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(Trifolium pratense L.)
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Genomic prediction has mostly been used in single environment contexts,

largely ignoring genotype x environment interaction, which greatly affects the

performance of plants. However, in the last decade, prediction models including

marker x environment (MxE) interaction have been developed. We evaluated the

potential of genomic prediction in red clover (Trifolium pratense L.) using field

trial data from five European locations, obtained in the Horizon 2020 EUCLEG

project. Three models were compared: (1) single environment (SingleEnv), (2)

across environment (AcrossEnv), (3) marker x environment interaction (MxE).

Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint

analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain

and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP)

was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87

to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE

model performed best and the AcrossEnv worst, demonstrating that including

marker x environment effects can improve genomic prediction in red clover.

Leaving out accessions from specific regions or from specific breeders’ material

in the cross validation tended to reduce PA, but the magnitude of reduction

depended on trait, region and breeders’ material, indicating that population

structure contributed to the high PAs observed for DMY and DOF. Testing the

genomic estimated breeding values on new phenotypic data from Sweden

showed that DMY training data from Britain gave high PAs in both years (0.43–

0.76), while DMY training data from Switzerland gave high PAs only for year 1
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(0.70–0.87). The genomic predictions we report here underline the potential

benefits of incorporating MxE interaction in multi-environment trials and could

have perspectives for identifying markers with effects that are stable across

environments, and markers with environment-specific effects.
KEYWORDS

genomic prediction, marker x environment interaction, population structure, predictive
ability, red clover, trifolium pratense
1 Introduction

Increased use of high protein legume crops, such as red clover as

a forage for ruminants, can aid in reducing the protein deficit in

Europe and contribute to sustainable livestock production. Red

clover (Trifolium pratense L.) is particularly valued in livestock

agriculture for its ability to fix atmospheric nitrogen in symbiosis

with soil bacteria of the genus Rhizobium, reducing the reliance on

chemically produced fertiliser. It can enrich the soil and provide

companion crops with a supply of fixed nitrogen (Frame et al.,

1998). There is also evidence that red clover can improve soil

structure and can be a useful component in crop rotations

(McKenna et al., 2018). Red clover contains the enzyme

polyphenol oxidase (PPO), which catalyses the formation of

compounds that can form complexes with and moderate the

breakdown of protein in the rumen. This can improve utilisation

of nitrogen by the ruminant animals, thereby reducing losses of

nitrogen and emissions of methane to the environment (Lee, 2014).

Ready access to chemically produced nitrogen fertiliser,

challenges in maintaining the optimal ratio of clover to grass in

mixtures, lack of persistency, and insufficient tolerance to grazing

still limits the use of red clover in many countries (Lüscher et al.,

2014). Additionally, there is an urgent need to produce varieties that

are more resilient to climate change.

Genomic selection (GS) is one of the most promising methods of

increasing the speed of new plant variety development. The main

objectives of this work was to investigate the potential of GS in red

clover by comparing different prediction models. The term GS was

introduced by Meuwissen et al. (2001) and is based on the following

principle: A training population, for which genome-wide molecular

marker and phenotypic data are available, is used to estimate the

effect of each marker on each phenotype. This information is then

used in a test population with only the molecular marker information

available to determine a genomic estimated breeding value (GEBV),

which in turn is used to select individuals for further crossing in a

breeding programme. GS or genomic prediction (GP) has shown its

utility particularly in dairy cattle breeding (Schefers andWeigel, 2012;

Hayes et al., 2013b; Wiggans et al., 2017). It is also being incorporated

in plant breeding, notably in the major cereals such as maize (Zea

mays L.) (Zhao et al., 2012), rice (Oryza sativa L.) (Cui et al., 2020; Xu

et al., 2021), wheat (Triticum spp.) (Bassi et al., 2016; Juliana et al.,
02
2020), barley (Hordeum vulgare L.) (Puglisi et al., 2021) and oats

(Avena sativa L.) (Campbell et al., 2021).

Among forage crops, GP has been most intensively studied in

perennial ryegrass (Lolium perenne L.) (Hayes et al., 2013a; Forster

et al., 2014; Fè et al., 2015, 2016; Grinberg et al., 2016; Lin et al.,

2016; Byrne et al., 2017; Lin et al., 2017; Arojju et al., 2018; Cericola

et al., 2018; Faville et al., 2018; Pembleton et al., 2018; Arojju et al.,

2020; Faville et al., 2020; Barre et al., 2022). Many of those studies

indicate that predictive abilities (PAs) are highest for traits with

high heritability such as heading date, and disease resistance, while

PAs for DMY were moderate to low.

Genomic prediction in forage legumes has received less

attention than in ryegrass. However, some work has been carried

out on DMY in alfalfa (Medicago sativa L.) (Annicchiarico et al.,

2015; Li et al., 2015; Annicchiarico et al., 2017), and white clover

(T. repens L.) (Griffiths et al., 2022) with encouraging results.

However, the perennialism and often outbreeding nature of most

forage crops present some challenges. Varieties are usually synthetic

populations derived from crossing a small number of parents after

they have been selected among and/or within families based on

observation of performance of their half-sib progeny (Barre et al.,

2022). Either way, the varieties are populations consisting of related,

but genetically distinct and heterozygous individuals. Genomic

prediction models are thus often based on genotypes of the

parents, and phenotypes of their half-sib progeny (Annicchiarico

et al., 2015; Grinberg et al., 2016; Arojju et al., 2020), or based on

genotypes and phenotypes of spaced plants for suitable traits (Byrne

et al., 2017; Arojju et al., 2018).

An alternative is to genotype pools of plants at the level of family

or population using methods such as Genotyping-By-Sequencing

(GBS) (Elshire et al., 2011) or RAD-seq (Baird et al., 2008). Allele

frequency data on a population or family level allows predictions to

be made based on genotypic and phenotypic data from the same

population, not based on genotypic data from parents and

phenotypic data from their progenies. It has been used in ryegrass

for prediction of flowering time, crown rust resistance, seed yield

and fructan content (Byrne et al., 2013; Fè et al., 2016; Cericola et al.,

2018). Recently, GP was also successfully explored in alfalfa using

pooled samples for genotyping (Pégard et al., 2023). PA was above

0.75 for plant height and dormancy in some years, demonstrating

the potential of GP for some traits.
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Pooled genotyping has been used in red clover to identify

regions under selection for survival in the field (Ergon et al.,

2019), and for genome-wide identification of loci involved in

timing of stem elongation and freezing tolerance (Ergon et al.,

2022; Zanotto et al., 2023). Allele frequency data from pooled

samples compared well with those obtained by genotyping

individuals from the same population (Ergon et al., 2019).

GP has mostly been used in single environment contexts, largely

ignoring genotype by environment interaction (GxE), i.e. effects of

location and year, that greatly affect crop performance. However, in

the last decade, models incorporating GxE have been described

(Burgueño et al., 2012; Heslot et al., 2014; Jarquıń et al., 2014;

Lopez-Cruz et al., 2015). While Juliana et al. (2020) reported no

advantage of using GxE models, many other studies found that it

increased PA, e.g. in wheat (Lopez-Cruz et al., 2015; Crossa et al.,

2016; Sukumaran et al., 2018), maize (Bandeira E Sousa et al., 2017),

barley (Puglisi et al., 2021) and sesame (Sesamum indicum L.)

(Sabag et al., 2023).

This work was aimed at investigating whether incorporating

marker by environment interaction effects (MxE) in the prediction

models could be advantageous, compared to analysis trait by trait.

The focus was not on GP in a breeding programme. More

specifically the objective was to assess GP for DMY, CP content

and DOF in a diverse panel of red clover accessions using different

prediction models. GxE was incorporated using the strategy

described by Lopez-Cruz et al. (2015), as this often performed

best in the investigations described above. Three models were

compared: (1) SingleEnv, where PA was measured separately for

each environment, (2) AcrossEnv, where marker effects were an

average across environments, and (3) MxE where marker effects

were divided into those that were stable across environments, and

those that were environment-specific. Finally, we attempted to

validate the models by predicting phenotypes derived from

independent experiments.
2 Materials and methods

2.1 Plant materials

The data on which much of this work is based were obtained

through the EUCLEG project (Horizon 2020 Programme for

Research & Innovation, grant agreement no. 727312; http://

www.eucleg.eu) and have been described in detail previously (Nay

et al., 2023). Briefly, field experiments with 400 accessions were

established in Switzerland (CHE: 47.480°N, 8.904°E) and in Czechia

(CZE: 49.690°N, 17.960°E) in a partially replicated (p-rep) design.

The field experiment was abandoned after year 1 in CZE, so no data

from year 2 were available from this location. Field experiments

with approximately 100 accessions were established in Britain

(GBR: 52.427°N, 4.020°W) with 100, Norway (NOR: 60.757°N,

11.203°E) with 109, and Serbia (SRB: 43.583°N, 21.206°E) with 100.

For the latter three locations, twenty accessions were included at

every site, and between 12 and 17 of the remaining accessions

overlapped between pairs of locations (Supplementary Table S1).
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From all five locations annual DMY from year 1 and 2 (DMY1 and

DMY2), CP content from cut 1 and cut 2 in year 1 (CP1 and CP2),

and date of flowering (DOF) from year 1 were used here.

Supplementary Table S1 contains more detailed information

about the accessions used. A p-rep design was also used in GBR.

For the p-rep trials there were no complete blocks, so that each row

and column was an incomplete block (IB1 and IB2, respectively).

The trials from NOR and SRB were Alpha designs with two

complete blocks containing all the accessions. Observation rows

were used to record DOF with two complete blocks at all sites.

To test the GEBVs derived from the field trials described

above, we used data obtained from field trials at three additional

sites, all in Sweden. A total of 49 accessions were included in these

field trials in which a randomised complete block design (RCBD)

was used with two replicates (blocks) at Bjertorp (BJT: 58.250°N,

13.117°E) and Kölbäck (KLB: 58.433°N, 15.250°E), but three

replicates at Svalöv (SVA: 55.900°N, 13.100°E) (Supplementary

Figure S1). DMY1, DMY2, CP1 and CP2 data were obtained. Of

the 49 accessions, 42 were part of the EUCLEG panel, so only

those were genotyped.
2.2 Genotypic data

GBS was used to obtain allele frequency data from a total of 400

red clover accessions as previously described (Frey et al., 2022; Nay

et al., 2023). A total of 200 seedlings per accession were germinated

in a greenhouse. The leaf at the one-leaf stage was harvested from

each seedling, and the leaves from each accession were combined.

DNA was extracted from each sample using the QIAGEN DNeasy

96 Plant kit (QIAGEN, Citylabs 2.0, Manchester M13 0BH, UK),

and the concentration normalized to 20 ng μl-1. Genotyping was

carried out by LGC Genomics (Berlin, Germany) using a PstI-MseI

double-digest pool-GBS method followed by PE-150 Illumina

sequencing. Sequencing data covered 10,609 unique loci with an

average read depth of 288. SNP calling and calculations of allele

frequencies were done as described in Keep et al. (2020). The

parameters used are described in detail in the supplementary

methods of Frey et al. (2022). SNPs were retained if allele

frequencies of at least 10 accessions were between 0.05 and 0.95,

and if mean allele frequencies across all accessions were between

0.05 and 0.95. SNP positions with more than 5% missing values

were discarded. The remaining missing values were imputed by the

mean allele frequency across all accessions. After quality control

and filtering, allele frequency data of a total of 20,156 SNP markers

in 392 accessions were retained.
2.3 Experimental design and
phenotypic data

The phenotypic data from all locations except Sweden were

analysed using the methods described earlier (Nay et al., 2023). The

data used in the present work were based on scaled and normalised

values of the best linear unbiased estimates (BLUEs) from each
frontiersin.org
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location separately. The data were analysed as seen in Equation 1

using the following model:

yimno= m+ ɡi+ bm+ ib1n+ib2o+ ϵimno (1)

where yimno is the phenotype on a single plot, m is the overall

mean, gi is the effect of the i
th accession, bm is the effect of the mth

block, ib1n is the effect of incomplete block 1 (i.e. row n), ib2o is the

effect of incomplete block 2 (i.e. column o) and ϵimno is the residual

error. For the p-rep designs (CZE, CHE and GBR) the block term

was omitted, while for NOR the ib2o term was omitted. Data were

available only from one complete block in SRB, so no separate

analysis was performed with data from this location. A linear mixed

model analysis was performed with ib1n and ib2o as random effects,

while gi (and bm where relevant) were treated as fixed effects to

obtain the BLUE values for each accession. Best linear unbiased

predictions (BLUP) values were subsequently obtained by treating

gi as a random effect. These were used to estimate heritabilities using

the method of Walsh and Lynch (2018) by regressing BLUP on

BLUE for each trait. The relevant correlations and heritability

values are reproduced in Supplementary Table S2.

The layout of the field trials in Sweden was a randomised complete

block design (RCBD), where BJT and KLB had two replicates and SVA

three replicates or blocks. BLUE values of accessions from each location

in Sweden were obtained using the following model:

yij= m+ ɡi+bj +e ij (2)

where yij is the phenotypic value of the ith accession in the jth

block, m is the overall mean, gi is the fixed effect of the ith accession,

bj is the random effect of the jth block, and eij is the residual

(Equation 2). The data were also analysed by having the accessions

as a random effect to obtain best linear unbiased predictions

(BLUP).The broad sense heritability was calculated as follows:

h2b= 
s 2
ɡ

s 2
ɡ+

s2e
nr

, (3)

where s2
g is the genetic variance, s 2

e is the residual variance and nr
is the number of replicates (Equation 3). The raw phenotypic data and

the heritability values are given in Supplementary Tables S3 and S4.
2.4 Genomic predictions

Three models for GPs were used, the first is a single environment

(SingleEnv) strategy, in which separate analyses were carried out for

each environment. A linear model was used as follows:

yj= 1mj+Xj b j+ e j (4)

where yj is a vector of phenotypes from the jth environment, mj
is the overall mean, Xj is a matrix of marker allele frequencies, all

centred (by subtracting the mean allele frequency) and standardised

(by dividing by the standard deviation), and bj is a vector of marker

effects, N(0, Is 2
bj). Finally, ej is the residual, N(0, Is

2
ej). The model

(Equation 4) assumes equal variance across environments. For

genomic best linear unbiased prediction (GBLUP) this can

be rewritten so that uj = Xj bj, so that uj ~ N(0, Gjs 2
uj), with
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Gj=
XjX

0
j

p
, where p is the number of markers, and s 2

uj is the marker

variance for the jth environment.

The second strategy assumes that the marker effects are the

same across the environments being compared (AcrossEnv). This

means that the linear model, where n environments are compared,

becomes:

y1

y2

⋮

yn

2
666664

3
777775
= 

1 μ1

1 μ2

⋮

1 μn

2
666664

3
777775
+ 

u1

u2

⋮

un

2
666664

3
777775
+ 

e1
e2
⋮

en

2
666664

3
777775

(5)

with uj = Xjb and u=(u
0
1,u

0
2,:::u

0
u)

0 ~N(0,G0, s 2
u), for which s 2

uis

the variance for the main genetic effects across environments

(Equation 5). G0 is a marker-derived genomic relationship matrix

(Equation 6).

G0= 

X1X
0
1 X1X

0
2 ⋯ X1X

0
n

X2X
0
1 X2X

0
2 … X2X

0
n

⋮ ⋮ ⋱ ⋮

XnX
0
1 XnX

0
2 … XnX

0
n

2
666664

3
777775
=p (6)

In the work described here, the marker matrices X1, X2…Xn are

identical for each multi-environment analysis, so Xj reduces to X.
The third strategy incorporates marker x environment (MxE)

interaction effects. This is done by splitting the effect of the kth

marker on the jth environment bjk into two parts, one which is the

same in all environments b0k (b0~ N(0, I s 2
b0
)) and one which is

specific for each environment bjk (bj~ N(0, I s2
bj
)). For GBLUP the

model then can be written as shown in Equation 7:

y= µ+ u0+ u1+ e1 (7)

where y = (y1 + y2 +…yn)’ is the response vector for which yj is the
vector of observations of the accessions in the jth environment, and.

m= 

1µ1

1µ2

⋮

1µn

2
666664

3
777775
, u0= 

X1

X2

⋮

Xn

2
666664

3
777775
b0, u1= 

X1 0 ⋯ 0

0 X2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Xn

2
666664

3
777775

b1

b2

⋮

bn

2
666664

3
777775

in which μ is the overall mean, u0 ~ N(0, G0 s 2
uo), for which

s2
uorepresents the variance of the common effects across

environments as described above for the AcrossEnv model, u1 ~
N(0, G1), e∼N(0, Is 2

e). G1is a relationship matrix, which, as

seen in Equation 8, captures the environment specific effects:

G1=

s 2
u1X1X

0
1   0 … 0

0 s 2
u2X2X

0
2  … 0

⋮ ⋮ ⋱ ⋮

0 0 … s2
unXnX

0
n 

2
666664

3
777775
=p (8)

The Bayesian generalised linear regression (BGLR) package

(Pérez and De Los Campos, 2014) and the code described by

Lopez-Cruz et al. (2015) were used for calculations. The number

of iterations was set to 25,000 with 2,500 for burn-in.
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Two cross validation methods, CV1 and CV2 as described by

Lopez-Cruz et al. (2015), were applied. Briefly, the PAs were based

on the mean of 50 random partitions between the training set and

test set with a default split of 70% to 30%, respectively. CV1: test

accessions have not been assessed in any of the environments. Thus

for multi-environmental analyses the test set consisted of the same

accessions from all environments in the analysis. CV2: test

accessions have been evaluated in some, but not all environments,

and the test sets do not overlap. The methods are illustrated for a

two-environment scenario in Supplementary Figure S2.

The SingleEnv analysis is straightforward as it produces PA

values for each environment separately. For the AcrossEnv and

MxE methods, multi-location analysis of trial sites was not possible

for GBR, NOR and SRB, as they shared only few accessions. Only

comparisons between CHE and CZE were meaningful as they

shared all 392 accessions. Since the field experiment in CZE was

abandoned after the first year, only data from year 1 could be

included from this location. Most of the multi-environment

analyses were thus pair-wise comparisons between DMY data

from year 1 and 2 at the same location, or between CP data from

cut1 and cut 2 in year 1. The multi-location analyses included a

pair-wise comparison of DOF in CHE and CZE, a three-way

comparison of CHE_DMY1, CHE_DMY2 and CZE_DMY1, a

pairwise analysis of CHE_DMY1 and CZE_DMY1, and finally a

four-way analysis of the CP content at cut1 and 2 at both locations.

The AcrossEnv and the MxE strategies produces PA values for each

environment, based on the joint analysis of the environments. It

should also be noted that for the SingleEnv analyses the two CV

methods are equivalent, as they both use 50 randomly selected

training/test set combinations.

A third CV method was used which either left one of the five

regions out from the training set, and used it as test set, or left one

of the six breeders’ material out and used that as test set

(Supplementary Table S1). The number of accessions per region

varied between 16 and 142, and per breeders’ material it ranged

from 18 to 61. For comparison the CV1 method was used to remove

142 accessions randomly (comparing with regions), or 61

accessions (comparison with breeders’ material) from the training

set. For DMY the MxE model was used for the data from CHE year

1 and 2 to obtain the GEBVs. For DOF the MxE model was used in

the joint analysis of data from CHE and CZE, year 1.

The PA data from the output were analysed using analysis of

variance (ANOVA) to identify significant differences between

environments, models and cross validation methods. One-way

ANOVA was used to assess the effect of each factor, and three-

way ANOVA to assess the combined effect of all three factors. The R

statistical software was used for this (R Core Team, 2023).
3 Results

Initially, a variance component analysis was performed for each

phenotype to get information on how the SingleEnv, the AcrossEnv

and MxE models fitted the data. Secondly, GP analyses were

performed to compare the performance of the three models. The

multi-environment analyses included joint analyses of pairs of
Frontiers in Plant Science 05
environments at the same location (year 1 and 2) for DMY, and

joint analyses of the two locations CHE (year 1 and 2) and CZE in

year 1. For CP content joint analyses of pairs of environments at the

same location (cut 1 and cut 2 in year 1) were performed, and joint

analyses of the two locations CHE and CZE at cut 1 and cut 2.
3.1 Variance component analysis for DMY

The variance component estimations for the annual DMY data

derived from SingleEnv analyses varied considerably among the

environments (Table 1). The residual variance was much higher for

CZE than CHE, hence the proportion of the variance explained by the

markers was considerably higher for CHE. In the multi-environment

analyses, the R2 values were generally higher for the MxE model

compared to the AcrossEnv model. In the joint analysis of CZE.1,

CHE.1 and CHE. 2, the MxE interaction variance was very high for

CZE.1. Consequently, the R2 values were very high for the MxE

model. The specific-environment variance for CZE.1 contributed

84.3% of the total variance (Supplementary Figure S3). For the

other environments the proportions were between 15.2% and

41.9%. In all cases the R2 values were higher for the MxE model

than for the AcrossEnv model (Table 1). The DMY data from GBR,

NOR and SRB were based on approximately 100 accessions. Due to

the scant overlap between accessions at those three locations, multi-

environment analyses were thus carried out only between the two

years at each site, not between the locations. At all three of those

locations the genetic effects in the MxE model accounted for a higher

proportion of total variance than the AcrossEnv model (Table 1).
3.2 Variance component analysis for
CP content

The residual variance proportions were generally high for CP

content, which resulted in lower R2 values than for DMY in all three

models (Table 2). Again, the variance explained by the MxE model

was higher than for the AcrossEnv model. These results are

generally consistent with the low heritability recorded for CP

content (Supplementary Table S2; Nay et al., 2023). The

exception was NOR, where the R2 values and heritability were

higher than for the other locations, at least in the joint analysis

(Table 2). Supplementary Figure S4 underlines this, showing that

except for NOR, the residual variance contributes over 70% of the

total variance, and the main effect variance was 10.1% or lower. The

MxE model thus explains little of the phenotypic variation for

this trait.
3.3 Variance component analysis for DOF

DOFwas recorded during year 1, whichmeant that only one joint

analysis was possible, namely between the locations CHE and CZE.

The variance explained by the genetic markers was higher than for

the CP content, but lower than for DMY (Table 3). In the SingleEnv

analysis, the proportion of the variance explained by markers was
frontiersin.org
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TABLE 1 Variance component estimation (SD) of annual DMY from field trials in Czechia (CZE), Switzerland (CHE), Britain (GBR), Norway (NOR) and Serbia (SRB) using the SingleEnv, AcrossEnv and the MxE
interaction models.

l MxE model

R2 Residual
variance (s2E)

Marker
variance (s2U0)

M x E
interaction (s2U1)

R2

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a.

0.283(0.035) 0.178(0.028) 0.114(0.041)
1.611(0.267)
0.137(0.042)

0.903(0.032)
0.585(0.053)

0.510(0.036) 0.101(0.011) 0.262(0.034)
0.066(0.017)
0.290(0.048)

0.763(0.030)
0.844(0.023)

0.278(0.030) 0.138(0.016) 0.218(0.032
1.910(0.236)
0.065(0.018)
0.257(0.050)

0.938(0.016)
0.671(0.039)
0.773(0.036)

0.745(0.043) 0.100(0.017) 0.411(0.078)
0.094(0.030)
0.095(0.032)

0.833(0.035)
0.833(0.035)

0.417(0.095) 0.357(0.086) 0.317(0.152)
0.245(0.122)
0.269(0.130)

0.605(0.104)
0.609(0.111)

0.470(0.086) 0.361(0.069) 0.486(0.148)
0.152(0.070)
0.179(0.080)

0.633(0.087)
0.642(0.084)

he interaction variance. n.a., not applicable.
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SingleEnv model AcrossEnv mode

Environment Residual
variance (s2E)

Marker
variance (s2U)

R2 Residual
variance (s2E)

Marker
variance (s2U0)

CZE_DMY1 0.737(0.068) 0.301(0.072) 0.289(0.057) n.a. n.a.

CHE_DMY1 0.111(0.014) 0.288(0.034) 0.722(0.040) n.a. n.a.

CHE_DMY2 0.170(0.026) 0.512(0.069) 0.748(0047) n.a. n.a.

GBR_DMY1 0.172(0.040) 0.490(0.093) 0.737(0.060) n.a. n.a.

GBR_DMY2 0.187(0.044) 0.492(0.098) 0.721(0.065) n.a. n.a.

NOR_DMY1 0.386(0.102) 0.592(0.161) 0.598(0.108) n.a. n.a.

NOR_DMY2 0.375(0.133) 0.604(0.207) 0.610(0.130) n.a. n.a.

SRB_DMY1 0.526(0.115) 0.491(0.149) 0.481(0.105) n.a. n.a.

SRB_DMY2 0.430(0.114) 0.607(0.179) 0.578(0.111) n.a. n.a.

CZE_DMY1 &
CHE_DMY1

n.a n.a n.a 0.533(0.033) 0.212(0.032)

CHE_DMY1 &
CHE_DMY2

n.a n.a n.a 0.259(0.016) 0.271(0.034)

CZE_DMY1 &
CHE DMY1 &
CHE DMY2

n.a n.a n.a 0.511(0.023) 0.198(0.027)

GBR_DMY1 &
GBR_DMY2

n.a n.a n.a 0.149(0.020) 0.444(0.077)

NOR_DMY1 &
NOR_DMY2

n.a n.a n.a 0.544(0.087) 0.399(0.122)

SRB_DMY1 &
SRB_DMY2

n.a n.a n.a 0.512(0.072) 0.465(0.148)

R2 of models was calculated as the ratio of the sum of the main and interaction variance relative to the sum of the residual, the main and
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TABLE 2 Variance component estimation (SD) of CP content of cut 1 (CP1) and cut 2 (CP2) in year 1 from field trials in Czechia (CZE), Switzerland (CHE), Britain (GBR), Norway (NOR) and Serbia (SRB) using the
SingleEnv, AcrossEnv and the MxE interaction models.

MxE model

Residual
variance (s2

E)
Marker
variance (s2

U0)
M x E
interaction (s2U1)

R2

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a.

4(0.075) 0.766(0.065) 0.243(0.105)
0.094(0.035)
0.082(0.028)

0.301(0.079)
0.294(0.079)

5(0.034) 0.796(0.050) 0.088(0.036)
0.151(0.057)
0.115(0.042)

0.230(0.051)
0.203(0.045)

5(0.020) 0.859(0.037) 0.040(0.021)

0.098(0.043)
0.145(0.054)
0.077(0.030)
0.113(0.042)

0.137(0.042)
0.176(0.045)
0.119(0.033)
0.150(0.042)

9(0.047) 0.769(0.100) 0.072(0.035)
0.234(0.112)
0.182(0.096)

0.281(0.084)
0.245(0.079)

2(0.063) 0.326(0.072) 0.174(0.071)
0.479(0.208)
0.190(0.072)

0.651(0.113)
0.527(0.083)

4(0.064) 0.809(0.108) 0.108(0.065)
0.176(0.093)
0.156(0.079)

0.259(0.084)
0.245(0.082)

eraction variance. n.a., not applicable.
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SingleEnv AcrossEnv model

Environment Residual
variance (s2E)

Marker
variance (s2U)

R2 Residual
variance (s2E)

Marker
variance (s2U0)

R2

CZE_CP1 0.863(0.076) 0.247(0.067) 0.221(0.053) n.a. n.a. n.a.

CZE_CP2 0.854(0.071) 0.206(0.053) 0.194(0.044) n.a. n.a. n.a.

CHE_CP1 0.703(0.072) 0.349(0.087) 0.330(0.067) n.a. n.a. n.a.

CHE_CP2 0.828(0.071) 0.249(0.063) 0.230(0.050) n.a. n.a. n.a.

GBR_CP1 0.522(0.127) 0.579(0.186) 0.737(0.060) n.a. n.a. n.a.

GBR_CP2 0.786(0.148) 0.397(0.147) 0.333(0.099) n.a. n.a. n.a.

NOR_CP1 0.596(0.129) 0.472(0.158) 0.439(0.114) n.a. n.a. n.a.

NOR_CP2 0.226(0.049) 0.425(0.087) 0.650(0.074) n.a. n.a. n.a.

SRB_CP1 0.692(0.149) 0.465(0.170) 0.398(0.115) n.a. n.a. n.a.

SRB_CP2 0.818(0.151) 0.379(0.139) 0.315(0.095) n.a. n.a. n.a.

CZE_CP1 &
CZE_CP2

n.a n.a n.a 0.774(0.059) 0.295(0.098) 0.27

CHE_CP1 &
CHE_CP2

n.a n.a n.a 0.864(0.050) 0.136(0.038) 0.13

CZE_CP1 &
CHE CP1 &
CZE CP2 &
CHE_CP2

n.a n.a n.a 0.935(0.037) 0.065(0.021) 0.06

GBR_CP1
GBR_CP2

n.a n.a n.a 0.932(0.101) 0.115(0.044) 0.12

NOR_CP1
NOR_CP2

n.a n.a n.a 0.577(0.065) 0.250(0.066) 0.30

SRB_CP1
SRB_CP2

n.a n.a n.a 0.882(0.102) 0.162(0.075) 0.15

R2 of models was calculated as the ratio of the sum of the main and the interaction variance relative to the sum of the residual, the main and the in
t
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higher for CZE than for CHE. For the MxE model the proportions of

main effect, specific environmental effect and residual variance were

similar for the two locations (Supplementary Figure S3). In the

SingleEnv analysis for GBR, NOR and SRB the proportion of the

variance explained by the genetic markers was similar for the three

locations, and somewhat higher than the corresponding ones from

the SingleEnv analysis of the CZE and CHE data (Table 3).
3.4 Predictive ability for DMY

PA of the joint analysis of the annual DMY for two years at

each location is shown in Figure 1. Analysis of variance of the

DMY data showed that location_year, model and CV method, and

their interactions had a significant effect on PA (Supplementary

Table S5). The CV2 cross validation method resulted in higher

PAs than CV1, and PAs from CHE and GBR were consistently

high, while NOR and SRB gave lower and more variable PAs. The

PA values varied between 0.232 in NOR_DMY2 AcrossEnv

model and CV2 to 0.923 for GBR.1, MxE model and CV2

(Supplementary Table S5). Overall, the MxE model gave the

highest PAs and AcrossEnv the lowest. The CV2 cross

validation method generally resulted in higher PAs than CV1

(0.653 vs 0.638).

Both the three-way joint analysis (Figure 2A) and the pairwise

joint analysis of CHE_DMY1 and CZE_DMY1 (Figure 2B) show

that the PAs for CZE_DMY1 are much lower than those for CHE,

irrespective of year, model and cross validation method

(Supplementary Tables S6, S7). The MxE model resulted in the

highest PA values, and the AcrossEnv model the lowest PA for

CHE, while the SingleEnv gave the highest and the MxE interaction

model, the lowest PA for CZE (Supplementary Table S6). The

pairwise comparison between CHE_DMY1 and CZE_DMY1 in

year 1 was similar, with the PAs for CHE varying between 0.774 and

0.879, while those for CZE_DMY1 were no higher than 0.331

(Figure 2B; Supplementary Table S7). Overall, the SingleEnv

model resulted in the highest PA values and the AcrossEnv model

gave the lowest PAs. There was no significant effect of the CV

method used.
3.5 Predictive ability for CP content

The PAs for the CP content were generally much lower than for

DMY, except for NOR_CP2 (Figure 3; Supplementary Table S2), for

which a higher proportion of the variance was explained by the

marker main effect (Table 3; Supplementary Figure S4). PA from

NOR_CP2 varied between 0.733 and 0.836, but were low, even zero

or negative for the other Location_cut combinations. Overall, the

MxE model performed best, while the SingleEnv model gave the

lowest PAs (Supplementary Table S8). The CV2 method was

slightly superior to CV1. The multi-environment analysis of all

four environments in CHE and CZE showed that CHE_CP1 had

the highest PA (Supplementary Figure S5), while CZE_CP1 and

CZE_CP2 both resulted in PA values around zero. The MxE model

performed best, and the AcrossEnv model was poorest. Overall, the
T
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CV2 method resulted in higher PA values than CV1

(Supplementary Table S9). The PAs from CHE_CP1 had low to

moderate PAs, while the PAs for CZE were around zero for both CV

methods (Supplementary Table S9). The SingleEnv and the MxE

interaction models were better than AcrossEnv. The mean PA of the

CV2 method was slightly higher than CV1.
3.6 Predictive ability for DOF

DOF was recorded in year 1 only, so the data from GBR, NOR

and SRB were analysed by the SingleEnv model. Figure 4A shows

that the PA values were high for all three locations, varying between

0.762 in NOR and 0.838 in GBR (Supplementary Table S10). For
Frontiers in Plant Science 09
CHE and CZE, a pairwise comparison between the two locations

was carried out, using all three models and both cross validation

methods. In both locations the PA was high (0.671 for CHE, and

0.690 for CZE) (Figure 4B; Supplementary Table S11). The MxE

model again performed better than SingleEnv and AcrossEnv.

There were no significant differences between CV methods. The

high PA values are in line with the high heritability values recorded

for DOF (Supplementary Table 2) (Nay et al., 2023).
3.7 Prediction bias

Possible biases of predictions can be revealed by regressing the

observed phenotypes on the GEBV. The results of this analysis are
BA

FIGURE 2

Comparison between predictive ability (PA) of DMY estimated in CHE and CZE. PA is the Pearson correlation between predicted and the scaled and
normalised BLUE of DMY using SingleEnv, AcrossEnv and MxE models and CV1 and CV2 cross validation methods. (A) Comparison across three
environments (CHHZE): CHE_DMY1, CHE_DMY2 and CZE_DMY1. (B) Pairwise comparison (CHZE) between CHE_DMY1 and CZE_DMY1. The
boxplots represent 50 training-test partitions.
FIGURE 1

Predictive ability (PA) of DMY in year 1 and 2 (e.g. CHE_DMY1, CHE_DMY2 etc.) at four locations. PA is the Pearson correlation between predicted
and the scaled and normalised BLUE values of DMY using SingleEnv, AcrossEnv and MxE models and CV1 and CV2 cross validation methods. The
environmental comparisons are between year 1 and year 2 at each location separately. The boxplots represent 50 training-test partitions.
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shown in Figure 5. We used the MxE interaction model and the

CV2 cross validation method on the data from CHE and CZE. A

slope of 1 indicates no bias. The larger the deviation from 1, the

larger the bias. For CP content the bias was largest (3.13), while for

DMY (1.07) and DOF (1.15), the slope values were near 1,

indicating low bias (Supplementary Table S12). This is consistent

with PA values, which were generally high for DMY and flowering,

and low for CP overall (Figures 1–4).
3.8 Effect of marker numbers and training
set size on predictive ability

The effect of marker numbers on the PA values was

investigated by sampling subsets of the full marker set of 20,156
Frontiers in Plant Science 10
SNPs (20K), down to 100 SNP markers (0.1K). The PA values

are based on DMY data from year 1 and 2 in Switzerland

(CHE_DMY1 and CHE_DMY2). The CV2 method of cross

validation was used, as it was performing best throughout this

work. Remarkably, the effect of lowering the marker numbers was

not dramatic until less than 1000 markers were used (Figure 6A;

Supplementary Table S13). Overall, PA was reduced from 0.83 at

10K, 15K and 20K markers to 0.74 at 100 markers (0.1K), still high

for such a small number of markers. At all marker numbers, the

MxE model performed best (0.85), and AcrossEnv performed

worst (0.78) (Supplementary Table S13).

The effect of the percentages of all accessions used as the test set

was also analysed. The default split used throughout this work was

70% as training set and 30% as test set. Figure 6B summarises the

results obtained by increasing the test set percentage from 30% to
BA

FIGURE 4

Predictive ability of flowering time (DOF) from Britain (GBR), Norway (NOR) and Serbia (SRB) using the SingleEnv analysis and the CV1 cross
validation method (A). Prediction ability from CHE and CZE using SingleEnv, AcrossEnv and MxE models and CV1 and CV2 cross validation
methods (B).
FIGURE 3

Predictive abilities (PA) of CP content from the joint analyses of cut 1 and cut 2 of year 1 at each location separately. PA is the Pearson correlation
between predicted and the scaled and normalised BLUE values of CP content using SingleEnv, AcrossEnv and MxE models and CV1 and CV2 cross
validation methods.
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90%, and therefore decreasing the training set percentage from 70%

to 10%. There was a significant effect of test set percentage with the

smallest (30%) having the highest PA of 0.83 and the largest (90%)

having the lowest PA of 0.75 (Supplementary Table S14). Again, the

MxE interaction model gave the highest PA values, and AcrossEnv

the lowest. Visual inspection of the data (Figure 6B) suggests that

the decrease in PA takes effect when the test set percentage is larger

than 50%.

The effect of removing accessions from specific regions or

specific breeders’ material was more pronounced for the latter

(Figure 7). There was also a larger reduction in PAs for DOF

than for DMY. Concerning the regions removing Northern

European accessions resulted in the largest reduction in PA
Frontiers in Plant Science 11
compared to the random control for both traits, but removing

Swiss accessions also had a sizeable effect (Figures 7A, C). For DMY,

removing the Lantmännen breeders’material had the smallest effect

on PA, at least in year 1, while it reduced PA to zero or negative

values for DOF (Figures 7B, D).
3.9 Test of predictive ability on new
phenotypic data

So far, the prediction abilities presented here are based on cross

validations derived from training and test sets where both

phenotypic and genotypic data from the same accessions are used
B

A

FIGURE 6

(A) Effect of marker numbers (in thousands) on prediction ability (PA). The default training set/test set ratio of 70%/30% was used; (B) Effect of test
set percentage on PA. The full set of 20,156 markers were used. For both analyses DMY from year 1 and 2 in CHE were used as phenotypes,
together with the CV2 cross validation method.
FIGURE 5

Bias of predictions for data from CHE and CZE. The graphs show the slopes of the regression of GEBVs on phenotypic values. The stippled line indicates
a slope value of 1. The GEBVs are based on the joint analysis of all the environments for each of the three traits: CP content, DMY and DOF. The MxE
interaction model and the CV2 cross validation method were used. Fifty iterations of training-test set combinations were performed. CP1 and CP2
represents CP content of cut 1 and cut 2 in year 1, respectively. DMY1 and DMY2 represent annual DMY in year 1 and year 2, respectively.
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by the models. To test the predictions on new phenotypic data not

included in any of the analyses, we used DMY and CP content from

field trials carried out at three locations in Sweden (BJT, KLB, SVA;

Supplementary Figure S1). A total of 42 accessions from the

EUCLEG panel were used. The DMY and CP content data are

shown in Supplementary Table S3 and in Supplementary Figures S6

and S7. The broad sense heritability for each of the traits revealed

that DMY traits had high heritability, while CP content had low to

medium heritability (Supplementary Table S4). This is broadly in
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agreement with the results from the other five locations. The PAs

for the four traits at the three locations are shown in Figure 8. There

are four sets of PAs per location in Sweden, and they represent the

origin of the training set. Each PA value is the correlation between

the phenotypic value of the trait in one of the Swedish locations and

the GEBV of the corresponding trait from one of the four other

countries. Using NOR data as training sets gave rise to uniformly

low PAs, which were either negative or close to zero. Data with GBR

training sets gave low or negative values for CP content, but
FIGURE 8

Effect of training sets from CHE (392), GBR (99), NOR (107) and SRB (100) on prediction ability (PA) at three locations in Sweden (BJT = Bjertorp;
KLB = Kölbäck; SVA = Svalöv) for DMY year 1 and 2, (DM1 and DM2) and CP in cut 1 and cut 2 in year 1 (CP.1 and CP.2).
B

C D

A

FIGURE 7

Effect of leaving one region or one breeders’ material out from the training set for DMY, from CHE in year 1 and 2, and DOF from CHE and CZE in
year 1. (A) PA for DMY when leaving one region out. (B) PA for DMY when leaving out one breeders’ material. (C) PA for DOF from CHE or CZE,
when leaving one region out. (D) PA for DOF from CHE or CZE when leaving out one breeders’ material. Rand – Mean and standard deviation of 10
random removals of 142 accessions (regions) or 61 accessions (breeders’ material) using the CV1 method; Amer – Americas; C_eur – Central
Europe; E_eur – Eastern Europe; N_eur – Northern Europe; CHE – Switzerland; Agrsc – Agroscope; DLF – DLF; GRA – Graminor; NS – IFVCNS;
IL_IN – ILVO_INRAe; Lant – Lantmännen. Bar colours: red = SingleEnv; green = AcrossEnv; blue = MxE.
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moderate to high PA values for DMY, particularly in year 1. The

SRB training sets gave rise to low or poor values throughout with

only CP1 at SVA being high. The CHE training set was the largest

(392 accessions) and gave low to moderate PA values for CP

content, except for SVA, and high prediction ability for DMY in

year 1, but not year 2. These results confirm our earlier results with

DMY giving higher PA than CP content, and they are overall in line

with the contrasting heritability for the two traits.
4 Discussion

In our work on red clover presented here the MxE model

outperformed the SingleEnv and AcrossEnv models. The MxE

model was initially developed and tested using wheat yield data

by Lopez-Cruz et al. (2015). They showed that phenotypic

correlation between pairs of environments was directly associated

with the proportion of genomic variance explained by the main

effect of the markers. They also demonstrated that the MxE model

fitted the data better than the AcrossEnv model. In the vast majority

of cases prediction accuracy was highest when the MxE model

was used.

Similar results were obtained in an analysis of agronomic traits

in sesame (Sabag et al., 2023). However, only two environments

were compared (two consecutive years), and the phenotypic

correlation for all nine traits tested were all rather high between

years (0.50 to 0.96, depending on the trait). While the trait with the

lowest correlation also had the lowest PA, it also had the lowest

heritability, so it is difficult to disentangle the effects of the two

factors. Nevertheless, it seems that the results described here for red

clover follow the same trends.
4.1 Variance components

The proportion of total variance explained by the main marker

effects was a good indicator of correlation between environments.

This was the case for DMY and DOF, where the pairwise correlation

between phenotypic values associated with the main effect variance

proportion (Supplementary Figure S3; Supplementary Table S2).

This is similar to what was found by others (Lopez-Cruz et al., 2015;

Crossa et al., 2016; Bandeira E Sousa et al., 2017; Sabag et al., 2023).

For DMY in year 1 in CZE however, the variance due to the main

marker effect was small, while the environment-specific effect from

the MxE model was very large (Table 1; Supplementary Figure S3).

The model thus explains a large proportion of the phenotypic

variance, but most of it is environment specific. It may be in this

environment that many markers with environment-specific effects

will be found. Crossa et al. (2016) also observed that in complex

traits with lower heritability, such as grain yield and grain density, a

larger fraction of the total genetic variance was due to environment-

specific effects. This contrasted with the heading date and thousand

grain weight, traits for which heritability was high and the

environment-specific proportion of the genetic variance was low.

This is consistent with the low heritability observed for DMY in

year 1 in CZE (Supplementary Table S2).
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The variance component analyses showed that the MxE model

for the red clover data gave a better fit to the data than the

AcrossEnv model (Tables 1–3), similar to what was found in

wheat (Lopez-Cruz et al., 2015; Crossa et al., 2016) and maize

(Bandeira E Sousa et al., 2017). In sesame, the AcrossEnv model was

not included in the analyses, but the MxE model was found to

enhance the PAs relative to the SingleEnv model (Sabag et al., 2023).
4.2 Predictive ability

Overall, the PAs were high for DMY and DOF, and low for CP

content. This follows the heritability for the traits (Figures 1–4;

Supplementary Table S2). The high phenotypic correlation between

year 1 and year 2 of DMY in GBR (0.87) and CHE (0.71),

respectively, may explain why the PA for those traits were

uniformly high in both years (0.83 – 0.91) for the MxE model

and CV2 cross validation method.

For CP content an exception was observed for the PA for NOR in

cut 2, which was 0.83 for the SingleEnv and MxE models

(Supplementary Table S8), and the heritability for this specific CP

trait was also high (Supplementary Table S2). It is unclear whether this

aberrant result is connected to the notion that most of Northern

European accessions tend to have been adapted to one cut per season.

The phenotypic correlation between NOR_CP1 and NOR_CP2 was

0.35, and this is probably why the PAs for cut 1 (0.26 – 0.37) were

significantly lower than for cut 2 (Supplementary Table S2).

TheMxEmodel performed better than the AcrossEnvmodel when

pairs of environments were analysed jointly. This was the case for both

DMY and CP content (Supplementary Tables S5, S8). The superiority

of the MxE model was more pronounced when the CV2 cross

validation method was used, and for pairs of environments with

high phenotypic correlation (Figures 1–3; Supplementary Table S2).

This is because the genetic covariance between environments is forced

to be positive, as it is a product of the variance of the main effects

(Lopez-Cruz et al., 2015). This also makes sense, because the CV2

method allows for borrowing information about accessions tested in

one environment, but not in another. If the correlation is high, the

information borrowed will be more accurate than if the correlation is

low (Lopez-Cruz et al., 2015; Crossa et al., 2016; Sabag et al., 2023). In

contrast, when CV1 is used for cross validation, the same accessions are

missing from environments being analysed jointly. The SingleEnv

analysis would then be expected to perform similarly to the

AcrossEnv and MxE models. This was the case in red clover, at least

for DMY (Figure 1), when correlations between pairs of traits were

moderate to high. It should also be noted that for the SingleEnv

analyses, the distinction between CV1 and CV2 is meaningless.

Overall, PAs for DMY were high (Figures 1, 4; Supplementary

Tables S5-S7). Particularly, CHE and GBR had high PA for DMY

(0.80–0,88) and for DOF (0.67 – 0.84) (Figure 4; Supplementary Tables

S10-S11). To the best of our knowledge, no GP work has been

published yet for red clover to compare directly with our study. A

PA of 0.30 for biomass yield was reported for white clover (Griffiths

et al., 2022). Despite such a comparatively low accuracy, selection based

on the GEBVs resulted in higher gain than phenotypic selection. In

alfalfa, Annicchiarico et al. (2015) reported PA values of 0.32 – 0.35 for
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biomass yield in two populations, while Jia et al. (2018) found PAs of

0.13 for biomass yield in a diverse alfalfa germplasm collection. In

breeding populations, PAs were found to vary between 0.21 – 0.66

depending on breeding cycle and location (Li et al., 2015). Recently,

Pégard et al. (2023) reported a mean PA of 0.65 for DMY from two

locations, France and Serbia, and 0.41 for DOF in a diverse panel of

alfalfa accessions, where the marker data also were obtained as allele

frequencies derived from sequencing of pooled plant material

representing each accession. The PA values for DMY reported in the

present work thus compare well with those reported for alfalfa and

white clover.

Prediction abilities for DMY in the perennial ryegrass forage

crop were 0.013 – 0.275 (Grinberg et al., 2016), 0.07 – 0.43 (Faville

et al., 2018), and 0.28 – 0.59 (Pembleton et al., 2018). Despite low

PAs on DMY, Faville et al. (2020) found that genomic prediction

could still be used to improve the trait. It should be noted that these

values were obtained using breeding populations, i.e. likely

narrower germplasm, than in the present work. The germplasm

used here was a diverse panel with significant population structure

(Nay et al., 2023), which can inflate PA (Guo et al., 2014; Werner

et al., 2020). Figure 7 demonstrates how this affected PAs of DMY

and DOF. By having all accessions representing e.g. a single breeder

in the test set and not in the training set, the PA values were mostly

affected negatively. This is likely because no accessions from such a

relatively narrow set were represented in the training population,

whereas for the random CV, those accessions were present in both

sets (Werner et al., 2020). There were variations in the magnitude of

the effect depending on the trait, year (DMY) or location (DOF).

Some of this may be explained by differences in the genetic

architecture of the traits. The Northern European accessions tend

to have been adapted to one cut per season, and late flowering, and

may thus be genetically distinct from the other accessions, which

are early flowering and adapted to a multi-cut management regime,

hence the low PA for DMY (Figure 7A, C). There was a more
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modest decline for the two Northern European breeding materials,

Graminor, and Lantmännen. This could possibly be explained by

the presence of one of the two in either the training set and the test

set (Figures 7B, D).

The PA values were remarkably resilient to lowering the

number of SNP markers used to obtain the genomic relationship

matrix (GRM) (Figure 6; Supplementary Table S13). While the PA

values for marker numbers at 1K and below were significantly

reduced, the PA value for 100 markers were still 0.74. The most

likely explanation is that the genomic relationship does not need

many markers to be reasonably stable. The GRM was obtained

according to VanRaden (2008) for the GBLUP model. It has been

reported that a GRM matrix, derived from the Euclidian distance

between individuals based on the markers, can better capture non-

additive marker interactions (Cuevas et al., 2016; Bandeira E Sousa

et al., 2017). This remains to be tested in red clover. There are also

other ways of modelling the GxE effect to better predict the

performance of accessions across environments. Incorporating a

factor analytic (FA) structure accommodates different trial designs

and unbalanced data, allows for heterogeneity of variance across

environments, and can help to explain GxE interaction in terms of a

few latent factors (common factors) affecting the performance of

genotypes across environments (Smith et al., 2001; Smith and Cullis

2018). This should be explored in future work.
4.3 Validating the training sets

Given the geographical proximity of field trial sites, it was

surprising to find that the NOR training set predicted the

phenotypes obtained in Swedish field trials so poorly. The CHE

training set was the largest (392 accessions), and it contained 41 of

the 42 EUCLEG accessions tested in Sweden. To ascertain whether

this overlap was important, three training sets were compared with
FIGURE 9

Effect of varying the training sets from CHE on PA from three locations in Sweden (BJT = Bjertorp; KLB = Kölbäck; SVA = Svalöv) for DMY in year 1
and 2, (DMY1 and DMY2) and CP content in cut 1 and cut 2 in year 1 (CP1 and CP2). Training sets were: Comp – Complete set of 392 accessions;
Swe – Training set without the 42 accessions tested in Sweden; Ran1 and Ran2 – Training sets with 42 accessions removed randomly.
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the complete (Comp, 392 accessions) set: a training set in which the

42 accessions tested in all three locations in Sweden were omitted,

and two training sets in which 42 accessions were removed

randomly (Ran1 and Ran2). Figure 9 shows that reducing the size

of the training set by 42 did not appear by itself to have any effect on

PA, but removing the 42 accessions tested in Sweden did lower the

PA for CP1, and particularly for CP2 in BJT (0.32 - -0.01). For DMY

in year 1 there was also a slight decrease of PA in KLB from 0.84 to

0.75, and in SVA from 0.80 to 0.77. A similar analysis was not

feasible for the GBR, NOR and SRB training sets, as they were much

smaller and had varying numbers of accessions overlapping with

the 42 from Sweden (3 from GBR, 5 from SRB, and 22 from NOR).

The genetic relationship between training set and test set is

important for accuracy of genomic predictions (Liu et al., 2015). We

used the principal component analysis (PCA) carried out by Nay

et al. (2023) to illustrate the genetic relationship between the

training sets with accessions from CHE, GBR, NOR and SRB

with the test set from Sweden (Figure 10). There is a sizeable

number of accessions tested in NOR that are closely related with the

accessions tested in Sweden (in addition to the 22 accessions that

are in common with those tested in Sweden). In contrast, the GBR

and SRB accessions are more dispersed among the 392 accessions.

Together with the results shown in Figure 9, it suggests that genetic

relationship per se does not explain why the NOR training set

predicted the phenotypes obtained in the Swedish field trials so

poorly. What might explain it is the effect of leaving one breeders’

material out. Leaving out the Lantmännen breeders’ material does

not reduce the PA by much relative to the random control (0.85 to

0.77) in year 1 (Figure 7B), which could be explained by the

presence of related accessions in both training and test set.

However, that does not explain why the PAs from year 2 reduced
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to 0.31 on average. Factors related to the environment and the

genetics of the trait must be playing a role.

Overall, the present work has demonstrated the importance of

correlation between phenotypic traits for PA. We therefore

investigated the correlation between the phenotypic data from the

populations from CHE, GBR, NOR and SRB with the test sets from

Sweden. This could only be ascertained fully using the CHE

population as it encompassed 41 of the 42 accessions tested in

Sweden. Table 4 shows that DMY in year 1 was the only trait for

which there was a significant positive correlation between the

phenotypic values in Sweden and the corresponding phenotypic

values from CHE. This was also the only trait for which the PA was

very high. This would appear to underline the importance of

phenotypic correlation for PA.
FIGURE 10

Principal component analysis (PCA) revealing the genetic relationship between the 392 accessions used in this work. CHE: Accessions that were
exclusively assessed in Switzerland; GBR: Accessions exclusively assessed in GBR and CHE; NOR: Accessions exclusively tested in NOR and CHE;
SRB: Accessions exclusively tested in SRB and CHE; all: Accessions tested in CHE, GBR, NOR and SRB; SWE: Accessions tested exclusively in Sweden
and CHE.
TABLE 4 Pearson correlation between phenotypes from the three
Swedish locations (BJT, Bjertorp; KLB, Kölbäck; SVA, Svalöv) and the
phenotypic data from the corresponding CHE traits.

BJT KLB SVA

Trait Year 1 Year 2 Year 1 Year 2 Year 1 Year 2

DMY1 0.577*** 0.824*** 0.698***

DMY2 -0.447 -0.652 -0.749

Cut 1 Cut 2 Cut 1 Cut 2 Cut 1 Cut 2

CP1 0.131 0.129 -0.035

CP2 -0.333 -0.243 0.052
fron
Correlations with statistically significant (P< 0.001) positive values are indicated with ***.
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5 Conclusions

This work is the first evaluation of GP in red clover. It shows

that PAs were high for DMY and DOF, but mostly low for CP

content. The results probably reflect differences in heritability,

prediction bias, and correlation between traits. A lower number

of markers in the models resulted in lower PAs, but only when they

dropped below 1000 markers. Similarly, increasing the test set size

at the expense of the training set size also reduced PA, but only

when the training set size dropped to 10%. Such high PA values may

be caused by the population structure present in the diverse red

clover panel used here, because genetically related accessions are

present in both training and test sets. Another important factor

enhancing PAs seems to be a positive correlation between

phenotypic traits in the training and test sets.

The prediction models incorporated GxE by capturing MxE

interaction effects, which overall enhanced PA. This has

perspectives for identifying markers with effects that are stable

across environments, and those that have environment-

specific effects.
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