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1Hangzhou Normal University, Hangzhou, China, 2Zhejiang Provincial Key Laboratory for Genetic
Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
The plants of the genus Physalis L. have been extensively utilized in traditional

and indigenous Chinese medicinal practices for treating a variety of ailments,

including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present

review aims to achieve a comprehensive and up-to-date investigation of the

genus Physalis, a new model crop, to understand plant diversity and fruit

development. Several chloroplast DNA-, nuclear ribosomal DNA-, and

genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer

(ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS),

sequence-characterized amplified region (SCAR), and single nucleotide

polymorphism (SNP), were developed for molecular identification, genetic

diversity, and phylogenetic studies of Physalis species. A large number of

functional genes involved in inflated calyx syndrome development (AP2-L,

MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and

active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14,

and 3b-HSB) were identified contributing to the breeding of novel Physalis

varieties. Various omic studies revealed and functionally identified a series of

reproductive organ development-related factors, environmental stress-

responsive genes, and active component biosynthesis-related enzymes. The

chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.)

M. Martıńez, and Physalis pruinosa L. have been recently published providing a

valuable resource for genome editing in Physalis crops. Our review summarizes

the recent progress in genetic diversity, molecular identification, phylogenetics,

functional genes, and the application of omics in the genus Physalis and

accelerates efficient utilization of this traditional herb.
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Introduction

Physalis L. is one of the largest genera within the Solanaceae

family consisting of approximately 75–90 species, which are mostly

distributed in tropical and temperate regions worldwide (Whitson

and Manos, 2005; Pretz and Deanna, 2020). The most notable

characteristic of the species in this genus is the calyx, which

surrounds the fruit and increases in size as the fruit grows larger.

The interest in Physalis species is mostly motivated by the economic

importance of a subset of species that have been used in traditional

medicine (Zhang and Tong, 2016). Most Physalis species have

potential medicinal properties, including antibacterial,

antileukemic, antipyretic, anti-inflammatory, immunomodulatory,

and anticancer actions, and often have been used to treat various

illnesses such as dermatitis, malaria, asthma, hepatitis, and liver

disorders. Moreover, some Physalis species are extensively

cultivated for their edible fruit or ornamental value in various

countries. Recently, there has been a growing focus on the genus

Physalis in molecular research related to taxonomy, systematics and

evolution, genetic diversity, and omics. In this review, we aim to

provide a comprehensive analysis of the genetic diversity, molecular

identification, phylogenetics, functional genes, and the application

of omics in the genus Physalis. The relevant references for this

review were obtained from the PubMed database of NCBI and the

Web of Science, which are widely recognized as leading databases

for published articles and citations. The searches were conducted

within a single day in May 2024. The term “Physalis” was utilized to

search for instances in the title, abstract, and keywords. Articles

focusing on authentication, genetic diversity, phylogenetics,

functional genes, and omics were chosen for inclusion.
Molecular authentication

The accurate identification of germplasm resources is a crucial

foundation for the systematic classification, population genetics,

omics research, and molecular genetic breeding of Physalis plants.

In the past, morphological methods were the primary means of

identifying Physalis plants (Sinha, 1951; Axelius, 1996; Gonzalez

et al., 2008). However, the morphological characteristics of Physalis

plants are very similar, and these morphological traits are extremely

susceptible to the restrictions of growth period and growth

environment, which bring great difficulties to morphological

identification methods (Whitson and Manos, 2005; Feng et al.,

2016). With the development of biotechnology, various molecular

markers have emerged and been widely used in the identification of

plant species, varieties, and genotypes. Compared with

morphological methods, DNA molecular markers are not easily

affected by the external environment and growth period, and their

identification has good stability and high accuracy (Schindel and

Miller, 2005; Sarwat et al., 2012; Li et al., 2015).

Several chloroplast DNA regions (such as rbcL, atpF-atpH, ycf1,

matK, rpoB, and psbA-trnH) and some nuclear ribosomal DNA

(nrDNA) regions [such as internal transcribed spacer, ITS, and

internal transcribed spacer 2 (ITS2)] have been advocated by some

experts and the Consortium for the Barcode of Life (CBOL) as
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potential standard DNA barcodes for plant species identification

(Schindel and Miller, 2005; Cbol Plant Working Group, 2009; Chen

et al., 2010; China Plant et al., 2011; Chen et al., 2024). Feng et al.

(2016) demonstrated the efficacy of nrDNA ITS2 regions for

molecular identification in 45 Physalis species, as detailed in

Table 1. The findings revealed a high rate of species

authentication using the ITS2 sequence suggesting its potential as

an efficient barcode for identifying Physalis species. Furthermore,

the variability in secondary structures of ITS2 among most Physalis

species, including differences in loop number, size, position, and

degree of angles from the center of the spiral arm, presents a novel

approach for identifying challenging-to-distinguish species based

on their ITS2 sequence. Terrones et al. (2021) successfully used

nrDNA ITS sequences as a DNA barcode to authenticate the two

species of the genus Physalis [Physalis acutifolia (Miers) Sandwith

and Physalis angulata L.] in the Iberian Peninsula of Spain

(Terrones et al., 2021). Chloroplast psbA-trnH region, as one of

the highly recommended candidate DNA barcodes, had also been

successfully applied to the molecular identification of the species of

the genus Physalis (Feng et al., 2018a).

Some DNA-based markers, such as simple sequence repeat

(SSR), random amplified microsatellites (RAMS), start codon

targeted (SCoT), and sequence-characterized amplified region

(SCAR), have also shown excellent performance in plant

molecular identification. Simbaqueba et al. (2011) identified 1,520

SSRs in the assembled leaf transcriptome of Physalis peruviana and

developed 138 SSR primer pairs that successfully amplified in P.

peruviana L. and Physalis floridana Rydb. genotypes, with a

polymorphism rate of 22%. Delgado-Alvarado et al. (2018)

applied RAMS markers to authenticate the varieties and landraces

of Physalis ixocarpa Brot. ex Hornem. The results indicated that

RAMS could be used as good specific markers not only to

distinguish P. ixocarpa from its close relatives but also to provide

specific fingerprints for the authentication of different varieties of P.

ixocarpa. Feng et al. (2018b) developed four specific SCAR markers

for P. angulata, Physalis minima L., Physalis pubescens L., and

Physalis alkekengi var. franchetii (Mast.) Makino based on

polymorphism analysis of SCoT molecular markers providing a

new method for rapid and accurate molecular identification of the

four Physalis species.
Genetic diversity

Research on genetic diversity is crucial for species management

planning, as the preservation of diversity plays a vital role in

conservation and the breeding of superior individuals. In recent

years, there has been a focus on studying the genetic diversity of

Physalis plants, with several related studies being reported. Various

types of DNA molecular markers, including inter-simple sequence

repeats (ISSR), random amplified polymorphic DNA (RAPD), SSR,

insertion and deletion (InDel), and single nucleotide polymorphism

(SNP) markers, have been utilized in numerous studies to assess the

genetic diversity and population dynamics of Physalis plants. A

comprehensive summary of these studies on the genetic diversity of

Physalis plants can be found in Table 1.
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RAPD markers, a relatively early molecular marker technology,

have been widely utilized in studying genetic diversity in various

plants due to their simple operation, high versatility, and cost

effectiveness. Hidayat et al. (2017) used RAPD markers to assess

the genetic diversity of 23 P. angulata plants from different regions

of Bandung. Similarly, Khan et al. (2019) employed eight RAPD

markers to determine the genetic diversity of 17 accessions of P.

ixocarpa, with the results aligning with the ecological distribution of

accessions and highlighting two accessions (P1512005 and

PI360740) from Mexico and Ecuador as exhibiting the highest

genetic diversity among P. ixocarpa accessions.

Microsatellites, also known as simple sequence repeats (SSRs),

are designed based on conserved nucleotide sequences found on
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both sides of simple repeat sequences, widely distributed in plant

genomes (Tautz, 1989). SSRs are co-dominant, multi-allelic, highly

polymorphic, and have been widely used in various fields, including

genetic diversity, phylogenetic studies, molecular identification, and

genetic mapping (Poczai et al., 2013). Several SSR markers have

been developed and extensively utilized in the investigation of

genetic diversity within Physalis species (Simbaqueba et al., 2011;

Wei et al., 2012; Delgado-Bastidas et al., 2019; Feng et al., 2023). In a

study by Delgado-Bastidas et al. (2019), six SSR markers were

employed to evaluate the genetic diversity of 40 genotypes of P.

peruviana revealing that these genotypes were categorized into

three populations. However, it was observed that the level of

genetic diversity among the genotypes was notably low, with no
TABLE 1 Molecular techniques applied to Physalis authentication, genetic diversity, and phylogenetics.

Physalis species Molecular marker Study type Publication Group/year

45 Physalis species nrDNA ITS2
Molecular authentication
and phylogenetics

Front Plant Sci Feng et al., 2016

P. acutifolia (Miers) Sandwith/P.
angulata L.

ITS
Molecular authentication

Annali Di Botanica Terrones et al., 2021

Eight Physalis species psbA-trnH Molecular authentication Genome Feng et al., 2018a

P. peruviana L./P. floridana L. SSR
Molecular authentication

PLoS One
Simbaqueba
et al., 2011

P. ixocarpa Brot. ex Hornem./P.
peruviana L.

RAMS
Molecular authentication

Revista De Ciencias Agricolas
Delgado-Alvarado
et al., 2018

Four Physalis species SCoT, SCAR Molecular authentication Front Genet Feng et al., 2018b

P. angulata L. RAPD
Genetic diversity Pertanika Journal of Science

and Technology
Hidayat et al., 2017

P. ixopcarpa L. RAPD Genetic diversity PLoS One Khan et al., 2019

P. peruviana L. SSR
Genetic diversity

Revista De Ciencias Agricolas
Delgado-Bastidas
et al., 2019

P. angulata L. SSR Genetic diversity Plants Feng et al., 2023

Eight Physalis species ISSR
Genetic diversity

Nutrients
Vargas-Ponce
et al., 2011

P. philadelphica L. ISSR
Genetic diversity Genetic Resources and

Crop Evolution
Zamora-Tavares
et al., 2015

Seven Physalis species SNP, InDel
Genetic diversity

Plant Gene
Garzon-Martinez,
et al., 2015

P. philadelphica L. SNP
Genetic diversity

Molecular Breeding
Labate and
Robertson, 2015

Eight Physalis species SNP
Genetic diversity

PLoS One
Enciso-Rodriguez
et al., 2020

P. philadelphica L. SNP
Genetic diversity Genetic Resources and

Crop Evolution
Alcala-Gomez
et al., 2022

35 Physalis species nrDNA ITS, Waxy
Phylogenetics

Systematic Botany
Whitson and
Manos, 2005

P. peruviana L./P. angulata L. ITS, ITS2
Phylogenetics SABRAO Journal of Breeding

and Genetics
Jalab and Al-
Rufaye, 2024

64 Physalis accessions ITS2, rbcL
Molecular authentication
and phylogenetics

Crops Pere et al., 2023

33 Physalis species
matK, rbcL, ndhF, rpl32-trnL, and ycf1,
ITS and Waxy

Phylogenetics Molecular Phylogenetics
and Evolution

Zamora-Tavares
et al., 2016
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discernible population structure. In a more recent study, Feng et al.

(2023) developed a set of SSR markers based on chloroplast genome

and applied them to assess the genetic diversity and population

structure of P. angulata. The SSR analysis revealed that 16

populations of P. angulata formed four clusters displaying

significant geography-related population structure as well as

extensive admixture.

ISSR markers are molecular markers that utilize microsatellite

oligonucleotides as primers, with two to four randomly selected

nucleotides added to the 5′ or 3′ end of the SSR to facilitate

annealing at specific sites. The result in PCR amplification of

DNA fragments located between relatively spaced repeats that are

complementary to the anchor primers (Zietkiewicz et al., 1994). The

ISSR, which integrates the advantages of RAPD and SSR, not only

exhibits excellent stability and polymorphism but also offers

simplicity, rapidity, and efficiency. It has been successfully

employed in assessing genetic diversity, genetic relationship, and

molecular identification in plants (Wang et al., 2009; Kumar et al.,

2018; Tyagi et al., 2020). The ISSR marker has been proven to be

valuable in the analysis of genetic diversity and genetic relationships

within Physalis plants (Vargas-Ponce et al., 2011; Zamora-Tavares

et al., 2015). Vargas-Ponce et al. (2011) showed that 12 samples

from eight Physalis species could be grouped into two clusters with

an interspecific genetic similarity ranging from 0.48 to 0.58 based

on ISSR analysis. Meanwhile, Zamora-Tavares et al. (2015) utilized

88 ISSR markers to study the genetic diversity and structure of nine

Physalis philadelphica Lam. populations in western Mexico,

revealing high genetic diversity among the samples and grouping

the populations into two clusters based on structure analysis.

Single nucleotide polymorphism (SNP) is a widely utilized

DNA marker technology that has been developed in recent years.

It represents a common genetic variation caused by the alteration of

a single nucleotide (A, T, C, and G) in the DNA sequence (Uppu

et al., 2018). SNP markers are prevalent in genomes and hold

significant value for applications such as plant genetic diversity

analysis, genotype identification, high-density genetic map

construction, and molecular marker-assisted breeding (Lu et al.,

2018; Arca et al., 2020; Guo et al., 2021; Park et al., 2022).

Additionally, SNP is one of the most popular molecular marker

techniques used to study genetic diversity in Physalis plants, as

demonstrated by several studies (Cely et al., 2015; Labate and

Robertson, 2015; Enciso-Rodriguez et al., 2020; Alcala-Gomez

et al., 2022). For example, Enciso-Rodriguez et al. (2020)

identified 7,425 SNPs based on Genotyping-By-Sequencing (GBS)

and utilized them to assess the diversity of P. peruviana and related

taxa. Their findings revealed significant gene flow (FST: 0.01–0.05)

in different subpopulations of P. peruviana. Similarly, Alcala-

Gomez et al. (2022) investigated the genetic diversity of P.

philadelphica using 270 SNP markers based on their study of

40 samples.
Molecular phylogenetics

The taxonomy of Physalis is considered to be a highly complex

issue within the Solanaceae due to the significant intraspecific
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morphological variation and substantial interspecific similarity

(Axelius, 1996; Sullivan, 2004; Whitson and Manos, 2005;

Olmstead et al., 2008; Pretz and Deanna, 2020). In recent years,

molecular analyses have yielded new insights into this problem

(Whitson and Manos, 2005; Olmstead et al., 2008; Feng et al., 2016;

Zamora-Tavares et al., 2016; Feng et al., 2020; Pere et al., 2023). ITS

regions of nrDNA are widely used for studying phylogenic

relationships among angiosperms, including the genus Physalis, at

the interspecific and infrageneric level. This is due to their

biparental inheritance, simplicity, universality, intra-genome

consistency, inter-genome variability, and high copy number

(Whitson and Manos, 2005; Xiang et al., 2013; Feng et al., 2016;

Zamora-Tavares et al., 2016; Pere et al., 2023; Jalab and Al-Rufaye,

2024). Whitson and Manos (2005) conducted a study on the

phylogenetic relationships among 35 species of Physalis and the

relationships among the genera of the subtribe Physalinae utilizing

the sequence analysis of the nrDNA ITS region and the nuclear gene

waxy. The findings revealed that the morphologically typical

Physalis species formed a strongly supported clade. However, the

morphologically atypical species, such as P. alkekengi L., Physalis

carpenter Riddell, and Physalis microphysa A.Gray were found to be

distantly related to any other Physalis species resulting in paraphyly

within the genus. Zamora-Tavares et al. (2016) utilized five plastids

(matK, rbcL, ndhF, rpl32-trnL, and ycf1) and two nuclear regions

(ITS and waxy) to examine the phylogenetic relationships of 50

species within the Physalinae, which included 33 Physalis species.

The study assessed the phylogenetic relationships among

recognized genera in Physalinae, with a focus on identifying

monophyletic groups and resolving the physaloid grade.

Additionally, the study analyzed potential causes for recent

divergence within Physalinae. All the aforementioned studies

utilized single or a few gene sequence fragments from the plastid

genome or nuclear genome to investigate the phylogeny of genus

Physalis. Due to the limited length of these DNA sequences and

their restricted genetic information, there are significant limitations

in studying phylogenetic evolution using these methods. We are

confident that the ongoing advancements in chloroplast genome

and mitochondrial genome-sequencing technology will lead to a

more refined and precise reconstruction of the phylogenetic tree of

genus Physalis.
Identification of functional genes

Functional genes involved in inflated calyx
syndrome development

The inflated calyx syndrome, also known as the Chinese lantern,

is a post-floral morphological novelty in Physalis plants (Hu and

Saedler, 2007). During the fruit ripening process, the green calyx

expands, inflates, and completely envelops the fruit (de Souza et al.,

2022). Despite extensive research on this morphological feature of

Physalis plants, only a limited number of functional genes involved

in its development have been investigated and cloned from Physalis

plants (Wilf et al., 2017). The ortholog of Solanum tuberosum

MADS16 in P. pubescens, MPF2 is a floral tissue-specific expressed
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gene that is essential for the development of inflated calyx syndrome

(He and Saedler, 2005). Furthermore, an MPF2-binding protein,

MAGO NASHI, was identified using the yeast two-hybrid system.

Two MAGO-encoding genes, PFMAGPO1 and PFMAGPO2, were

discovered in P. floridana. These genes play a role in male fertility

and the evolution of calyx development in Physalis (He et al., 2007).

Promoter analysis of an MPF2-like gene revealed degenerative

mutations in its core CArG-box indicating an interaction between

floral development and hormone pathways during the development

process of calyx inflation syndrome (Khan et al., 2012). MPF3, a

core eudicot APETALA1-like MADS-domain protein, has been

reported to act as a repressor of MPF2 during the development of

floral calyx identity and inflated calyx syndrome in Physalis (Zhao

et al., 2013).

Recently, CRISPR-Cas9-targeted mutagenesis technology was

utilized for a forward genetics screen to identify the purported

essential regulators of inflated calyx syndrome. For instance, the

mutation of an AP2-like gene has been found to result in a lack of

inflated calyx syndrome (He et al., 2023). This technological

breakthrough positions Physalis as a new model crop for studying

fruit development and ripening (Lopez-Gomollon, 2023).
Functional genes involved in organ growth

Physalis fruits are increasingly gaining popularity due to their

outstanding sensory and functional characteristics as a functional

food (Avendaño et al., 2022). It is important to note that Physalis

fruit serves as a significant supplementary source of bioactive

compounds with high antioxidant activity (Vaillant et al., 2021).

Fruit size is a critical quality characteristic of Physalis fruit, and

there is significant variation in berry sizes among Physalis plants.

Consequently, the Physalis genus is utilized as a model plant for

identifying the regulators that may contribute to their variation in

berry size (Wang et al., 2012). In P. philadelphica, the expression

level of Physalis Organ Size 1 (POS1) gene is positively associated

with variations in fruit size (Wang et al., 2014). POS1 plays a crucial

role in regulating fruit size by controlling cell wall expansion in

Physaleae (Wang et al., 2022). In P. floridana, the Cell Number

Regulator 1 (CNR1) gene encodes a cell membrane-anchored

modulator that negatively regulates fruit size through its

interaction with an AGAMOUS-like ovary identity protein

(PfAG2) (Li and He, 2015). Two C-class MADS-domain

AGAMOUS-like genes, PfAG1 and PfAG2, in P. floridana play

essential roles in regulating fruit size and the development process

of Chinese lantern (Zhao et al., 2021). Recently, CRISPR-Cas9

technology has been used to target the CLV1 gene revealing its

essential role in enhancing fruit size by increasing the number of

locules in P. pruinosa L (Lemmon et al., 2018).

In addition to regulating the inflated calyx syndrome and fruit

development, P. floridana MPF1 also influences plant architecture,

seed development, and flowering time by regulating the expression

of PFLFY, PFSOC1, and PFFT genes (He et al., 2010). The CRABS

CLAW gene in P. floridana alters carpel meristem determinacy and

carpel closure by mediating the neofunctionalization of GLOBOSA

genes belonging to the floral B-function MADS-box family (Gong
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et al., 2021). Additionally, four core exon junction complex core

genes in P. floridana—namely, PFMAGO, PFY14, PFeIF4AIII, and

PFBTZ—have been found to play diverse developmental roles in

carpel functionality and environmental stress responses.

Furthermore, an intron retention in the transcript of DYT1 was

detected in the mutated flowers of P. floridana indicating its

significance in floral development (Gong et al., 2018). These

works provide us with candidate genes for studying the growth

and development of Physalis plants.
Functional genes involved in active
ingredient metabolism

Physalis plants produce edible fruits containing numerous

antioxidants and bioactive metabolites, including steroidal

lactones, withanolides, and physalins (Popova et al., 2022).

However, the biosynthesis pathways for these bioactive

compounds remain largely unclear. Util izing Physalis

transcriptomes, several research groups have identified a variety

of genes associated with terpenoid backbone and steroid

biosynthesis pathways. In P. alkekengi, candidate genes for the

oxidation at the C-15/18 positions of steroid backbone required in

physalin biosynthesis include a CYP450 chloroplastic-like gene

(unigene-ID: c13295_g2_i2) and an oxidoreductase-like gene

(unigene-ID: c16207_g5_i1). Additionally, a gene encoding sterol

reductase (c27112_g1_i1) has been identified to be involved in the

biosynthesis of specialized metabolites in P. peruviana (Fukushima

et al., 2016). Pa24ISO catalyzes the isomerization of 24-

methylenecholesterol to 24-methyldesmosterol in the physalin

biosynthesis process (Yang et al., 2022). DHCR7 from P. angulata

was newly identified through heterologous expression.

Heterologous expression of P. angulata DHCR7 in Saccharomyces

cerevisiae confirmed its role in producing 24-methylene-cholesterol,

a key substrate in the physalin and withanolide biosynthesis

pathway (Yang et al., 2021). In P. angulata, DUF538 was

predicted as a positive regulator and TAS14 as a negative

regulator in the regulation of physalin biosynthesis (Zhan et al.,

2020). These functional genes have potential implications for

accelerating the breeding of high-yielding Physalis varieties rich in

bioactive compounds (Figure 1).
Application of omics in Physalis study

Several omic datasets of Physalis plants have been made

available online offering extensive genetic information for the

screening of functional genes and the identification of active

compounds. In the present review, all the omic datasets of

Physalis plants are summarized in Tables 2, 3.
Transcriptomic analysis

In recent years, advancements in the next-generation

sequencing technology have enabled the identification of
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FIGURE 1

Functional genes involved in the development and secondary metabolism of Physalis varieties.
TABLE 2 The detailed information of all the transcriptomes, metabolomes. and proteomes of Physalis plants.

Species Tissue Omics type Publication Group/year

P. peruviana L. Leaf Transcriptome BMC Genomics Garzón-Martıńez et al., 2012

P. floridana Rydb. Flower/fruit Transcriptome Planta Gao et al., 2020

P. philadelphica L. Reproductive organ Transcriptome J Exp Bot. Wang et al., 2012

P. alkekengi L./P. peruviana L. Leaf Transcriptome Front Plant Sci. Fukushima et al., 2016

P. angulata L. Hairy root Transcriptome Plant Mol Biol. Zhan et al., 2020

P. peruviana L. Root/stem Transcriptome Peer J. Garzón-Martıńez et al., 2021

P. angulata L.
Root/stem/leaf/
flower/fruit Transcriptome

Plant
Signal Behav. Lu et al., 2019

P. peruviana L. Fruit Metabolome Food Chem. Llano et al., 2018

P. peruviana L. Fruit Metabolome Food Chem. Maruenda et al., 2018

P. angulata L. Hairy root
Metabolome
and Proteome

J. Agric.
Food Chem. Zhan et al., 2018

P. peruviana L. Fruit Metabolome J Food Sci. Yu et al., 2019

P. pruinosa L.
Fruit/calyx/leaf/
stem/root Metabolome Food Res Int. Mahana et al., 2022

P. peruviana L. Seedling Metabolome Molecules
Monroy-Velandia and Coy-
Barrera, 2021

P. angulata L./P. grisea (Waterf.) M. Martıńez/P.
philadelphica L. Leaf Metabolome

Plant
Signal Behav. Trujillo-Pahua et al., 2021

P. angulata L. Fruit Metabolome Molecules Lima et al., 2020

P. alkekengi L. Calyx/fruit Metabolome Antioxidants Crescenzi et al., 2023

(Continued)
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functional genes in non-model plants even without genomic data

(Su et al., 2011). The first Physalis transcriptome was published in

2012 using fresh leaf tissue from the Colombian ecotype of Cape

gooseberry (P. peruviana), as plant material, generating a number of

assembled sequences and candidate markers (Garzón-Martıńez

et al., 2012). To study the Physalis–Fusarium oxysporum

pathosystem, the transcriptome of P. peruviana was further

utilized to identify genes related to immunity, including 74

resistance genes, 17 receptor-like kinase genes, 8 PAMP-triggered

immunity genes, and 9 effector-triggered immunity genes (Enciso-

Rodriguez et al., 2013). Comparative transcriptomic analysis of P.

philadelphica with different sizes of reproductive organs resulted in

the identification of 263 differentially expressed transcripts (Wang

et al., 2012). Using the RNA-seq method, 75,221 genes of P.

alkekengi and 54,513 genes of P. peruviana were identified. The

authors discovered numerous genes potentially involved in each

step of the terpenoid backbone and steroid biosynthesis pathway

providing new insights into the intricate chemical and structural

diversity of Physalis plants (Fukushima et al., 2016). In P. angulata,

a well-known traditional Chinese medicine with various active

compounds, transcriptomic approaches were used to screen genes

involved in the biosynthesis of bioactive compounds (Zhan et al.,

2020). A transcriptomic analysis revealed 468 unigenes involved in

the flower–fruit transition process in P. floridana uncovering some

potential genetic variations that contribute to the early stage of fruit

development in Physalis (Gao et al., 2020). These studies in P.

angulata can help spur our understanding of the biosynthetic

pathways underlying key metabolites important to medicine and

plant development.
Metabolomic analysis

Untargeted metabolomics is a recently developed method that

offers a streamlined approach to systematically analyze and

compare the differences in primary and secondary metabolites

among different groups (Souard et al., 2018). Using untargeted

metabolomics, Medina’s group identified several specifically

accumulated withanolides and fatty acyl glycosides as molecular

markers to differentiate between organic and conventional P.

peruviana fruits (Llano et al., 2018). NMR-based metabolomic

analysis revealed significant phytochemical variations in P.

peruviana fruits (Maruenda et al., 2018). In P. angulata hairy

roots, a comparative metabolomic analysis revealed variations in

the contents of physalins D and H under MeJA treatment

suggesting a possible regulatory mechanism underlying the MeJA-

induced biosynthesis of active compounds (Zhan et al., 2018, 2020).
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LC-MS/MS-based metabolomic analysis revealed variations in

carotenoid content during different growth stages of P. peruviana

fruit (Yu et al., 2019). Metabolite profiling using UPLC-MS

identified a total of 293 metabolites, including 61 terpenoids, 58

phenolic acids, and 53 flavonoids, in aqueous and ethanolic extracts

of Amazonian fruits (including P. angulata) (Lima et al., 2020).

Metabolomics, in combination with chemometrics, has identified

several potential a-glucosidase and a-amylase inhibitory

metabolites in P. pruinosa. Physangulide B, physaperuvin G, and

neophysalin A were found to be positively correlated with a-
glucosidase inhibition activity, while guaiacyl-primeveroside,

phyperunolide C, and perulactone were found to be positively

correlated with a-amylase inhibitory activity (Mahana et al.,

2022). Using LC-ESI/LTQOrbitrap/MS followed by LC-ESI/

LTQOrbitrap/MS/MS technique, 58 phytocompounds were

identified in the calyx ad fruit of yellow P. alkekengi (Crescenzi

et al., 2023). Metabolomic analysis has been utilized to investigate

the responses of Physalis species to environmental stimuli. In
TABLE 2 Continued

Species Tissue Omics type Publication Group/year

P. peruviana L. Seedling Metabolome Molecules
Monroy-Velandia and Coy-
Barrera, 2021

P. philadelphica Lam. Leaf Metabolome Pest Manag Sci. Meza-Canales et al., 2022

P. alkekengi L. fruit Proteome Se Pu Yu et al., 2013
TABLE 3 The summaries of complete chloroplast genomes of
Physalis species.

Physalis species
GenBank
accession

Genome
size (bp)

P. chenopodiifolia Lam. MN508249. 156,900

P. philadelphica Lam.

MT254545 156,804

MN192191 156,804

MZ539568 156,856

P. minima L. MH045577 156,692

P. pubescens L. MH045576 157,007

P. cordata Houst. ex Mill. ON018728 157,000

P. angulata L.
MH045574 156,905

MH019241 156,706

P. angulata var. villosa Bonati OM257167 156,898

P. pruinosa L. MH019243 156,706

P. peruviana L.

MH019242 156,706

OP028208 156,715

KP295964 156,706

P. alkekengi var. franchetii
(Mast.) Makino

MH045575 156,578

P. macrophysa Lam. OP748222 156,735

P. ixocarpa Brot. ex Hornem OP748223 156,871
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P. peruviana, the upregulation of a free flavonol during different

growth stages indicates a response to salt stress (Monroy-Velandia

and Coy-Barrera, 2021). Metabolomic analysis of three different

Physalis species revealed several species-specific metabolites

following larval herbivory. In P. angulata, the response to

herbivory is highlighted by the upregulating of various

compounds , such as w i thano l ide , a - t r eha lose , and

cimiracemoside D. Pheophorbide A and azamacrocycle are

common metabolites of P. grisea (Waterf.) M. Martıńez and P.

philadelphica that are responsive to herbivory (Trujillo-Pahua et al.,

2021). Husk tomato (P. philadelphica) seedlings are susceptible to

infestation by the whitefly Trialeurodes vaporariorum. A newly

published metabolome study showed that P. philadelphica impairs

whitefly development by inducing significant changes in metabolic

profiles (Meza-Canales et al., 2022). Metabolomics researches

provide us an opportunity to understand the differences in types

and contents of active ingredients in Physalis plants. Metabolomic

analysis is also an effective way to screen novel varieties with high

medicinal ingredients.
Proteomic analysis

MS/MS-based peptide sequencing techniques have been utilized

for the large-scale identification and screening of differentially

produced proteins (Yates et al., 1993). In 2013, protein extracted

from P. alkekengi fruit was analyzed by nano-RPLC-MS/MS system

with shotgun proteomics method providing the foundation for

further investigation into the functional proteins in Physalis

species (Yu et al., 2013). MeJA is commonly employed as a

chemical elicitor to enhance the accumulation levels of various

bioactive metabolites in plants (Liu et al., 2016). Proteomic analysis

revealed that several terpenoid and steroid biosynthesis-related

enzymes, such as CYP monooxygenases and 3b-hydroxysterioid
dehydrogenase, might be the targets of the MeJA-induced active

ingredient biosynthesis (Zhan et al., 2018). Enzyme engineering is

currently a hot topic in biotechnology. Proteomic analysis helps us

to identify key enzymes involved in the biosynthesis of active

ingredients and improve the ir act iv i t i es by enzyme

engineering modifications.
Complete chloroplast genomic analysis

The chloroplast plays crucial roles in various cellular functions,

such as photosynthesis, signal transduction, and stress response

(Martin Avila et al., 2016). The examination of the complete

chloroplast genomes of the Physalis genus will be useful for in-

deep genetic research. Currently, the complete chloroplast genomes

of 12 Physalis species, including Physalis chenopodiifolia Lam., P.

angulata, P. angulata var. villosa Bonati, P. alkekengi, P. minima, P.

pubescens, P. peruviana, P. pruinosa, Physalis cordata Houst. ex

Mill., P. philadelphica, Physalis macrophysa Rydb., and P. ixocarpa

were available (Sandoval-Padilla et al., 2019; Zamora-Tavares et al.,

2019; Feng et al., 2020; Zhan et al., 2022; Sandoval-Padilla et al.,

2022a, b; Zhang et al., 2023) (Table 3). The complete chloroplast
Frontiers in Plant Science 08
genomes mentioned above ranged in size from 156,578 to

157,007 bp, with the number of protein coding genes ranging

from 79 to 80 and the number of tRNA genes ranging from 30 to

31 (Sandoval-Padilla et al., 2019; Zamora-Tavares et al., 2019; Feng

et al., 2020; Sandoval-Padilla et al., 2022a, b). These publicly

available chloroplast genomes enable effective phylogeography

and phylogenetic studies of Physalis. Furthermore, a significant

number of SSR loci have been identified providing precise

molecular markers for investigating the intraspecific diversity

of Physalis.
Chromosome-level genomic analysis

Genome-editing technologies have been developed to enhance

the quality and yield of crops, improve adaptation to diverse

environments, manipulate plant architecture and fruit size, and

broaden the range of staple crops that can be cultivated (Scheben

et al., 2017). Although most of the Physalis species have a similar

chromosome number and structure to Solanaceae, genomic

knowledge is essential for genome editing in Physalis crops. The

genome of the orphan crop P. pruinosa was first sequenced and

published in 2018 producing 66.3 Gb of raw data (Lemmon et al.,

2018). To gain a deeper better understanding of the genetic

variations that contribute to the origin and diversity of these

distinctive traits, high-quality genomes of classic Physalis genus

plants were published (Lu et al., 2021). P. floridana possesses an

assembled genome size of 1,389 Mb, which serves as a valuable

resource for breeding Physalis crops (Lu et al., 2021). Recently, a

chromosome-scale references for P. grisea and its close relative P.

pruinosa were published providing high-quality genome assemblies

for genome editing in Physalis species (He et al., 2023). To fully

understand the genomic variation of Physalis plants, a high-quality

haplotype-resolved genome will greatly promote the understanding

of the complex traits of Physalis plants.
Future perspectives

Researchers have performed many studies on the screening of

germplasm collections and identifying SNPs with continuously

updating genetic techniques. Although several molecular markers

have been developed, outdated platforms provide a limited ability to

estimate the extent of Physalis genetic variability. In the future, a

number of convenient and phenotype-based molecular markers will

definitely be the direction for efficient genetic diversity analysis and

germplasm resource identification. Genetic identification is a

prerequisite for species conservation and resource utilization.

Furthermore, the advancement of high-throughput sequencing

technology will lead to an increasing number of published

chloroplast genomes and mitochondrial genomes, thus

contributing to the further development of phylogenetic tree

reconstruction for genus Physalis.

Single-cell RNA sequencing (scRNA-seq) is a novel technology

used to investigate cell heterogeneity at a high resolution (Bawa et al.,

2022). Mass spectrometry (MS) imaging is a recently developed MS-
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based metabolomics approach to reveal the distribution of

metabolites at the spatial level (Xiang et al., 2022; Zhan et al.,

2024). However, scRNA-seq and MS imaging have not yet been

applied to the study of Physalis plants. ScRNA-seq will provide novel

insights into the inflated calyx syndrome and fruit development of

Physalis plants. High-resolution MS imaging can be utilized to

identify and visualize metabolic heterogeneity, including inflated

calyx syndrome. Future researches on Physalis plants will move

toward higher resolutions at both the temporal and spatial levels.

The recently sequenced genome of P. floridana acts as a starting

point for genome-enabled research (Lu et al., 2021). As more

species’ genomes are fully sequenced, new knowledge regarding

evolutionary relationships, processes, and patterns, as well as the

ability to map biosynthetic pathways through comparative means

will emerge.
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