

In the context of multi-modal architectures, RS data acquired by

different sensing modalities enables more comprehensive data

analysis and interpretation. The contributions of sensors in

capturing important characteristics of crop physiology vary

throughout the season. The process of combining complementary

modalities in either early fusion or late fusion allows mitigation of

the weaknesses inherent in one by utilizing the strengths of another,

ultimately resulting in more accurate and reliable. For instance,

when there is cloud cover, optical data may encounter difficulties.

However, LiDAR data are not affected by clouds, ensuring that data

collection can proceed unhindered regardless of weather conditions.

The model’s flexibility is a benefit, as it does not have to include data

from each modality in every time-step. To conclude, utilization of

multi-modal RS data provides a synergistic framework that

enhances the capabilities of individual sensor types, ultimately

leading to a more nuanced and thorough comprehension of

observed processes, which is useful for both research and

operational environments.

Through the G2F initiative, the GxE experiments offer a unique

opportunity to develop predictive models by leveraging the genetic

data and multiple environmental setups. The networks proposed for

predicting maize grain yield are designed to provide end-of-season

outcomes for individual years. Given the multiple geographic and

environmental conditions encountered, current research is being

conducted on the application of domain adaptation to forecast the

yield of maize grain for a different year and potentially a different

location using semi-supervised approaches.
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SUPPLEMENTARY FIGURE 1

Scree plot of the explained variance of the individual principal components

determine the appropriate number of principal components.

SUPPLEMENTARY FIGURE 2

Example of a hyperspectral orthomosaic, OSAVI image, and the non-

vegetation pixel mask during flowering time.

SUPPLEMENTARY FIGURE 3

Example of the reconstructed LiDAR point cloud during flowering time.

SUPPLEMENTARY FIGURE 4

Heatmap plot of the attention weights was obtained by summing the feature

weights within each time-step (A) LiDAR and (B) Hyperspectral.

SUPPLEMENTARY FIGURE 5

Plot of the error bars derived from Table 4.
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