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Grapefruit and stem detection play a crucial role in automated grape harvesting.

However, the dense arrangement of fruits in vineyards and the similarity in color

between grape stems and branches pose challenges, often leading to missed or

false detections in most existing models. Furthermore, these models’ substantial

parameters and computational demands result in slow detection speeds and

difficulty deploying them onmobile devices. Therefore, we propose a lightweight

TiGra-YOLOv8 model based on YOLOv8n. Initially, we integrated the Attentional

Scale Fusion (ASF) module into the Neck, enhancing the network’s ability to

extract grape features in dense orchards. Subsequently, we employed Adaptive

Training Sample Selection (ATSS) as the label-matching strategy to improve the

quality of positive samples and address the challenge of detecting grape stems

with similar colors. We then utilized the Weighted Interpolation of Sequential

Evidence for Intersection over Union (Wise-IoU) loss function to overcome the

limitations of CIoU, which does not consider the geometric attributes of targets,

thereby enhancing detection efficiency. Finally, the model’s size was reduced

through channel pruning. The results indicate that the TiGra-YOLOv8 model’s

mAP(0.5) increased by 3.33% compared to YOLOv8n, with a 7.49% improvement

in detection speed (FPS), a 52.19% reduction in parameter count, and a 51.72%

decrease in computational demand, while also reducing the model size by

45.76%. The TiGra-YOLOv8 model not only improves the detection accuracy

for dense and challenging targets but also reduces model parameters and speeds

up detection, offering significant benefits for grape detection.
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1 Introduction

Grapes are heralded as the “queen of fruits” and possess

considerable economic value (Chen et al., 2023). Owing to their

nutritional and financial benefits, the area under grape cultivation

and the scale of production have been expanding annually (Sun et al.,

2022), with the global output reaching 75 million tons (Moro et al.,

2021). Grape harvesting is a critical component of the grape industry’s

large-scale development. Harvesting is predominantly manual, a

process that requires significant labor, incurs high costs and is

relatively slow (Bac et al., 2014). Estimates suggest that manually

harvesting a ton of grapes costs three times more than mechanical

harvesting. Hence, compared to manual picking, mechanical

harvesting offers unparalleled advantages (Lin et al., 2023).

As a crucial branch of artificial intelligence, computer vision has

enabled many challenging functions for traditional methods. Since

their introduction, convolutional neural network models trained

using deep learning methods, such as Fast-R-CNN (Girshick, 2015),

Faster-R-CNN (Ren et al., 2015), YOLOv4 (Bochkovskiy et al.,

2020), and SSD (Liu et al., 2016), have achieved remarkable success

in computer vision. Consequently, methods based on computer

vision are receiving increasing attention in technical research across

various fields, particularly in remote sensing (Bai et al., 2024),

transportation (Dilek and Dener, 2023), and agriculture (Tian et al.,

2020). Target detection plays an essential role in harvesting robots,

where the rapid and accurate identification and localization of fruits

and pedicels are crucial to achieving automated harvesting (Luo

et al., 2016). Although the YOLOv8 model shows improved

performance over previous YOLO models in metrics like mAP,

its complex structure and high computational demand render it

unsuitable for deployment on endpoint devices. Therefore,

achieving a lightweight structure of the YOLOv8 model without

compromising its performance has become an important research

topic to advance grape automated harvesting technology.

Researchers have applied traditional detection methods to

detect objects in natural environments. Lin et al. (2020) proposed

a novel fruit detection technique in natural settings based on a

support vector machine classifier supported by color and texture

features. Chaivivatrakul and Dailey (2014) introduced a plant green

fruit detection technology based on texture analysis, assessing

interest features in pineapples and bitter gourds. Luo et al. (2018)

utilized a segmentation algorithm based on K-means clustering and

practical color components to detect the cutting points of stem

peduncles in overlap-ping grape clusters within unstructured

vineyards. Pérez-Zavala et al. (2018) developed a method for

grape berry recognition and grape bunch detection using a visible

spectrum camera. However, In the face of complex natural

environments, traditional target detection methods struggle to

adapt to changing conditions, such as variations in lighting,

occlusion and covering among detection targets, and dense

distribution of objects. This situation can lead to reduced

accuracy in final detection and identification, adversely affecting

the recognition of grape berries, pedicels and the determination of

harvesting locations.
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Amid the rapid advancement and widespread adoption of deep

learning, numerous methods from this domain have been applied in

agricultural contexts, primarily categorized into semantic segmentation

and object detection approaches (Lu and Luo, 2022). For example,

within the scope of semantic segmentation, Yu et al. (2019) introduced

the Mask-RCNN algorithm to generate mature fruit mask images,

enhancing the efficacy of machine vision in detecting fruits for

strawberry harvesting robots. Luo et al. (2015) employ improved

clustering image segmentation and point-line minimum distance

constraints, achieving an accuracy rate of 88.33%. Zhou et al. (2023)

used an enhanced YOLACT++ model for segmenting critical

structures of grapes, with the success rates of the picking point

localization methods increasing by 10.95 and 81.75 percentage

points. Liu et al. (2020) applied the Chan-Vese model for iterative

recognition of grape clusters, attaining an average accuracy of 89.71%

and a success rate of 90.91%. However, in practical applications, the

achievements of target detection in natural environments based on

semantic segmentation are relatively few. This arises from the extensive

time needed to prepare training sets, the models’ inability to perform in

real-time, and their significant size, which complicates deploying them

on embedded machines in contemporary agriculture.

Applying convolutional neural networks (CNNs) for object

detection for this task typically falls into two categories. The first

category encompasses two-stage object detection methods: R-CNN,

Fast R-CNN, and Faster R-CNN. These approaches extract object

regions and then perform CNN classification and regression on

those regions, constituting a detection strategy based on region

proposals. For instance, Gao et al. (2020) introduced a SNAP system

based on Faster R-CNN for multi-category apple detection,

achieving a frame rate of 0.241s. Behera et al. (2021) presented an

FR-CNN algorithm that utilizes Intersection over Union (IoU) for

plant fruit prediction, reaching an accuracy of 89% in fruit yield

estimation. The second category involves one-stage object detection

methods, such as YOLO and SSD. Ma et al. (2024) employed an

enhanced YOLOv8 model for real-time detection of apples in

orchard environments, achieving an average precision of 91.4%.

Wu et al. (2023) developed a stem localization method for grapes

from a top-down perspective using a lightweight YOLOv5m

detection algorithm based on HRNet, with a detection speed of

7.7 frames per second. It is evident that, compared to the CNN

series, the YOLO series achieves comparable performance and

higher computational efficiency in crop fruit detection.

Although traditional deep learning methods have improved

detection accuracy, their networks are complex, necessitating

substantial storage space, and are thus generally unsuitable for

deployment on embedded devices. YOLOv8 is one of the

fundamental models in the YOLO series, offering a new state-of-

the-art model. However, due to the complexity of orchard lighting

and diverse backgrounds, the YOLOv8 detection algorithm still

needs to improve its object recognition. Moreover, due to the

relatively large size of the YOLOv8 model, deploying it on

embedded devices like harvesting robots remains challenging. To

address issues of large model size, slow detection speed, and low

accuracy, this paper introduces the TiGra-YOLOv8 model, a
frontiersin.org
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lightweight and high-precision solution designed to improve the

detection efficiency of grapefruit and grape stem in the natural

environment, achieving a lightweight model.
2 Materials and methods

2.1 Dataset

The grape dataset studied in this paper was collected on

September 9, 2023, at the Four Seasons Vineyard in Chengdu,

Sichuan Province, featuring the “Crimson” variety of grapes. We

captured the images with a Canon camera, positioning the lens

0.5m to 1.5m away from the grapes. Moreover, we acquired all

grape images under natural light from 12:00 to 4:00 PM. The dataset

was collected in the vineyard’s natural environment, having

different environmental conditions.

We annotated the dataset using the professional annotation

software LabelImg, marking grapefruits and grape stems with

rectangular boxes (Russell et al., 2008). We labeled the fruits

“grape” and the stems “grape root.” The collected dataset, after a

selection process, consisted of 913 images. However, when the

number of training samples is insufficient, it will often lead to

overfitting of the model, which will further affect the detection effect

of the model. Therefore, we expanded the original data set to 2500

through data enhancement technology, including image rotation,

adding noise, flipping, and changing brightness. The data

enhancement methods are shown in Figure 1. After image quality
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screening, we finally obtained 2411 data sets as training samples,

which were divided according to the ratio of 7:2:1, including 1687

training sets, 482 verification sets, and 242 test sets. The original

resolution of the images used for training the model was 5184x3456

pixels. To optimize the computational efficiency and ensure

compatibility with the YOLOv8 model, we resized the images to

640x640 pixels. It helps standardize the input size and balance the

trade-off between computational load and model performance.
2.2 TiGra-YOLOv8

YOLOv8 is an end-to-end convolutional neural network based

on deep learning, comprising three main components: Backbone,

Neck, and Head. Unlike the Anchor-based approach used in earlier

models of the YOLO series, YOLOv8 introduces an Anchor-free

method that achieves higher detection accuracy and speed (Lou

et al., 2023). In the Backbone of YOLOv8, the model extracts image

features through pooling and convolution, reducing the parameters

and computational load (del Pilar Martıńez-Diz et al., 2020). After

upsampling and feature fusion, the Neck section sends three output

results to the Head layer for loss function calculation. For the

matching strategy, YOLOv8 employs the TaskAlignedAssigner

method (Feng et al., 2021), which matches positive and negative

samples for loss calculation based on the weighted results of

classification and regression scores.

This paper presents an enhanced TiGra-YOLOv8 model based

on the YOLOv8n model. As illustrated in Figure 2, we have
B

C D

A

FIGURE 1

Data enhancement methods. (A) Reduce Luminance; (B) Rotate; (C) Flip; (D) Gaussian Noise.
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integrated the Attentional Scale Sequence Fusion module from the

weighted Bi-Directional Feature Pyramid Network ASF-YOLO into

the YOLO framework to improve the Neck section of YOLOv8

(Kang et al., 2023). We have adopted the Adaptive Training Sample

Selection (ATSS) method for adaptive positive and negative sample

selection to refine the TaskAlignedAssigner label-matching

algorithm of YOLOv8 (Zhang et al., 2020). Additionally, we chose

the boundary box loss based on a dynamic non-monotonic focusing

mechanism (Wise-IoU) to replace the original CIoU loss function

of YOLOv8 (Tong et al., 2023). Finally, by employing the Random

channel pruning method, we have reduced the model’s size and

parameter count while ensuring accuracy, achieving a lightweight

model deployment (Liu et al., 2022).
2.3 Experimental detail

All models were trained under identical hardware conditions

and with the same initial training parameters to ensure fairness in

experimental comparisons. Mosaic data augmentation was turned

off once in the last ten training cycles to better fine-tune model

parameters. The specific initial training parameters are listed in

Table 1. The model accuracy reported in this paper is based on a

single training session. To ensure the reproducibility of the results, a

random seed was set during the training process. Hyperparameter

tuning was conducted using the validation set, and the test set’s final

accuracy was evaluated.

The experimental environment for this study included an RTX

3090 (24G) graphics card; Python version 3.8.16; CUDA version 11.7;

Torch version 1.13.1+cu117; and TorchVision version 0.14.1+cu117.
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2.4 Evaluation Index

Mean Average Precision (mAP) is the average of the Average

Precision (AP) across all categories, where AP represents the

average precision for each category. The formula for calculating

mAP is mAP = 1/m∑AP(i), where m is the number of categories and

AP(i) is the average precision of the i-th category.

P =
TP

TP + FP
� 100%

R =
TP

TP + FN
� 100%

AP =
Z1
0

P(R)dR� 100%

mAP =
1
ko

k

i=1
APi � 100%

mAP(0.5) and mAP(0.75) refer to the average precision of

each category at Intersection over Union (IoU) thresholds more

significant than 0.5 and 0.75, respectively. mAP(0.5:0.95)

denotes the mAP across different IoU thresholds, ranging from

0.5 to 0.95, with a step size 0.05. Loc denotes localization errors,

Dupe indicates duplicate detection errors, and FalsePos

represents overall error metrics, including duplicate detection,

incorrect classification, localization errors, and background

confusion. Model Size, Parameters, and GFLOPS, respectively,

refer to the storage size, number of parameters, and
FIGURE 2

TiGra-YOLOv8 network structure.
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computational cost of the model, commonly used to evaluate the

size of a network model. FPS, or frames per second, measures the

number of images that can be detected per second and is used to

assess the detection speed of the network model.
3 Model Improvement

3.1 Neck

3.1.1 ASF network structure
Integrating the Attentional Scale Sequence Fusion (ASF)

module from ASF-YOLO into the YOLO framework to enhance

the Neck component of YOLOv8 enables a more effective

combination of high-dimensional information from deep feature

maps with detailed information from shallow feature maps. The
Frontiers in Plant Science 05
ASF feature extraction network consists of Scale Sequence Feature

Fusion (SSFF), Triple Feature Coding (TPM), and Channel and

Position Attention Model (CPAM) modules. Its network structure

is depicted in Figure 3.

During forward propagation, the SSFF module merges feature

maps from different spatial scales, preserving scale-invariant

features and enhancing the representation of multi-scale

information. This process ensures that the model can effectively

detect objects of varying sizes and shapes. The TFE module further

processes these feature maps by adjusting their scales and

combining them into a unified feature map. This helps in

accurately identifying small and overlapping targets by providing

a comprehensive multi-scale context. The CPAM module applies

attention mechanisms to focus on relevant spatial and channel-wise

information, enhancing the localization and classification of small

targets like grape stems. This selective attention improves the

model’s ability to differentiate between similar objects and detect

fine details.

During backward propagation, the enhanced feature

representation and selective attention mechanisms provided by

ASF-YOLO result in more stable and informative gradients

during backward propagation. This leads to more efficient

parameter updates and faster convergence, Stabilizing the

gradient flow. The multi-scale fusion and attention mechanisms

ensure that the model learns robust and discriminative features,

which are essential for accurate detection. The gradients calculated

for these features are more informative, leading to better weight

adjustments and improved model performance.

3.1.2 SSFF module
The SSFF module effectively merges feature maps from different

spatial scales (e.g., layers P3, P4, P5), capturing scale-invariant
FIGURE 3

ASF module structure.
TABLE 1 Initial training parameters.

Parameter Form/Value

epochs 150

batch 16

close_mosaic 10

workers 8

optimizer SGD

dropout 0.3

seed 42

lr0 0.01

lrf 0.01
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features that remain consistent despite variations in size or shape.

This capability is crucial for detecting grapes of various sizes within

a cluster, as it enables the model to recognize both small individual

grapes and larger grape clusters.

The grape-scaled images inputted into the SSFF can be obtained

by the following method:

F0(w, h) = G0(w, h)� f (w, h)

Gs (w, h) =
1

2ps 2 e
−(w2+h2)=2s 2

where f (w, h)denotes a 2D input image with width w and height

h. F0(w, h) is generated by smoothing under a 2D Gaussian filter

through convolutions. s represents the standard deviation

parameter of the 2D Gaussian filter used for convolution.
3.1.3 TFE module
The TFE module enhances the detection of small, densely

overlapping objects like individual grapes within a cluster by

examining and comparing image variations across different scales.

By magnifying and combining feature maps from large, medium,

and minor scales, the TFE module ensures that even the smallest

details are captured and emphasized. The module adjusts the scales

of input feature maps (large, medium, and small) to a standard

scale, allowing for effective fusion and comparison. This adaptation

aids the model in recognizing grapes irrespective of their size,

leading to improved detection accuracy for both small and large

grape clusters. The TFE module is illustrated in Figure 4.

FTFE = Concat(Fl , Fm, Fs)

FTFE represents the output feature map of the TFE module, with

  Fl , Fm, Fs   enoting the large, medium, and small-sized feature

maps, respectively. The information output by the TFE is

integrated into each feature map branch through the PANet

structure, combined with the multi-scale information output by

the SSFF module into the P3 branch for subsequent attention

network feature extraction.
Frontiers in Plant Science 06
3.1.4 CPAM module
The CPAM module employs channel attention mechanisms to

focus on the most relevant channels in the feature maps. By

prioritizing channels containing critical information about grape

clusters and fruits, the model can more accurately identify and

classify these objects. This is particularly useful for distinguishing

closely packed grapes from background elements. The CPAM

module also applies spatial attention mechanisms to highlight

significant spatial regions within the feature maps. This enhances

the model’s ability to localize small targets like individual grapes

and grape stems, improving detection precision and reducing false

positives. By integrating inputs from the TFE and SSFF modules,

the CPAM module ensures that both high-order multi-scale

features and detailed spatial information are utilized. This

comprehensive integration enables the model to effectively detect

and differentiate grape clusters and individual grapes in complex

and cluttered scenes. The structure of CPAM is shown in Figure 5.
3.2 Label-matching policy

YOLOv8 employs the TaskAlignedAssigner label-matching

strategy, which selects positive samples based on a weighted score

of classification and regression scores. The TiGra-YOLOv8 model

this paper introduces utilizes the Adaptive Training Sample

Selection (ATSS) label-matching algorithm. As illustrated in

Figure 6, blue boxes represent the ground-truth boxes (gt), and

red boxes represent the anchor boxes (anchor). ATSS calculates the

distances x1, x2, x3 between each anchor and its center point if a

feature map generates three anchors for grape stems and fruits. If

x1< x2< x3, it selects the anchors corresponding to the shorter

distances x1 and x2 as candidate positive samples. For L levels of

feature maps, L*2 candidate positive samples are chosen.

Subsequently, the IoU between each candidate positive sample

and the gt is calculated, followed by the calculation of the mean

and variance of the IoUs. The threshold for selecting positive

samples is t = m + g, where m is the mean and g is the variance.

Finally, based on the threshold t for each layer, the actual positive
FIGURE 4

TFE module structure.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1407839
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1407839
samples to be included in the training are selected from the

candidate positive samples.

During forward propagation, ATSS optimizes the selection of

positive and negative samples, ensuring that the model learns

features from more representative samples. These features are

more indicative of the actual objects, improving the model’s

ability to detect and distinguish grape clusters and individual

grapes. By focusing on adaptively chosen samples, the model can

better localize and classify objects, leading to higher detection

accuracy and fewer false positives. This is crucial for identifying

small, densely packed objects such as grapefruits within clusters. In

the backward propagation process, the improved selection of

training samples results in more stable and informative gradients,

enhancing the efficiency of parameter updates and speeding up
Frontiers in Plant Science 07
model convergence. By ensuring a more balanced distribution of

positive and negative samples across different object scales, ATSS

facilitates more effective learning of multi-scale features, which is

particularly beneficial for accurately detecting both small individual

grapes and larger grape clusters.
3.3 IoU loss

In the YOLOv8 network, CIoU is the bounding box regression

loss function. It calculates the loss by considering the overlap area

between predicted boxes and ground-truth boxes, the distance

between their center points, and the aspect ratio, with the

formula detailed below:
FIGURE 5

CPAM module structure.
FIGURE 6

Grape stem and fruit pre-selection frame.
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LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ an

CIoU employs a monotonic focusing mechanism aimed at

enhancing the fitting capability of the bounding box loss.

However, when the object detection training set contains low-

quality examples, indiscriminately reinforcing the regression for

low-quality examples could hinder the improvement of model

detection performance (Zheng et al., 2020). Consequently, this

paper adopts a dynamic non-monotonic focusing mechanism loss

function, WIoU, which constructs distance attention based on

distance metrics, resulting in WIoUv1. The formula for this loss

function is as follows:

LWIoUv1 ≡ RWIoULIoU

RWIoU = exp
(x − xgt)

2 + (y − ygt)
2

(w2
g +H2

g )*

 !

WIoUv3 defines an outlier degree to describe the quality of

anchor boxes, assigning smaller gradient gains to anchors with a

more considerable outlier degree. This effectively prevents harmful

gradients from low-quality examples, allowing the loss function to

focus more on samples of average quality and improve the overall

model performance.

b =
L*IoU
LIoU

∈ ½0, +∞�

LWIoUv3 = g LWIoUv1

g =
b
dab

During training, WiseIoU enhances the model’s ability to learn

from complex and varied object shapes by providing more

informative feedback on the quality of predictions. This leads to

better localization and classification performance, as the model is

trained to optimize for a metric that closely aligns with the practical

requirements of accurate object detection in vineyards. The

improved feedback mechanism helps the model to fine-tune its

predictions more effectively, reducing the number of false positives

and false negatives.

In the evaluation phase, WiseIoU offers a more reliable and

discriminative measure of the model’s detection performance.

Traditional IoU can sometimes overestimate the accuracy of

detection when dealing with minor or partially overlapping

objects. WiseIoU mitigates this issue by providing a more detailed

and context-aware assessment, ensuring that the model’s

performance metrics more accurately reflect its real-world

detection capabilities. Moreover, WiseIoU contributes to the

robustness of the detection model by improving its generalization

across different environmental conditions and image qualities. By

accounting for various object shapes and contextual nuances, the

model trained with WiseIoU is better equipped to handle variations

in lighting, occlusion, and background clutter commonly

encountered in vineyard images. This leads to more consistent
Frontiers in Plant Science 08
and reliable detection results, enhancing the overall effectiveness of

the model in practical agricultural settings.
3.4 Channel pruning

This study employs the Random channel pruning(RCP)

method, offering a novel approach to estimating the contribution

of neurons (filters) to the final loss. During training, the

contribution to the final loss is analyzed based on average

gradients and weight values, and iteratively, neurons with lower

scores are removed. The model takes a trained network as input

during the pruning process and prunes it at a reduced learning rate

during iterative fine-tuning. Following fine-tuning, the model’s

accuracy is restored.

The RCP algorithm contributes to the robustness and adaptability

of the detection model, encouraging the model to learn redundant and

complementary features across different channels. This redundancy

ensures that the model can still perform accurately even if specific

channels are removed. For the detection of grape clusters and fruits,

this means that themodel canmaintain high detection accuracy despite

variations in grape size, shape, occlusion, and lighting conditions,

which are commonly encountered in vineyard images. RCP also aids

in mitigating overfitting. Reducing the number of channels and, thus,

the model’s capacity helps prevent the model from memorizing the

training data. Instead, it promotes the learning of generalizable features

that are applicable to unseen test data. This characteristic is particularly

beneficial for detecting grape clusters and fruits, where the model must

generalize well across different vineyard locations and conditions. By

focusing on essential features and discarding redundant ones, RCP

ensures that the model remains effective and accurate in detecting

grape clusters and fruits in a wide range of scenarios.
4 Results

4.1 Comparison of neck

In the Neck section, this paper implements six distinct

enhancements to the YOLOv8n model: YOLOv8n-CARAFE,

YOLOv8n-EfficientRepBipan, YOLOv8n-GDFPN, YOLOv8n-

GoldYolo, YOLOv8n-HSPAN, and YOLOv8n-ASF. Table 2

displays the comparative results of these network models in terms

of mAP, FalsePos, and ModulSize.

Data analysis from Table 2 reveals that YOLOv8n-ASF achieves

an mAP(0.5) and mAP(0.5:0.95) of 1.78% and 5.92% higher than the

Baseline, respectively. Simultaneously, FalsePos and ModulSize are

reduced by 27.28% and 1.69% compared to the Baseline. Although

YOLOv8n-EfficientRepBipan and YOLOv8n-GDFPN also show a

significant improvement in mAP compared to the Baseline, its

FalsePos and ModulSize are higher, indicating that while

YOLOv8n-GoldYolo may increase accuracy in grape detection, it

results in more detection errors and has a larger storage volume,

making it less suitable for deployment in embedded devices like

automated grape harvesting robots. Among the improved network
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models, YOLOv8n-ASF demonstrates the best comprehensive

improvement in grape detection.
4.2 IoU loss function
comparison experiment

To investigate the impact of loss functions on the performance

of the improved model, we set YOLOv8n as the Baseline and a

model with enhancements to the Neck section and label matching

strategy, YOLOv8n+ASF+ATSS, as Model A. This paper compares

the mAP values and FalsePos of five commonly used IoU loss

functions: IoU, EIoU, MDPIoU, and Wise-IoU. The comparative

results of these loss functions are shown in the table.

Table 3 shows that the YOLOv8n model using the Wise-IoU

loss function achieves higher detection accuracy. Compared to the

original YOLOv8n model using the CIoU loss function, mAP(0.5)

and mAP(0.5:0.95) increased by 3.11% and 7.36%, respectively, with

FalsePos decreasing by 35.84%. Relative to Model A, which

improved both the Neck section and label matching strategy,

mAP(0.5) and mAP(0.5:0.95) increased by 1.19% and 1.35%,

respectively, with FalsePos decreasing by 18.89%. These results

indicate that using the Wise-IoU loss function can stabilize the

model’s bounding box regression and improve prediction accuracy.
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4.3 Ablation experiment

Ablation experiments were conducted to validate the

effectiveness of the Attentional Scale Sequence Fusion (ASF)

module, Adaptive Training Sample Selection (ATSS) label

matching strategy, and the enhanced Wise-IoU loss function

within the TiGra-YOLO network model for grape detection. The

results, showcasing mAP values across various IoU thresholds and

comparative metrics for different error types, are presented in

Table 4, where “×” denotes the absence of the corresponding

enhancement module and its presence otherwise.

In Table 4, the mAP values for TiGra-YOLOv8 across different

IoU ranges were 0.928, 0.619, and 0.598, respectively. These values

represent an increase of 3.11%, 13.16%, and 7.36% over the original

YOLOv8n (Baseline). Moreover, localization errors (Loc), duplicate

detection errors (Dupe), and overall error metrics (FalsePos)

decreased by 19.68%, 62.66%, and 35.84% compared to the

original YOLOv8n model. This indicates that the TiGra-YOLOv8

model significantly enhances the accuracy of grapefruit and stem

detection. This improvement can be attributed to the ASF module,

which increases detection precision for small targets like grape

stems by filtering out irrelevant background noise and retaining

valuable information for object detection.

Furthermore, the ATSS matching strategy effectively filters

positive and negative samples. It is an adaptive selection method

that divides training samples based on the statistical features

(variance and mean) of grapes and their stems. Finally, the Wise-

IoU, employing a dynamic non-monotonic focusing mechanism for

bounding box loss, optimizes model performance based on the

overlap between predicted and actual grape stems, assessing

accuracy and providing a gradient gain allocation strategy focused

on anchors of average quality to enhance detector performance.
4.4 Channel pruning experiment

This study conducted experiments on six commonly used

pruning methods, setting YOLOv8n as Baseline1 and YOLOv8n

+ASF+ATSS+WiseIoU as Baseline2. The pruning rate (speed_up)

was set to 2.0, with global_pruning set to False, meaning that the

number of pruned channels per layer was roughly consistent.
TABLE 3 Comparison of model performance after improved
loss function.

Model mAP(0.5)
mAP

(0.5:0.95)
FalsePos

YOLOv8n(Baseline) 0.900 0.557 6.89

YOLOv8n+ASF+ATSS(A) 0.917 0.590 5.45

A+IoU 0.919 0.589 5.13

A+EIoU 0.926 0.602 4.96

A+MPDIoU 0.926 0.592 4.30

A+ShapeIoU 0.922 0.588 5.32

A+Wise-IoU 0.928 0.598 4.42
The bold values in the table are the best methods in the experiment and their corresponding
experimental data.
TABLE 2 Neck end network model improvement comparison.

Model mAP(0.5) mAP(0.5:0.95) FalsePos
ModulSize

(M)

YOLOv8n(Baseline) 0.900 0.557 6.89 5.9

YOLOV8n-CARAFE 0.909 0.593 5.83 6.2

YOLOv8n- EfficientRepBipan 0.915 0.569 5.16 5.6

YOLOv8n-GDFPN 0.914 0.576 5.83 6.5

YOLOv8n-GoldYolo 0.910 0.580 5.38 11.8

YOLOv8n-HSPAN 0.910 0.583 5.99 4.2

YOLOV8n-ASF 0.916 0.590 5.01 6.0
The bold values in the table are the best methods in the experiment and their corresponding experimental data.
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Performance metrics such as model size, parameter count,

computational cost, FPS, and mAP were compared, as shown

in Table 5.

Comparing the six pruning models with the Baselines

revealed that Random achieved the best overall performance

metrics. Compared to Baseline1, it improved mAP by 3.33% and

FPS by 7.49%. Compared to Baseline2, mAP increased by 0.21%

and FPS by 32.72%, while model size, parameter count, and

computational cost were reduced by 50% compared to both

Baseline models.

To explore the impact of the pruning rate on model

performance, the study chose the Random pruning method

and experimented with pruning rates of 1.5, 1.7, and 2.0. A

pruning rate of 1.5 implies that the computational cost of the

pruned model is 2/3 of the original model, meaning that 1/3 of

the original channel connections were removed from the

network. Similarly, pruning rates of 1.7 and 2.0 indicate that

the computational cost of the pruned model is 1/1.7 and 1/2 of

the original, respectively. After pruning, the network underwent

fine-tuning to compensate for lost connections, restoring

accuracy and improving overall network performance. The

comparative results are presented in Table 6.

Analysis of Table 6 shows that the Random pruning method

achieved the highest mAP and FPS at a pruning rate of 2.0, with the

smallest model size, parameter count, and computational cost. The

value of mAP(0.5) increased compared to the pre-pruning model

and both Baselines, indicating that this pruning method optimally
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enhances the comprehensive performance of the model at a pruning

rate of 2.0.
4.5 Network model
comparison experiment

This experiment contrasts the detection heatmaps of YOLOv8

and TiGra-YOLOv8, as shown in Figure 7.

From the heat maps of A and B in Figure 7, it can be seen that

compared to the original YOLOv8 model’s heatmap, the improved

model’s heatmap exhibits more distinct edges and contours, with a

more concentrated focus on the centers of the target objects.This

indicates that the TiGra-YOLOv8 model proposed in this paper can

better focus on the features of detection targets, thereby enhancing

detection accuracy.

We also compared the improved model with existing models,

such as YOLOv5n, YOLOv7-tiny, YOLOv8n, and YOLOv9-c, with

the results presented in Table 7.

According to the table, compared to YOLOv5n, the mAP(0.5)

increased by 2.87%, while Parameters and GFLOPS decreased by

19.47% and 6.67%, respectively. Compared to YOLOv7-tiny, the

mAP(0.5) increased by 3.91%, with Parameters and GFLOPS

decreasing by 87.56% and 67.94%, respectively. Compared to

YOLOv8n (Baseline), the mAP(0.5) increased by 3.33%, with

Parameters and GFLOPS decreasing by 52.19% and 51.72%,

respectively. Compared to the currently available YOLOv9-c
TABLE 5 Comparison of indicators after pruning.

Prune
Method
(2.0x)

ModulSize
(M)

Parameter GFLOPS FPS mAP(0.5)

YOLOv8n
(Baseline1)

5.9 3.20M
8.7 1066.3

0.900

(Baseline2) 6.0 3.05M 8.5 863.6 0.928

L1

3.2 1.53M 4.2

1144.1 0.928

Lamp 1144.4 0.915

Group_taylor 1144.9 0.922

Group_norm 1142.3 0.920

Group_hessian 1140.8 0.925

Random 1146.2 0.930
The bold values in the table are the best methods in the experiment and their corresponding experimental data.
TABLE 4 Comparison of ablation experimental indexes.

ASF-YOLO
ATSS Wise-

IoU
mAP(0.5) mAP(0.75)

mAP
(0.5:0.95)

Loc Dupe FalsePos

× × × 0.900 0.547 0.557 5.69 0.75 6.89

√ × × 0.916 0.588 0.590 4.52 0.62 5.01

√ √ × 0.917 0.605 0.590 4.89 0.46 5.45

√ √ √ 0.928 0.619 0.598 4.57 0.28 4.42
× means that this module was not used in this round of experiment, √ means that this module was used in this round of experiment.
The bold values in the table are the best methods in the experiment and their corresponding experimental data.
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model, the mAP(0.5) increased by 4.26%, with Parameters and

GFLOPS decreasing by 93.95% and 95.88%, respectively.

The detection accuracy, parameter count, and computational

load for grape recognition in natural environments have improved

compared to both previous and the most recently proposed YOLO

series models.
5 Discussion

This study proposes a lightweight detection method based on

YOLOv8. It attains a detection accuracy of 93% while reducing the
Frontiers in Plant Science 11
model size by half. Specifically, the integration of ASF-YOLO into the

neck of the TiGra-YOLOv8 model plays a crucial role in enhancing

feature aggregation and improving the model’s capability to capture

intricate details within images, thereby contributing significantly to the

overall improvement in precision. The adoption of the ATSS matching

strategy provides a dynamic approach to selecting positive and negative

samples during the training process. It ensures that the model learns

from a representative set of training samples, leading to more robust

learning and better generalization. The utilization of the Wise-IoU loss

function considers both the overlap and the distance between predicted

and ground truth boxes. This dual consideration ensures that the

model predicts the location of objects with greater accuracy. The

implementation of the Random pruning algorithm is instrumental in

reducing the model’s size by eliminating redundant and less significant

parameters while preserving critical features. In fact, the reduced

complexity can lead to more focused learning, as evidenced by the

4.1.4 observed increase in precision post-pruning.

The significant improvements in detection accuracy and

reduction in model size achieved by the TiGra-YOLOv8 model

have important implications for its potential application in

agricultural settings. The enhanced precision of the model, which

allows for more accurate identification of grapefruits and stems, can

improve the efficiency of grape harvesting processes and reduce

waste. The observed reduction in model size, achieved through the

implementation of the Random pruning algorithm, indicates a
BA

FIGURE 7

Comparison of detection heat maps. (A) YOLOv8; (B) TiGra-YOLOv8.
TABLE 6 Comparison of different pruning rate indicators.

speed_up
ModulSize

(M)
Parameters GFLOPS FPS mAP(0.5)

YOLOv8n(Baseline1) 5.9 3.20M 8.7 1066.3 0.900

Baseline2 6.0 3.05M 8.5 863.6 0.928

1.5x 4.1 2.02M 5.6 1028.4 0.929

1.7x 3.6 1.79M 5.0 1063.5 0.931

2.0x 3.2 1.53M 4.2 1146.2 0.930
The bold values in the table are the best methods in the experiment and their corresponding experimental data.
TABLE 7 Comparison of indicators of different models.

Model mAP(0.5) Parameters GFLOPS

YOLOv5n 0.904 1.90M 4.5

YOLOv7-tiny 0.895 12.3M 13.1

YOLOv8n 0.900 3.20M 8.7

YOLOv9-c 0.892 25.30M 102.1

TiGra-
YOLOv8(ours)

0.930 1.53M 4.2
The bold values in the table are the best methods in the experiment and their corresponding
experimental data.
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promising direction towards making the model more

computationally efficient. This reduction in complexity suggests the

potential for the model to be adapted for deployment on devices with

limited computational resources. However, additional work is

required to evaluate the performance and feasibility of the TiGra-

YOLOv8 model on such low-resource hardware.

The results of this study demonstrate the advantages of our

approach when compared to those reported in the existing literature.

Traditional machine learning algorithms, commonly used in earlier

studies, need help to adapt to varying environmental conditions and

typically exhibit lower accuracy. Additionally, instance segmentation

models, while precise, are often large and computationally intensive,

posing challenges for deployment on resource-constrained devices. The

prediction accuracy of the TiGra-YOLOv8 model on this dataset is

better than that of classical object detection models such as YOLOv5

and YOLOv8, which indicates that themodel has particular potential in

dealing with such tasks.
6 Conclusion and prospect

In this study, aimed at recognizing grapefruits and their stems

in natural environments, we constructed a dataset from self-

captured images of grapefruits and stems, considering the

complex backgrounds, density, and occlusions typical of orchard

settings. We designed a lightweight object detection model, TiGra-

YOLOv8, incorporating the ASF module into the YOLOv8 network

structure. The model also features modifications to the IoU loss

function and the positive and negative sample matching strategy,

enhancing detection accuracy. Furthermore, model size was

reduced through channel pruning. This lightweight approach is

significant for deploying the model on mobile devices. In summary,

the TiGra-YOLOv8 model achieved a detection accuracy of 93%,

with a model size of 3.2M, a parameter count of 1.53M, a

computational cost of 4.2 GFLOPS, and an FPS of 1146.2.

Compared to YOLOv5 and other models, TiGra-YOLOv8 boasts

higher detection accuracy and lower model parameters.

Despite the positive findings of this study, there are certain

limitations. Firstly, it should be noted that the dataset used in this

study was derived solely from a single crop species, thus

necessitating future testing and validation on more diverse

datasets. Secondly, when deploying and applying the model in

practice, practical factors such as device compatibility and real-

time performance need to be taken into consideration. Additionally,

although model pruning techniques have successfully reduced

model complexity, further optimization is still necessary to

accommodate a broader range of application scenarios. In future

research, we will explore mobile deployment of the model and

deploy the TiGra-YOLOv8 model on small computing devices.

Additionally, we plan to collect more diverse grape datasets and

train a more generalized TiGra-YOLOv8 model.

In summary, the lightweight detection method based on

YOLOv8 proposed in this study demonstrated exceptional

performance in detecting grape fruit and grape stalk, thereby
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offering a novel technical approach for agricultural automation

and intelligence. Future studies will further investigate the model’s

generalization ability and practical application potential.
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